An Inexpensive Corrosion Laboratory Experiment - Suitable for All Ages.

Similar documents
Pre-Lab Exercises Lab 5: Oxidation and Reduction

Corrosion and batteries

UnderWater Magazine Article reprint: Summer 1999 "Corrosion Control: Galvanic Corrosion and Stainless Steel" By - Harvey P. Hack, PhD.

Mat E 272 Lecture 26: Oxidation and Corrosion

Why Does Rust Occur? 7.1 IN GENERAL

CORROSION & ITS CONTROL -Content. Introduction Classification Galvanic series Factors affecting Protection methods Summary

Corrosion. Cause of Corrosion: Electrochemical Mechanism of Corrosion (Rusting of Iron)

APPLICATIONS OF ELECTROCHEMISTRY

Prevention Strategies Design and Coatings

Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES

Metals. N4 & N5 Homework Questions

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment.

Electrochemical Considerations

Nickel Electroplating

2.3 Chemical Changes corrosion Kinds of Corrosion

Corrosion of Metals. Industrial Metallurgists, LLC Northbrook, IL Copyright 2013 Industrial Metallurgists, LLC

CORROSION AND CORROSION CONTROL An Introduction to Corrosion Science and Engineering

Chapter 16 Corrosion and Degradation of Materials

Student Activity: Identifying Matter

Corrosion Basics. About this article

Stainless Steel & Stainless Steel Fasteners Chemical, Physical and Mechanical Properties

Galvanic Corrosion Prevention Guide for Water Cooling Systems

sites under the deposit become anode and the lead to pitting. Hence, a good design should not allow the built up of impurities on surface

Iron filings (Fe) 56g IRON + SULPHUR IRON SULPHIDE

USER MANUAL ON PROFESSIONAL ELECTROCHEMICAL STATION EPS-30A

Finishing Workshop. Acid Etch Alloy Response. Introduction 5/1/2017. Acid Etch Overview. Alloy Study Weight Loss Gloss Wall Thickness.

Gasket Maker Anaerobic Adhesives GM10 GM18 GM74 Technical Data November GM10 GM18 GM74 Color Red Red Red Chemistry

Metal and Non Metals

How Steel Is Made. 2.5 tons of raw material and a nearly equal amount of air is required to produce 1 ton of pig iron.

Electricity and Chemistry

METHODS OF COATING FABRICATION

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals

Corrosion of metals and their protection

I. PHYSICAL PROPERTIES. PROPERTY METALS NON-METALS 1.Lustre Metals have shining surface. They do not have shining surface.

Zinc 17. Part 2 Practical work

Topic 9 National 4 Chemistry Summary Notes. Metals and Alloys. Materials

Corrosion Resistance of Aluminum

Project: Corrosion of Iron

Deruster 11 J Product Code: Revised Date: 01/26/2009. Deruster 11 J

Corrosion and Protection of Metal in the Seawater Desalination

STAINLESS STEEL. General Information

Figure 1. Effect of cathode-to-anode (C/A) ratio on galvanic corrosion. GALVANIC CORROSION

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate

PROCON I N T E R N A T I O N A L, L L C. CONSULTING ARCHITECTS & ENGINEERS CONSTRUCTION TECHNOLOGY

Chapter 17: Corrosion and Degradation of Materials

I. PHYSICAL PROPERTIES PROPERTY METALS NON-METALS

ME 280 Lab #1. Lüders Strain Evaluation of Stress Concentration and Electrochemical Embrittlement of Spring Steel

Metropolitan Water Reclamation District of Greater Chicago 10/19/ Mark Joyce Senior Mechanical Engineer Engineering Department

Light Bases & Light Fixtures

T-CON: MIDWEST WATER AND WASTEWATER TECHNOLOGY CONFERENCE SUSTAINABILITY BEGINS WITH CATHODIC PROTECTION June 5, :00 AM 9:30 AM

Corrosion Control and Cathodic Protection Data Sheet

Oxidation and Reduction

50948-RHN Putney. Friday, 15 December This document includes: Code Section Revision Dated

CHEMICAL SPECIFICATIONS OF ZINC AND ZINC ALUMINUM ALLOYS: TABLE 1 TABLE 1

HURST CORPORATION STAINLESS STEEL

Computer Aided Corrosion Prevention.

NCERT solutions for Metals and Non Metals

At the end of this lecture you should be able to

TECHNICAL BULLETIN. The following photographs were taken prior to samples being subjected to testing. J&L BOSS HOG EXTRA Improved Floor Panel

Metals Ferrous and Non - Ferrous Icons key:

Reactivity Series. Question Paper. Cambridge International Examinations. Score: /39. Percentage: /100

Page 1 of 15. Website: Mobile:

Contact us:

Straightening Aluminum Program 1. Module 1

Metal Finishing Products and Service META-MATE ZINCATE 40 "A CONCENTRATED LIQUID ZINCATE FORMULATION FOR THE PRETREATMENT OF ALUMINUM AND ITS ALLOYS"

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 9: METALS 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 9: METALS

U.S. General Services Administration Historic Preservation Technical Procedures. Galvanized Iron And Steel: Characteristics, Uses And Problems

SCIENCE SPM MODULE 4

Steels suitable for galvanizing

TECHNICAL SUPPORT MATERIAL Routine and Preventative Maintenance RUSTING INSTRUCTIONS

Thermal Diffusion Galvanizing

Electrochemistry Written Response

Distribution Review. Corrosion Control. Corrosion Control Vocabulary. American Water College 1. Corrosion Control Training Objectives

Compact Electro Plating Machine - CEPM-2A USER MANUAL

Corrosion Resistance of Heat Exchanger Fin Materials to Potassium Hydroxide Sodium Hypochlorite-Based Cleaning Chemicals and Ammonia

Galvanic and Stray Current Corrosion

Environmental concerns include the presence of oxygen, moisture (water), contact with dissimilar metals, and chemicals.

Getting Started with Welding

Chapter 3: Metals and Non-metals Question 1: Define amphoteric oxides. Give two examples. Answer: Oxides that react with both acids and bases to form

Study of Electrochemical Polishing Applications in some alloys to obtain high surface finish

Corrosion in Reinforced Concrete

Dissimilar Metals DISSIMILAR METALS. Weld Tech News VOL 1. NO. 14

Oman College of Management & Technology COURSE NAME: MATERIALS SCIENCE PROPOSED BY: DR.MOHAMED ALNEJEM SEMESTER: SECOND 2015/2016 CHAPTER (7): METALS

Corrosion and Corrosion Protection

ATI 2205 ATI Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)

Galvanic Anodes Period 3 Intermediate Corrosion Course 2017

1.1. Macro-etching 1.2. Etching of a sample having multi-phases structure

EEC. Corrosion Study Unit PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION. Engineering and Technical Teaching Equipment

Iron is found in an oxidized state and is mined from the ground as an iron ore.

Select adequate material of construction

HAND BOOK OF ELECTROPLATING ANODIZING & SURFACE FINISHING TECHNOLOGY

Metals and Non-metals

TECHNICAL BULLETIN. Dissimilar Metal Corrosion in Roofing Installations

GRADE: 10 CHEMISTRY MCQ (TERM-1)

BASICS OF CORROSION. Dr. Ramazan Kahraman

Chapter 3 Metals and Non-metals

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

SECTION 9. MAGNESIUM AND MAGNESIUM ALLOYS

CHAPTER 23: CORROSION

PPS Outshines Stainless Steel in Chemically-Hostile Valve Applications

Transcription:

An Inexpensive Corrosion Laboratory Experiment - Suitable for All Ages. John R. Williams Purdue University Statewide Technology Kokomo, IN 46904-9003 Abstract One of the most obvious effects of corrosion is the damage that road salt can perpetrate on our vehicles. In this paper the author describes how to perform corrosion testing on several metals to demonstrate methods of effective corrosion protection and to make qualitative comparisons between protected and unprotected metals. Student reactions to the exercise are discussed and their suggestions for improvement are presented. Some photographs of the experimental results are shown. Additional photographs are provided in the electronic version of the paper. Introduction Most people living in the midwest are very familiar with the rust that produces huge holes in cars and trucks and fills the junkyards with unwanted vehicles. One source indicated that up to 20% of the iron and steel products produced in the USA replaced objects that have been discarded due to rust damage. [1] One segment of an introductory materials course covers corrosion and its prevention. The course is required for both the AS and BS degrees in MET, and occurs in the plan of study before these students take college chemistry. The students in this course vary in age and background. No assumptions can be made concerning their understanding of electrochemical theory and chemical reactions. The lectures provided information on the chemistry of the iron rusting process and on the galvanic series. As an aid to student understanding, the author has developed a laboratory exercise to demonstrate corrosion effects and to illustrate some methods of preventing corrosive attack. The primary objective of this laboratory is to provide dramatic visual evidence of the progression of corrosive attack as well as its prevention and to accomplish this in a cost effective manner. Background Galvanic corrosion is the type that destroys metallic objects. For galvanic corrosion to occur, several conditions must be present simultaneously. [2] These conditions are: 1. the metal is oxidized at the anode of an electrolytic cell. 2. some ions are reduced at the cathode. 3. there is a potential (voltage) between the anode and cathode. 4. an electrolyte must be present 5. the anode must be electrically connected to the cathode The definitions of some of the terms used in these conditions are: when something is oxidized, it loses electrons, and when something is reduced, it gains electrons. [3] In addition an electrolyte is defined as a chemical substance, usually a liquid, that conducts electricity. [4] Indeed, electrolytes can include vapors, and even solids, such as an oxide film. [5] These definitions are critical to the understanding of techniques of corrosion protection. It is also necessary to understand the effects of cold work on metals. Cold work breaks large grains into smaller grains, thus producing larger numbers of grains and more grain boundaries. The more boundaries and grains, the greater is the opportunity for corrosion to occur. It is important to recognize that this type of corrosion is not the same as stress corrosion cracking. Armed with this background, the students can then be challenged to explain what occurs during the corrosion testing that follows. Materials Required for Corrosion Testing. An endless list of materials could be presented, but it is important to choose what is readily available and what will oxidize rather quickly. Conventional corrosion testing often takes long periods of time, uses extremely hazardous corrodents, (such as boiling hydrochloric acid) and requires careful weighing of samples to determine corrosion rates. This laboratory experiment is intended to be performed quickly, perhaps over a period of two or three weeks, and uses relatively innocuous corrodents.

Table 1 lists some candidate materials that can be used for this demonstration. Table 1. Candidate Corrosion Materials Low carbon hot rolled steel strip Low carbon hot rolled steel strip, with weld bead Low carbon hot rolled steel strip, with magnesium Straight and bent common steel nails Aluminum strip, 1100 series Aluminum strip, 6061 series CA 360 brass strip Pure copper strip Zinc plated hardware, such as an S hook Hot-dipped zinc coated roofing nail Cadmium coated bolts or screws Stainless steel bolt Inconel or Hastelloy strip Figure 1. Steel Samples Suggested corrodents are limited to common substances for safety and convenience. Good results have been achieved using household bleach, diluted with tap water in the ratio of 100:1. Bleach, NaClO, is an oxyacid, so it provides additional oxygen to the solution. Household ammonia, Drano, weak hydrochloric acid, weak sulfuric acid, rain water, calcium chloride solution (similar to road salt) are other inexpensive, easily obtained corrodents that can be used. Glass jars are used to hold the corrodent and the samples. It is best if the sides of the glass are plain, rather than decorated. Canning jars were used first, but the decorations cast into the glass interfered with observation of the reactions. Spaghetti sauce jars, with plain sides, work well for good visibility and for photography. It is necessary to remove any traces of glue from the labels for optimum visibility. Experimental Procedure For strip testing, 1-inch wide strips about 0.065 inch thick are used. These strips have been sheared into tensile test specimens, then cut in half. A hole is drilled in the half-inch width section for a support string. Three of these strips are shown in figure 1. A piece of nylon fish line is inserted into the hole and used to suspend the specimen in the jar. A polyethylene film can also be used to suspend the samples, but may hinder observation. The lid is placed over the jar and the string and gently tightened, just enough to hold the sample and string. Do not fully tighten the lid since it may cut the nylon line. In addition, is acceptable to use clear plastic film over the top of the jar, held in place by a rubber band. A tight seal should be avoided since pressure might build up due to hydrogen generation. However, a good cover is needed to prevent evaporation of the corrodent liquid over time. The same process is used for nails, bolts, hardware items, etc., except the string may need to be tied to the object to adequately support the material in the corrodent. The students are given a data sheet to use for observations. They are asked to observe the samples about one hour after they are immersed in the corrodent, and to observe every class day until about two or three weeks have elapsed. Some students sketched the appearance of the samples, while others just used words to describe what they saw. One student sketched each of the samples and drew the progress of corrosion using colored pencils. Typical Results. The primary objective to help students understand how corrosion occurs or why it does not occur based on these experiments was achieved. Consider the following tests and results. Steel Strip Samples Three steel strip samples, each AISI 1010 hot-rolled steel, are used in the dilute bleach solution. One is plain, one has had a weld bead placed on it, using a MIG welder, and one has some magnesium strips bound to it using nylon fishing line. Corrosion begins very quickly at the sheared edges of the strips, where cold work was done during the shearing. Rust completely formed over the plain sample, starting at the outer edges. Rust also formed at the edges of the weld bead, again due to cold work occurring during the weld cooling. However, the magnesium strips provided cathodic protection for that sample. The magnesium will oxidize visibly. It is

essential to ensure good electrical contact between the magnesium and the steel. Figure 2 shows the three steel samples after 48 hours of in the dilute bleach solution. At first glance, there appears to be little difference between the two samples. However, careful examination showed that the plain sample has undergone more corrosion. It is possible that the magnesium strips did not have good electrical contact with the steel, thus allowing greater oxidation to occur. In previous experiments, significantly less rust was observed on the magnesium protected sample. Bent and Straight Nails Figure 2. Three Steel Corrosion Samples after 48 hours Figure 3 is a close-up view of the plain steel sample, while figure 4 is a close-up of the sample protected by the magnesium strip. Both have been immersed for 48 hours. The head and point of wire nails are formed by extreme cold work. Thus, rust can be expected to form at these points. However, rust will also form in the bend area of the bent nail, again due to cold work. Also, small amounts of rust formed on the shank of both nails due to scratching that occurred during transport and handling. Figure 5 shows the nail samples after 48 hours in the dilute bleach solution. An enlarged detail of the bent nail is shown in the inset. Figure 5. Straight and Bent Nails after 48 hours Figure 3. Close-up of the plain steel sample In steel corrosion, the grain boundaries become the anode and the grain becomes the cathode. As the boundary is eroded, the grain and boundaries switch roles so the polarity is reversed. This process is repeated until the entire piece has reacted. [6] Also, since the oxide crystal is larger than the steel crystal, the oxide buckles, exposing a fresh surface, allowing complete destruction of the part over time. Brass and Copper Samples Figure 4. Close-up of the magnesium protected sample Strips of brass (CA 260) and pure copper were immersed in the dilute bleach solution. There is little activity and almost no corrosion observed below the liquid level. This is due to the tendency for brass and copper to form passive layers. However, it was noticed that green oxides

formed on the materials above the liquid line, where more oxygen is available. Zinc Plated and Hot Dipped Samples Bright plated samples and the rather dull hot-dipped samples showed no evidence of orange rust formation when immersed in the dilute bleach corrodent, because the zinc becomes the anode protecting the underlying steel. The zinc coating will become dull as it oxidizes. Some white crystals may form. If the zinc coating was deeply scratched, rust occurred locally. Stainless, Inconel, or Hastelloy Materials. None of these materials showed significant corrosion. Aluminum In one experiment, 1100 series aluminum was tested in both the dilute bleach solution and in household ammonia. The strip in the bleach exhibited relatively little chemical reactivity. Eventually white crystals formed in many areas of the strip. The sample in the ammonia exhibited strong reactivity with the rapid evolution of bubbles for two days. The strip began to turn black. Bubble formation stopped and no further reaction was observed. This was due to anodization of the surface, after which, the oxide layer protected the base material from further reaction. The oxide crystals of aluminum are the same size as the grains of the metal, allowing them to stick to the parent metal and prevent further oxidation. [7] Other Options If quantitative results are desired, corrosion coupons can be cut, weighed before and after attack to measure corrosion rate as well as simply observed periodically for changes. If proper containers can be obtained, photographic evidence can be collected for visual comparisons. If greater corrosive activity is desired, an aquarium pump could be used to bubble air through the sample jars. This would cause cloudiness due to the agitation, but the bubbling could be stopped for observation. Stress corrosion, mentioned earlier, can be demonstrated by bending a thin strip of steel in a horseshoe shape and holding the ends using a bolt or wire. After long in a corrodent, the sheet should fail by cracking at the bend. Student Reactions Students in the Spring, 1996, class commented anonymously on the course and the corrosion lab in particular. The following are some student comments. These remarks are copied as written, including underlining, etc. The corrosion lab was not too bad. The corrosion lab, in my opinion, was very interesting. More time was needed to view the specimens. The corrosion lab was an excellent example of the actual corrosion process. Overall, the content and knowledge gained from this lab was excellent. The chemistry stuff is hard since I haven t had it yet. The corrosion lab was GREAT. I learned a lot about anodes and cathodes on this lab. Other student comments were of a similar nature. It was a little surprising to find nearly unanimous agreement on the value of the exercise. A brief chemistry discussion was given to explain iron oxidation. That material would be expected to be difficult for someone who did not have even a high school chemistry course. Even so, the student who complained about the chemistry stuff was still able to praise the lab. This result was certainly gratifying. Future Work The author plans to include more types of metals as candidates, as well as demonstrating crevice corrosion, stress corrosion cracking and bolting dissimilar metals together. Students will be asked to predict results before the experiment starts. Note: additional photographs are included in the electronic version of this paper.

Pick Steel samples before 3 samples at start of Nails at start 3 samples after 1 hour Nails after 1 hour 3 samples after 5 hours Nails after 5 hours 3 samples after 30 hours Nails after 30 hours Plain steel strip after 30 hours Steel strip with magnesium after 30 hours Welded steel strip after 30 hours Nails after 30 hours 3 samples after 48 hours Plain steel after 48 hours Steel strip with magnesium after 48 hours Weeded steel strip after 48 hours Nails after 48 hours References 1. Brown, Theodore L., et. al., Chemistry: the central science, 5th edition, Prentice-Hall, 1991, pg. 733. 2. Budinski, Kenneth G., Engineering materials: properties and selection, 5th edition, Prentice-Hall, 1996, pg. 384. 3. Brown, Theodore L., op. cit. pg. 121. 4. Dalton, William K., The technology of metallurgy, Macmillan Publishing Company, 1994, pg. 307. 5. Budinski, Kenneth G., op. cit., pg. 384. 6. Fellers, William O., Materials science, testing and properties for technicians, Prentice-Hall, 1990, pg. 152-153. 7. Ibid.