An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+

Similar documents
(aq) + 5e - Mn 2+ (aq) + 4H 2

Potentiometric titration

Evaluation copy. Energy Content of Fuels. computer OBJECTIVES MATERIALS

CHM111 Lab Redox Titration Grading Rubric

Experiment #8. Redox Titration

Experimental Procedure. Lab 402

Cu (s) Cu 2+ (aq) Cu(OH) 2 (s) CuO (s) Cu 2+ (aq) Cu (s)

Acid Rain and Its Effect on Surface Water. Evaluation copy. Figure 1: Typical rain ph in United States.

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

Evaluation copy. Energy Content of Fuels. computer OBJECTIVES MATERIALS

Lab #7: Redox Titration Lab Exercise Chemistry II 10 points Partner: USE BLUE/BLACK INK!!!! Date: Hour:

Experiment 13: Determination of Molecular Weight by Freezing Point Depression

39 Acid base titration: Alanine (HA2) (2- aminopropanoic acid) with sodium hydroxide

Forensics with TI-Nspire Technology

COPPER CYCLE EXPERIMENT 3

Chem 2115 Experiment #9. Consumer Chemistry: Determining the Iron Content in Supplements

LAD B3 (pg! 1 of 6! ) Analysis by Redox Titration Name Per

EXPERIMENT. The Reaction of Magnesium with Hydrochloric Acid; The Molar Volume of Hydrogen

CHM Gravimetric Chloride Experiment (r7) 1/5

Evaluation copy. Total Dissolved Solids. Computer INTRODUCTION

Evaluation copy. Energy Content of Fuels. computer OBJECTIVES MATERIALS

Freezing and Melting of Water

EXPERIMENT 15 FREEZING POINT: A COLLIGATIVE PROPERTY OF SOLUTIONS

Copper Odyssey. Chemical Reactions of Copper

The following are the completed but unbalanced equations. Each equation is numbered to match each step of the cycle:

Experiment 3: Determination of an Empirical Formula

An Insulated Cola Bottle

CHM-202 General Chemistry and Laboratory II Laboratory 2 Molar Mass by Freezing Point Depression

EXPERIMENT III. Determination of Iron in Iron Oxide, (Fe 2 O 3 ), Using Dichromate Method. Chemical Overview

PERCENT Y IELD: COPPER T Ra NSFORMATIONS

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron with 1,10-Phenanthroline

Salinity in Seawater

Experiment 1 MOLAR MASS DETERMINATION BY FREEZING POINT DEPRESSION

Evaluation copy. Chloride and Salinity. Computer INTRODUCTION

Amperometric Titrator assembly. Digital Titrator. Beaker, low-form, 250-mL. Stir bar, octagonal, Teflon-coated, 50.8 x 7.9 mm

Determination of the Molar Mass of a Compound by Freezing Point Depression

Direct ISE Method Method to 10.0 mg/l F Fluoride ISE

Acid Rain. Evaluation copy. Figure 1: Typical rain ph in United States.

Chemistry 102 Freezing Point Depression Dr. Caddell. Depressing the Freezing Point of Cyclohexane

Direct ISE Method Method to 4.00 mg/l NO 3 N Nitrate ISE

Experiment 8. Determination of Iron in an Ore by Potentiometric Titration. Iron ores are often completely decomposed in hot concentrated HCl.

Total Dissolved Solids

Biochemical Oxygen Demand

Analysis of Calcium Carbonate Tablets

GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION

EXPERIMENT 7A. Chemical Separation by Filtration and Recrystallization INTRODUCTION

Rev Experiment 10

EXPERIMENT 5 Chemistry 110 COMPOSITION OF A MIXTURE

Method 8017 (0.7 to 80.0 µg/l) Powder Pillows. Scope and Application: For water and wastewater; digestion is required to determine total cadmium.

Phase Diagrams Revised: 1/27/16 PHASE DIAGRAMS. Adapted from Bill Ponder, Collin College & MIT OpenCourseWare INTRODUCTION

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION

Density (d) is a property of a substance equal to the ratio of its mass (m) to its volume (V): d = m V

M. It is expressed in units such a g/cc,

Chemistry. Freezing and Melting of Water ID: By Texas Instruments TEACHER GUIDE

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

Name Honors Chemistry / /

Methods and Materials Manual Of Ion Chromatography Using DX-100 IC. Collecting Samples. LDPE bottle with cap (pre-rinsed with DI water)

SOP_Chem_001 Chemical Analysis_ Chemical Oxygen Demand. Standard Operation Procedure Chemical Oxygen Demand Closed Reflux, Titrimetric Method

PREPARATION & ANALYSIS OF AN IRON COORDINATION COMPOUND PART A: PREPARATION OF AN IRON COORDINATION COMPOUND

Salinity Sensor PS Salinity Sensor Probe. Salinity Sensor Probe, 10 X, Conductivity/Temperature PASPORT Extension Cable

OXIDATION-REDUCTION TITRATIONS-Permanganometry

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions

Experiment 2: Preparation of the Artificial Sweetener Dulcin

Ocean Water. Evaluation copy

Enzyme Activity Lab. Grade 12 University Preparation Biology. Performed By:

Experiment: Measurements

Oxidation reduction reaction

Colligative Properties of Solutions: Freezing Point Depression

Colligative Properties of Solutions: Freezing Point Depression

Determine whether the metal is magnesium, iron, or zinc based on the value of the calculated molar mass.

CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1

Calcium and Magnesium; Chlorophosphonazo Rapid Liquid Method Method to 1000 µg/l Ca and Mg as CaCO 3 (ULR) Pour-Thru Cell

seven mm screw top bottles Vernier computer interface shallow pan Vernier Dissolved Oxygen Probe scissors Logger Pro

LABORATORY INVESTIGATION

DOWNLOAD PDF CYCLE OF COPPER REACTIONS

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES

D A T A L O G G I N G

Determining Melting Temperature. Sample

Extracting a metal from its ore 2004 by David A. Katz. All rights reserved.

CH 149: Chemical Principles. Fall KP1019 Module TA Manual

Archer G11 Partner: Judy Aug Gravimetric Analysis of a Metal Carbonate

H N 2. Decolorizing carbon O. O Acetanilide

Cell Respiration (Method 1 CO 2 and O 2 )

Experiment 1: The Densities of Liquids and Solids (from Masterson & Hurley)

Oxygen Demand, Chemical

Revised Molar Mass Measurement Lab Purpose: Background:

Oxygen Demand, Chemical

Collecting a Surface Water Sample

30th International Chemistry Olympiad

Chemical Reactions Lab. Please remember, this power point is posted online

What are the properties of water that drive the earth's water cycle? How does the water cycle transfer water molecules around the earth?

Activity of metals SCIENTIFIC. Demonstration and Inquiry. Introduction. Concepts. Background. Inquiry Approach. Demonstration Questions

Standard Methods for the Examination of Water and Wastewater

Experiment 2: The Chromatography of Organic Compounds

Gravimetric Analysis: Determination of % Sulfur in Fertilizer

A Water Field Study. Table 1: Water Temperatures of Selected Rivers Site Season Temperature ( C)

Experiment 3 MELTING POINTS AND RANGES. New Technique. Discussion. Melting points and ranges.

A Cycle of Copper Reactions

Scope and application: For water, wastewater, seawater, brine solutions, produced waters and hydraulic fracturing waters.

19. The preparation and purification of methyl-3-nitrobenzoate Student Sheet

Transcription:

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+ LAB ADV COMP 8 From Advanced Chemistry with Vernier, Vernier Software & Technology, 2004 INTRODUCTION A titration, as you recall, is a convenient method of learning more about a solution by reacting it with a second solution of known molar concentration. There are a number of ways to measure the progress of a titration. The method used in this experiment is called a potentiometric titration, in which the electric potential of a reaction is monitored. All acid-base titrations that are measured by a ph probe are potentiometric; thus, this method is not as unusual as it may seem. You will conduct an oxidation-reduction reaction in this experiment in order to determine the amount of iron (II) ions in a solid sample of ferrous ammonium sulfate hexahydrate, (NH 4 ) 2 Fe(SO 4 ) 2 6H 2 O. The oxidizing agent for the sample will be ammonium cerium (IV) nitrate, (NH 4 ) 2 Ce(NO 3 ) 6. The net ionic equation for the reaction is shown below. Ce 4+ (aq) + Fe 2+ (aq) Ce 3+ (aq) + Fe 3+ (aq) This experiment illustrates the electrical nature of chemical reactions, and offers practice with a process for observing and measuring an oxidation-reduction reaction. OBJECTIVES In this experiment, you will Conduct the potentiometric titration of the reaction between ferrous ammonium sulfate hexahydrate and ammonium cerium (IV) nitrate. Measure the potential change of the reaction. Determine the molar concentration of iron (II) ions in a sample of ferrous ammonium sulfate hexahydrate. Figure 1 Westminster College SIM ADV COMP 8-1

CHOOSING A METHOD If you choose Method 1, you will conduct the titration in a conventional manner. You will deliver volumes of Ce 4+ titrant from a buret. You will enter the buret readings manually to store and graph each potential-volume data pair. If you choose Method 2, you will use a Vernier Drop Counter to conduct the titration. Ce 4+ titrant is delivered drop by drop from the reagent reservoir through the Drop Counter slot. After the drop reacts with the reagent in the beaker, the volume of the drop is calculated and a potential-volume data pair is stored. MATERIALS Materials for both Method 1 (buret) and Method 2 (Drop Counter) Vernier computer interface magnetic stirrer (if available) computer stirring bar or Microstirrer Vernier ORP Sensor wash bottle 0.100 M (NH 4 ) 2 Ce(NO 3 ) 6 in 1 M H 2 SO 4 distilled water (NH 4 ) 2 Fe(SO 4 ) 2 6H 2 O solution ring stand 50 ml graduated cylinder utility clamp 250 ml beaker Materials required only for Method 1 (buret) 50 ml buret buret clamp 10 ml pipet and pump Materials required only for Method 2 (Drop Counter) Vernier Drop Counter 100 ml beaker 60 ml reagent reservoir 10 ml graduated cylinder 5 ml pipet a second 250 ml beaker METHOD 1: Measuring Volume Using a Buret 1. Obtain and wear goggles. 2. Measure out precisely 25.00 ml of a ferrous ammonium sulfate solution of unknown molar concentration and transfer it to a 250 ml beaker. CAUTION: Handle the solution with care; it contains 1.0 M sulfuric acid. It can cause painful burns if it comes in contact with the skin. 3. Place the beaker of ferrous ammonium sulfate solution on a magnetic stirrer and add a stirring bar. If no magnetic stirrer is available, stir the mixture with a stirring rod during the titration. 4. Connect an ORP Sensor to Channel 1 of a Vernier computer interface. Connect the interface to the computer with the proper cable. 5. Start the Logger Pro program on your computer. Open the file 08a Potentiometric from the Advanced Chemistry with Vernier folder. 6. Set up a ring stand, buret clamp, and 50 ml buret to conduct the titration (see Figure 1). Rinse and fill the buret with 0.100 M Ce 4+ solution. Westminster College SIM ADV 8-2

7. Place a utility clamp on the ring stand to hold the ORP Sensor in place during the titration. Position the ORP Sensor so that its tip is immersed in the Fe 2+ solution but does not interfere with the movement of the magnetic stir bar. Gently stir the beaker of solution. 8. You are now ready to begin the titration. The objective of your first trial is to determine the region of the titration curve near the equivalence point, and not to precisely determine the equivalence point. Before adding Ce 4+ titrant, click. Once the displayed potential reading has stabilized, click. In the edit box, type 0 (for 0 ml added). Press the ENTER key to store the first data pair. Add 1 ml of the Ce 4+ titrant. Stir the solution gently at all times. When the potential stabilizes, again click. In the edit box, type the current buret reading. Press ENTER to store the second data pair. c. Add Ce 4+ solution in 1-mL increments and enter the buret reading after each increment. Continue adding Ce 4+ solution until the potential value remains constant. d. Click when you have finished collecting dat e. Examine the titration curve and estimate the volume of MnO 4 solution used to reach the equivalence point of the titration. Record this value in your data table for Trial 1. 9. When you have completed the titration, dispose of the reaction mixture as directed. Rinse the ORP Sensor with distilled water in preparation for the second trial. 10. Repeat the necessary steps to conduct a second titration with a new sample of (NH 4 ) 2 Fe(SO 4 ) 2 6H 2 O solution. 11. When you conduct the second trial, carefully add the Ce 4+ solution drop by drop in the region near the equivalence point so that you can precisely identify the equivalence point of the reaction. 12. Follow the steps below to find the equivalence point, which that is the largest increase in potential upon the addition of a very small amount of Ce 4+ solution. A good method of determining the precise equivalence point of the titration is to take the second derivative of the potential-volume data, a plot of 2 potential/ vol 2. Open Page 3 by clicking on the Page window on the menu bar. Analyze the second derivative plot and record the volume of Ce 4+ at the equivalence point. 13. At the direction of your instructor, conduct a third trial. Use your titration data from the second (or third) trial to determine the equivalence point of the reaction. 14. Print a copy of the trial and the data set that you intend to use in your data analysis. METHOD 2: Measuring Volume with a Drop Counter 1. Obtain and wear goggles. Westminster College SIM ADV 8-3

2. Add 40 ml of distilled water to a 100 ml beaker. (You can add less, about 20 ml, if you will be using a stirring bar instead of the Microstirrer.) Use a pipet bulb (or pipet pump) to transfer 5.0 ml of the ferrous ammonium sulfate solution of unknown molar concentration into the 100 ml beaker with distilled water. CAUTION: Handle the hydrochloric acid with care. It can cause painful burns if it comes in contact with the skin. 3. Connect the ORP Sensor to CH 1 of the computer interface. Lower the Drop Counter onto a ring stand and connect its cable to DIG/SONIC 1 (see Figure 2). Figure 2 4. Start the Logger Pro program on your computer. Open the file 08b Potentiometric (Drop Count) from the Advanced Chemistry with Vernier folder. 5. Obtain the plastic 60 ml reagent reservoir. Close both valves by turning the handles to a horizontal position. Follow the steps below to set up the reagent reservoir for the titration. Rinse the reagent reservoir with a few ml of the 0.10 M Ce 4+ solution and pour it into an empty 250 ml beaker. Use a utility clamp to attach the reservoir to the ring stand. c. Fill the reagent reservoir with slightly more than 60 ml of the 0.10 M Ce 4+ d. e. solution. Place the 250 ml beaker, which contains the rinse Ce 4+ solution, beneath the tip of the reservoir. Drain a small amount of the Ce 4+ solution into the 250 ml beaker to fill the reservoir s tip. To do this, turn both valve handles to the vertical position for a moment, then turn them both back to horizontal. 6. Calibrate the drops that will be delivered from the reagent reservoir. Note: If you are using the stored calibration (20 drops per ml), then skip this step. On the top row of the Logger Pro toolbar, open the Experiment menu and choose Calibrate DIG 1: Drop Counter (ml). Proceed by one of these two methods: If you have previously calibrated the drop size of your reagent reservoir and want to continue with the same drop size, select the Manual button, enter the number of Drops / ml, and click. Then proceed directly to Step 7. Westminster College SIM ADV 8-4

c. d. e. f. If you want to perform a new calibration, select the Automatic button, and continue with this step. Place a 10 ml graduated cylinder directly below the slot on the Drop Counter, lining it up with the tip of the reagent reservoir. Open the bottom valve on the reagent reservoir (vertical). Keep the top valve closed (horizontal). Click. Slowly open the top valve of the reagent reservoir so that drops are released at a slow rate (~1 drop every two seconds). You should see the drops being counted on the computer screen. g. When the volume of the Ce 4+ solution in the graduated cylinder is between 9 and 10 ml, close the bottom valve of the reagent reservoir. h. Enter the precise volume of Ce 4+ solution (read to the nearest 0.1 ml) in the edit box. Record the number of Drops / ml displayed on the screen for possible future use. i. Click. Discard the Ce 4+ solution in the graduated cylinder as directed and set the graduated cylinder aside. 7. Assemble the apparatus. Place the magnetic stirrer on the base of the ring stand. Insert the ORP Sensor through the large hole in the Drop Counter. c. Attach the Microstirrer to the bottom of the ORP Sensor. Rotate the paddle wheel of the Microstirrer, and make sure that it does not touch the bulb of the ORP Sensor. d. Adjust the positions of the Drop Counter and reagent reservoir so they are both lined up with the center of the magnetic stirrer. e. Lift up the ORP Sensor, and place the 100 ml beaker containing the ferrous ammonium sulfate solution onto the magnetic stirrer. Lower the ORP Sensor into the beaker. f. Adjust the position of the Drop Counter so that the Microstirrer on the ORP Sensor is just touching the bottom of the beaker. g. Adjust the reagent reservoir so its tip is just above the Drop Counter slot. 8. Turn on the magnetic stirrer so that the Microstirrer is stirring at a fast rate. 9. You are now ready to begin collecting dat Click. No data will be collected until the first drop goes through the Drop Counter slot. Fully open the bottom valve, but do not touch the top valve. After the first drop passes through the Drop Counter slot, check the data table to see that the first data pair was recorded. 10. Watch your graph to see when a large increase in potential takes place. This will be the equivalence point of the reaction. When this jump in potential occurs, let the titration proceed for several more milliliters of titrant, then click. Turn the bottom valve of the reagent reservoir to a closed (horizontal) position. Dispose of the reaction mixture as directed. Westminster College SIM ADV 8-5

11. Follow the steps below to find the equivalence point, which that is the largest increase in potential upon the addition of a very small amount of Ce 4+ solution. A good method of determining the precise equivalence point of the titration is to take the second derivative of the potential-volume data, a plot of 2 potential/ vol 2. Open Page 3 by clicking on the Page window on the menu bar. Analyze the second derivative plot and record the volume of Ce 4+ at the equivalence point. 12. Print a copy of the graph and the data set. If you wish to save the results of the first titration, choose Store Latest Run in the Experiment menu. 13. Repeat the titration with a second ferrous ammonium sulfate solution. Analyze the titration results in a manner similar to your first trial and record the equivalence point. DATA TABLE Trial 1 Trial 2 Volume of Fe 2+ solution (ml) Volume of Ce 4+ solution used to reach equivalence point ( ) DATA ANALYSIS 1. Calculate the molar amount of Ce 4+ used to reach the equivalence point of the reaction. 2. Calculate the molar amount of iron in the sample of ferrous ammonium sulfate solution. 3. Calculate the molar concentration of the ferrous ammonium sulfate solution. Westminster College SIM ADV 8-6

4. The ferrous ammonium sulfate solution that you tested was prepared by dissolving 40.0 g of solid (NH 4 ) 2 Fe(SO 4 ) 2 6H 2 O in 1.00 liter of solution. This substance is often impure. c. Calculate the theoretical percent Fe in a pure sample of (NH 4 ) 2 Fe(SO 4 ) 2 6H 2 O. Calculate the percent Fe in the sample that you tested. Compare your experimental percent Fe to the theoretical percent Fe. How pure was your sample? Use a calculation to support your assertion. Westminster College SIM ADV 8-7