Types of stainless steel

Similar documents
Surface Hardening. Faculty of Mechanical Engineering

MME 291: Lecture 15. Surface Hardening of Steels. Today s Topics

Surface treatments fundamental Carburising Nitriding Cyaniding and carbonitriding Induction and flame hardening

High strength low alloy (HSLA).

Material Technology and Testing (MNF 222) CHAPTER 7 Fundamental of Steel Heat Treatment

MSE-226 Engineering Materials

Seam Welded Air-Hardenable Corrosion Resistant Steel Tubing: Automotive Applications Overview

Iron Carbon Equilibrium Diagrams

ME 216 Engineering Materials II

Chapter 7. Stainless Steels. /MS371/ Structure and Properties of Engineering Alloys

Alloy Steels. Chapter 7. Copyright 2007 Dr. Ali Ourdjini.

Introduction: Ferrous alloys - Review. Outline. Introduction: Ferrous alloys

THERMO-CHEMICAL SURFACE HARDENING TREATMENT OF STEELS

Their widespread use is accounted for by three factors:

Glossary of Steel Terms

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR

of Metal Alloys This is just an extension of the previous chapter Hardenability of Steels: The Jominy Test

What is Steel? Prepared By: John Cawley

Chapter Name of the Topic Marks

Lecture 14 The surface hardening of steels. Flame Hardening

CHAPTER 3 VALVE STEEL MATERIAL AND THERMAL PROCESSING

STEEL. Classification of steel. Amount of carbon Amount of deoxidization Amount of alloys Depth of hardening. 15-Nov-17. R.D.

HEAT TREATMENT. Bulk and Surface Treatments Annealing, Normalizing, Hardening, Tempering Hardenability

Heat Treating Basics-Steels

family of stainless steels can be divided into five (5) categories:

Cast steel: Group of ASTM standards for steel castings and forgings

Materials for Automobiles. Carburization Lec 6 22 August 2011

Stainless Steel St St Introduction

The University of New Mexico. Lecture 4. Chapter 5. zcl ME260L 06. The University of New Mexico. Austenite, Ferrite and Cementite.

Materials & Processes in Manufacturing. Introduction. Introduction ME 151. Chapter 6 Ferrous Metals and Alloys

Chapter 11 Part 2. Metals and Alloys

Heat Treatment and Press Quenching of Steel Alloys

A29/A29M-16 Standard Specification for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought

Ferrous Alloys. Metal Alloys. Ferrous. Non ferrous. Grey iron. Carbon Low Alloy High Alloy. Nodular iron White iron Malleable iron Alloy cast irons

ATI 418 SPL alloy is readily forgeable and has fair machinability and cold formability in the annealed condition.

Stainless Steel - St St Introduction

Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

Ferrous Alloys. Steels

Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational.

Fundamentals of. Steel Product. Graduate Institute of Ferrous Metallurgy

Engineering Materials

INVESTIGATION OF CARBURISATION METHODS FOR IMPROVED INTERNAL GEAR PERFORMANCE

Heat Treatment of Steels : Metallurgical Principle

foundry & specialized heat treatment to engineer solutions that shape the future

Stainless Steel. Patrick Ho, P.Eng, Senior Engineer, Applied Materials

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels

1. Dimensions, Tolerance and Related Attributes DIMENSIONS, TOLERANCES AND SURFACE. 2. Surface. Surface Technology.

ME-371/571 ENGINEERING MATERIALS

Stainless Steel (17/4PH&630) Bar

HEAT TREATMENT. Chapter 6. Veljko Samardzic. ME-215 Engineering Materials and Processes

Then the number of degrees of freedom (F) of the system is related to the number of components (C) and the number of phases (P) as follows:

Material Selection Jacob Klinginsmith, Russ Glass Naomi Sanders, Becky Moffitt

Stainless Steel Bar

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion

Metallurgy in Production

THE MECHANICAL PROPERTIES OF STAINLESS STEEL

short name: NR* technical product sheet created :57 1/10 seamless tube EN tol. acc. EN/ISO 1127 NR ,0 0,075 4,0 0,125

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

MSE-226 Engineering Materials

ATI 15-7 ATI Technical Data Sheet. Semi-Austenitic Stainless Steel INTRODUCTION

Stainless Steel Bars. Your foremost provider of specialty products, services and solutions

STANDARD STEELS STANDARD STEELS 403

Stainless Steel & Stainless Steel Fasteners Chemical, Physical and Mechanical Properties

CLASSIFICATION OF STEELS

Steel Forgings: Design, Production, Selection, Testing, and Application. Edward G. Nisbett. ASTM Stock No. MNL53

Stainless Steel (17/4PH&630) Bar

The ATI 17-4 precipitation hardening stainless steel (S17400) is covered by the following wrought product specifications.

2/8/2018. Friction. The Laws of Friction MSE 454 SURFACE TREATMENT OF MATERIALS. Ing. Anthony Andrews (PhD) Friction testing. Why is there friction?

Stainless Steel (17/4PH&630) Bar

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11)

Incoloy Alloy 800H/800HT (UNS N08810/088011)

MATERIALS INFORMATION SERVICE

MATERIALS SCIENCE AND ENGINEERING I

UNIT-II PART- A Heat treatment Annealing annealing temperature Normalizing.

SEASTROM Manufacturing Co., Inc Seastrom Street Twin Falls, Idaho Fax (208)

Stainless Steels and Nickel 100 years of Working Together

RA17-4 stainless. Introduction

CHAPTER INTRODUCTION

Alloy Steels. Engineering Materials. Introduction : Msc. Shaymaa Mahmood

Alloy 20 29Ni-20.5Cr-3.5Cu-2.5Mo A351 CN7M J Mo 20Cr-18Ni-6.5Mo-N-Cu A351 CK3MCuN J93254

STAINLESS STEEL DATASHEETS

International Welding Engineer (IWE) Module 2: Materials and Their Behavior During Welding 2.6 Heat Treatment of Base Materials and Welded Joints

VAC AERO International Inc. Training Manual BASIC HEAT TREATING

ATI 332 ATI 332. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES TYPICAL ANALYSIS PHYSICAL PROPERTIES

APPLICATION OF HIGH TEMPERATURE GRADES IN CARBON BLACK INDUSTRY

Think Stainless, Think Encore STAINLESS STEEL FOR SPECIALTY APPLICATIONS. Specialty Metals to Support Innovative Manufacturing

Typical aerospace-standard materials

Bulletin No. 4. ISO 9001 Registered HEAT TREAT BULLETIN. Case Hardening Of Steel Components And Straightening

Surface Hardening of Steels Understanding the Basics

Heat treatable for greater hardness and strength

AESTEIRON STEELS PVT. LTD. Projects Oil & Gas.

Stainless Steels. Fast Turnaround Processing. Low Width Thickness Ratio 3:1 unique to the industry (normal minimum is 8:1)

An Assessment of Mechanical Properties of Medium Carbon Steel under Different Quenching Media

Heat Treatment of Steels

MATERIAL TEKNIK (MAT) CAST IRON. Cecep Ruskandi

TEPZZ 9 4 A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2015/40

Heat Treatment of Steels

Back to Basics Stainless Steel. Tom Mackerras National Engineering Manager

Content. Brief profile

More Oxidation and Creep Resistance Upgrade for Type 409. Potential Substitute for 18 Cr-Cb & Type 439. Excellent Forming and Welding Characteristics

Transcription:

Types of stainless steel

Composition (wt%) Applications Types C Ni Cr Mo Ferritic 0.06-0.2-11-30 - Household utensils; Automotive Exhaust Components Heat exchanger Austenitic <0.25 <35 16-26 - Welding construction Pumping and containment of oil, gasses and acids Martensitic 0.1-1.2-11.5-18 - Knive Chemical and oil industries Surgical instruments Duplex 0.03-0.1 2.5-5 23-28 1-2 Pipes, tanks, Power generation, heaters

Mechanical properties Ferritic SS

Graded of Ferritic Stainless Steel

Mechanical properties -Better high temperature strength -Better corrosion resistant than ferritic and martensitic -Excellent weldability -Greater ductility than ferritic and martensitic SS This alloy called austenitic, since it structure remains austenitic (FCC, ) at all normal temperature. The presence of Ni, which has FCC structure, enables the FCC structure to be retained at room temperature

The AISI series of heat resistant austenitic stainless steel

Applications austenitic stainless steels

Martensitic stainless steels -Alloys of Cr and C that possess a BCC or BCT crystal structure in the hardened condition. -11.5-18 wt % Cr, and 0.1-1.2 wt % carbon -Carbon content more than ferritic and austenitic SS -They are ferromagnetic and hardenable by heat treatments. Ferromagnet: any material that could exhibit spontaneous magnetization: a net magnetic moment in the absence of an external magnetic field.

Graded of Martensitic stainless steels

Applications

Duplex Stainless Steel

Duplex stainless steel

Storage tanks for forest product

Precipitation-hardening martensitic stainless steels have corrosion resistance comparable to austenitic varieties, but can be precipitation hardened to even higher strengths than the other martensitic grades. The most common, 17-4PH, uses about 17% chromium and 4% nickel. There is a rising trend in defense budgets to optimise for an ultrahigh-strength stainless steel when possible in new projects, as it is estimated that 2% of the US GDP is spent dealing with corrosion. The Lockheed-Martin Joint Strike Fighter is the first aircraft to use a precipitation-hardenable stainless steel Carpenter Custom 465 in its airframe.

Applications: precipitation hardened martensitic stainless steel Gears, cams, shafting, aircraft and tubine parts

The SAE steel grades are the most commonly used grading system in the US for stainless steel. 100 Series austenitic chromium-nickel-manganese alloys 200 Series austenitic chromium-nickel-manganese alloys 300 Series austenitic chromium-nickel alloys 400 Series ferritic and martensitic chromium alloys 500 Series heat-resisting chromium alloys 600 Series martensitic precipitation hardening alloys

Comparison: Properties of stainless steel

10 Surface Hardening Faculty of Mechanical Engineering

Surface Hardening Many engineering must be very hard to resist surface indentation or wear and yet posses adequate toughness to resist impact damage Surface Hardening is a process by which a steel is given a hard, wear resistant surface, while retaining a ductile but tougher interior Surface hardening is usually done for the following reasons: - To improve wear resistance - To improve resistance to high contact stresses - To improve fracture toughness - To improve fatigue resistance, and, sometimes, - To improve corrosion resistance Faculty of Mechanical Engineering

Components that usually require surface hardening include: - gears - bearings - valves - cams - hand tools - rolls - shafts - machine tools - bearing races Surface hardening techniques can be classified into two major categories: 1. Processes that change the surface chemical composition (case hardening or thermochemical processes) 2. Processes that do not change the surface chemical composition (selective surface hardening or local thermal surface hardening) Faculty of Mechanical Engineering

Faculty of Mechanical Engineering

1. Case Hardening Case hardening methods include: 1. Carburising 2. Nitriding 3. Carbo-nitriding 4. Cyaniding Faculty of Mechanical Engineering

Carburising Carburising is a hardening process in which carbon is introduced into the surface layer of the steel 1. 2. 3. 4. The steel is heated in contact with a substance that has a high carbon content The steel is held at a temperature above the UCT (850 950 oc) for a suitable period of time Then quenched rapidly to produce a hardened surface layer or case over a softer and tougher core The steel is then tempered to the desired hardness Faculty of Mechanical Engineering

CARBURISING PROCESSES GAS CARBURISING PACK CARBURISING LIQUID CARBURISING Carburising is done on low C steel (< 0.25 %) The carburising time varies between 4 70 hours The length to time the steel is left in the furnace determines the depth of carburising Case depths ranging from 0.08 mm - 6.4 mm may be specified, depending on the service requirements of the product The carburising process does not harden the steel, it only increases the carbon content to a desired depth below the surface Faculty of Mechanical Engineering

1. Pack Carburising In pack carburising, the steel piece is packed in a steel container and completely surrounded with charcoal The charcoal is treated with BaCO3, which promotes the formation of CO2. CO reacts with the low carbon steel surface to form atomic C, which diffuses into the steel Quenching is difficult in pack carburising. Usually the part is allowed to cool slowly and then hardened and tempered Faculty of Mechanical Engineering Carburising time: 4 10 hours carburising depth: no limit (< 1.3 mm)

2. Gas Carburising Carburising is done with carbonaceous gases, such as: methane, ethane, natural gas or propane at around 930 oc The advantage of gas carburising is that the steel can be quenched directly from the carburising temperature 3. Liquid Carburising Carburising is done in liquid salts, which contain cyanide compounds such as NaCN Shorter carburising time compared to pack and gas carburising Environmental hazards of the salts used Faculty of Mechanical Engineering

Nitriding Another process by which a case of hardened steel can be achieved In nitriding, the steel piece is heated in a furnace between 500 600 oc and at the same time is exposed to ammonia gas (NH3) The heat from the furnace causes the ammonia to decompose into hydrogen (H2) and nitrogen (N2) Nitrogen reacts with elements in the steel to form nitrides in the outer layer of the steel providing high hardness and wear resistance Nitriding times range between 1 100 hours depending on steel composition and depth of hardening desired Since nitriding does not involve austentizing the steel and subsequent quenching to form martensite, it can be carried out at comparatively low temperatures and thus produce less distortion and deformation Faculty of Mechanical Engineering

Nitriding Faculty of Mechanical Engineering

Carbonitriding This process involves both the diffusion of C and N into the steel surface Nitriding is performed in a gas atmosphere furnace using a carburising gas such as propane or methane (source of C) mixed with several vol% of ammonia (NH3) (source of N) Carbonitriding is performed at temperatures above the UCT (700 800 oc) Quenching is done in a gas which is not as severe as water quench (the result is less distortion on the material to be treated). Faculty of Mechanical Engineering

Carbonitriding Faculty of Mechanical Engineering

Cyaniding This process also involves both the diffusion of C and N into the surface layers of the steel In cyaniding, the steel is heated in a liquid bath of cyanide carbonate chloride salts and then quenched in brine, water or oil Faculty of Mechanical Engineering

Selective Surface Hardening These processes are also called localised heat treatment because only the surface is austenitised and quenched to produce martensite The basic requirement for these processes is that the steel must have sufficient carbon and hardenability to achieve the required hardness at the surface (medium carbon steels are usually suited for these processes) Selective surface hardening are classified according to the heating source into: 1. Flame hardening 2. Induction hardening 3. Laser hardening 4. Electron-beam heat-treating Faculty of Mechanical Engineering

Selective Surface Hardening Selective hardening is applied because of one or more of the following reasons: 1. Parts to be heat-treated are so large as to make conventional furnace heating and quenching impractical and uneconomical - examples are large gears, large rolls, and dies 2. Only a small segment, section, or area of the part needs to be heattreated. Typical examples are ends of valve stems and push rods, and the wearing surfaces of cams and levers 3. Better dimensional accuracy of a heat-treated part 4. Overall cost savings by using inexpensive steels to have the wear properties of alloyed steels. Faculty of Mechanical Engineering

Flame Hardening Faculty of Mechanical Engineering Induction Hardening

Faculty of Mechanical Engineering

INDUCTION HARDENING Process: Induced current. Metal will be surrounded in a quickly changing magnetic field. Heating temperature: 750OC 850OC Quench in water. Faculty of Mechanical Engineering Advantages: No scaling effect. Reduce distortion. Consistent surface texture. Disadvantages: High cost Applications: Crankshafts. Gears. Automotive components which require high core strength. 19

FLAME HARDENING Advantages: Process: Heated to g region with oxyacetylene flame. Quenching. Thin surface hardening. Thickness control by temp. and time. No scaling effect. Cheap and portable. Disadvantages: Overheating can damage components. Applications: Crankshafts. Gears. Automotive components which require high core strength. Faculty of Mechanical Engineering 20

Faculty of Mechanical Engineering

SURFACE HARDENING Induction Hardening Does not change chem. comp. For medium carbon steel & alloy steel. Carburising Changed chem. comp. Additions of C on the surface. Oldest, cheapest technique. For low carbon steel Faculty of Mechanical Engineering Flame Hardening Does not change chem. comp. For carbon steel (0.3-0.6%C). Nitriding Changed chem. comp. Additions of N through NH3 gas. 22

How to select the right surface hardening method -Carburizing is the best method for low carbon steel -Nitriding is a lower distortion process than carburizing but it can be used for certain type of steel such as chromiummolybdenum alloy steel -Flame hardening is preferred for heavy cases or selective hardening of large machine components. -Induction hardening works best on parts small enough and suitable in shape to be compatible with the induction coil -Electron beam and laser hardening are limited to the low alloy steels and plain carbon steels Faculty of Mechanical Engineering