Preliminary studies on in situ monitoring of lactose crystallization using focused beam reflectance measurement

Similar documents
Preliminary Studies on In Situ Monitoring of Lactose Crystallization Using Focused Beam Reflectance Measurement

Focused beam reflectance measurement as a tool for in situ monitoring of the lactose crystallization process

Evaluating an Ultrasonic Flaw Detector-Based Method to Characterize Solubility of Whey Protein Concentrate

Pat Monitoring of Particles in API Manufacture and Formulation

Nucleation & Growth Kinetics: A Comparison of FBRM and Laser Diffraction

White Paper. Crystallization in Process Chemistry Applying Simple PAT Tools. Author: Des O'Grady PhD, METTLER TOLEDO

White Paper. Advanced Strategies to Control Crystal Size Distribution. Author: Des O Grady PhD, METTLER TOLEDO

Solubility Curve and Metastable zone Width using Lasentec FBRM & PVM

Controlled Crystallization of Salts from Nuclear Waste Solutions 15235

FBRM in the Formulation Development Lab: A Study of Particle Behavior during Granulation and Dissolution

Inline Monitoring to Improve Purification of Biological Systems

Crystallization Guide

Continuous Crystallization of Pharmaceuticals. Allan S. Myerson

Optical microscopy of cement clinker. Clinker Microscopy The Ono Method Examination of polished sections

Do Winter Canola Hybrids and Open-Pollinated Varieties Respond Differently to Seeding Rate?

A Study on Crystallization of Oxalic Acid in Batch Cooling Crystallizer

On-line Monitoring of the Spherical Crystallization of Salicylic Acid. Omar S. Hasan 1 Helen M. Buettner 1 San Kiang 2

냉각결정화기술의응용전략 -2 고려대화공생명공학과양대륙

Exploration of a novel PAT for wet granulation

PHEN 612 SPRING 2008 WEEK 13 LAURENT SIMON

General Guidelines on Drop Size Measurement Techniques and Terminology

TESTS ON AGGREGATES 58

EXPERIMENT 15 FREEZING POINT: A COLLIGATIVE PROPERTY OF SOLUTIONS

Objective To study the time and temperature variations in the hardness of Al-4% Cu alloy on isothermal aging.

Polymorph Screening Technology by Controlling Crystallization

High-Yielding Soybean: Genetic Gain Fertilizer Nitrogen Interaction

Better wet granulation: development, scale-up and manufacture

THE MOLECULAR WEIGHT OF A SOLUTE*

Nitrogen Application Effects on Forage Sorghum Biomass Production and Nitrates

K Vinodhini, K Srinivasan

THE EFFECT OF SEEDING ON SUCROSE CRYSTAL SIZE DISTRIBUTION AND CRISTALLIZATION KINETICS

OTC PP. Measuring Oil in Water: A Sanity Check Lew Brown, Mason Ide, and Peter Wolfe, Fluid Imaging Technologies, Inc.

White Paper 9. HSWG-Brivanib Alaninate: DFF Sensor Identifies Optimal Formulation, Determines Granulation End-Point, and Enables Scale Up

Crystal Engineering in Continuous Plug-Flow Crystallizers. Supplementary Information

Experiment 1 MOLAR MASS DETERMINATION BY FREEZING POINT DEPRESSION

Stochastic modeling and control of particle size in crystallization of a pharmaceutical

The Development of the High Strength Aluminum Alloy Wire

Module 29. Precipitation from solid solution I. Lecture 29. Precipitation from solid solution I

Seader & Henley, Separation Process Principles f01_11

Method 4.2 Filter cake, filter feed and filtrate: Brix, NIR pol and purity

The Effects of Liquid Properties and Bed Hydrodynamics on the Distribution of Liquid on Solid Fluidized Particles in a Cold-Model Fluidized Bed

ISO 3093 INTERNATIONAL STANDARD

Laboratory Manual. Concrete and aggregate. Content

Developing Pharmaceutical Continuous Crystallization Processes - Knowledge & Gaps. Chris Price on behalf of the IMI team Product Development

SUPERCRITICAL ANTISOLVENT PRECIPITATION: ATOMIZATION AND PRODUCT QUALITY

COPYRIGHTED MATERIAL. Introduction to Crystallization Issues. Chapter 1

5. Discussion of the results for magnesium sulfate

Refractometer Calibration, Use and Maintenance Stephen Vasquez and Shannon Mueller

Development of High Quality Plastic Fuel Shells for Laser Fusion Energy

Eutectic freeze crystallization: Application to process streams and waste water purification

TOTAL INTERNAL REFLECTION IN PRISM Analyzing purity of liquids based on sensor characteristics

Neuro-Fuzzy Modeling of Nucleation Kinetics of Protein

HEL Turbidity Probe Manual

Performance and carcass characteristics of different cattle types A preliminary report

Particle Size Distribution Analysis for Ceramic Pot Water filter production

BULK SPECIFIC GRAVITY AND WATER ABSORPTION OF AGGREGATE

Tex-121-E, Soil-Lime Testing

CBSE SAMPLE PAPER 1 (Unsolved) SUMMATIVE ASSESSMENT I Class IX (SCIENCE) Time: 3 Hrs MM: 90

SUPER BEE 400TG-ML CLEANER by Cee-Bee

Salinity in Seawater

Utilization of FBRM in the Control of CSD. in a Batch Cooled Crystallizer

A NANO-MICRO-COMPOSITE SENSOR FOR THE MEASUREMENT OF FLOW SHEAR STRESS

CHAPTER 6 ENHANCEMENT OF CRITICAL CHARACTERISTICS OF TRANSFORMER OIL USING NANOMATERIALS

Supporting Information

Self Organized Silver Nanoparticles for Three Dimensional Plasmonic Crystals

Compressible cake filtration

IGCSE(A*-G) Edexcel - Chemistry

Loughborough University Institutional Repository. This item was submitted to Loughborough University's Institutional Repository by the/an author.

MIXING IMPACT ON ANTISOLVENT CRYSTALLIZATIONS. Dr. Wayne Genck Genck International

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+

Technical Paper THE USE OF CONDUCTIMETRY TO CHARACTERIZE THE REACTIVITY OF HIGH ALUMINA CEMENTS

Experiment 13: Determination of Molecular Weight by Freezing Point Depression

Examples of Viscosity Measurement With Sine-Wave Vibro Viscometer SV-10 Concerning Typical Lubricants (Viscosities at 40 C and 100 C in Particular)

CARBONATION OF WOLLASTONITE USING SUPERCRITICAL CARBON DIOXIDE

Assessment of Nucleation Kinetic Mechanisms in Gas Hydrate Crystallization Processes

4. Experimental Work. 4.1 Introduction to Experimental Work. 4.2 Suspension Melt Crystallization in a Tubular Heat Exchanger

Exotherm Dynamic Crystallization of Fat and Fat based products. A Complete Solution. Bench top instrument made of :

Further progress on crystal growth on-line monitoring

Introduction. Objective

Method 5.2 Syrup and remelt: Brix, NIR pol and purity

Bulk Etch Rate Properties of NaOH/Ethanol as a. CR-39 Nuclear Track Detector Etchant. Katherine Walden

SENSOR TIP OPTIMIZATION FOR A THERMAL ANEMOMETER FOR DETERMINING CONVECTION INTENSITY IN QUENCH BATHS

Standard Test Method for Particle-Size Analysis of Soils 1

Regulatory Assessment

Real-Time Prediction of Polymer-Coated Multiparticulate Dissolution using Process Analytical Technology

Electronic Supplementary Information (ESI) available for:

Growth mechanism of NaClO 3 and NaBrO 3 crystals from aqueous solutions

EXECUTIVE SUMMARY. 2. The effect of remediation on the distribution and mobility of both the LNAPL and water within the zone of interest.

Supporting Information

ISO 3093 INTERNATIONAL STANDARD

SASTA Method 3.2: Brix, NIR pol and purity

METHOD 5A - DETERMINATION OF PARTICULATE MATTER EMISSIONS FROM THE ASPHALT PROCESSING AND ASPHALT ROOFING INDUSTRY

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

EFFECT OF SOLIDS CONCENTRATION ON SOLID-LIQUID MASS TRANSFER IN AN AGITATED DISSOLUTION SYSTEM

Powder Rheology. Powder Flow Measurement with MCR Rheometers

Kansas Agricultural Experiment Station Research Reports

CRISTALIZATION UNIT YUSRON SUGIARTO

SECTION A. NATURAL SCIENCES TRIPOS Part IA. Friday 4 June to 4.30 MATERIALS AND MINERAL SCIENCES

Experimental Procedure. Lab 402

Chapter 3: Powders Production and Characterization

Transcription:

Kansas Agricultural Experiment Station Research Reports Volume Issue 2 Dairy Research (1984-214) Article 19 214 Preliminary studies on in situ monitoring of lactose crystallization using focused beam reflectance measurement Karthik Pandalaneni Jayendra K. Amamcharla Follow this and additional works at: http://newprairiepress.org/kaesrr Part of the Dairy Science Commons Recommended Citation Pandalaneni, Karthik and Amamcharla, Jayendra K. (214) "Preliminary studies on in situ monitoring of lactose crystallization using focused beam reflectance measurement," Kansas Agricultural Experiment Station Research Reports: Vol. : Iss. 2. https://doi.org/ 1.4148/2378-5977.3115 This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 214 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. K-State Research and Extension is an equal opportunity provider and employer.

Preliminary studies on in situ monitoring of lactose crystallization using focused beam reflectance measurement Abstract Isothermal crystallization of lactose was studied at supersaturated concentrations (w/w) of 5%, 55%, and 6% at temperatures 2ºC and 3ºC using an in situ system, focused beam reflectance measurement (FBRM), and a refractometer. The FBRM data were compared with Brix readings taken over time using a refractometer during isothermal crystallization. Chord length distribution obtained from FBRM in the ranges of <5 >μm (fine crystals) and 5 to 3 μm (coarse crystals) were observed and evaluated in relation to the extent of crystallization and rate constant results deduced from the refractometer measurements. The measured fine crystal counts increased with supersaturated concentration and temperature during isothermal crystallization. On the other hand, coarse counts were observed to increase with decreasing supersaturated concentration and temperature. The total crystal counts (coarse + fine crystals) obtained from FBRM increased as the temperature increased at all concentrations. The robustness of FBRM in understanding isothermal lactose crystallization at various concentrations and temperatures was successfully evaluated in the study.; Dairy Day, 214, Kansas State University, Manhattan, KS, 214; Dairy Research, 214 is known as Dairy Day, 214 Keywords Dairy Day, 214; Kansas Agricultural Experiment Station contribution; no. 15-156-S; Report of progress (Kansas Agricultural Experiment Station and Cooperative Extension Service); 1111; Lactose crystallization; Focused beam reflectance measurement Creative Commons License This work is licensed under a Creative Commons Attribution 4. License. This Research Report article is available in Kansas Agricultural Experiment Station Research Reports: http://newprairiepress.org/ kaesrr/vol/iss2/19

Dairy Research 214 Preliminary Studies on In Situ Monitoring of Lactose Crystallization Using Focused Beam Reflectance Measurement K. Pandalaneni, J.K. Amamcharla Summary Isothermal crystallization of lactose was studied at supersaturated concentrations (w/w) of 5%, 55%, and 6% at temperatures 2ºC and 3ºC using an in situ system, focused beam reflectance measurement (FBRM), and a refractometer. The FBRM data were compared with Brix readings taken over time using a refractometer during isothermal crystallization. Chord length distribution obtained from FBRM in the ranges of <5 µm (fine crystals) and 5 to 3 µm (coarse crystals) were observed and evaluated in relation to the extent of crystallization and rate constant results deduced from the refractometer measurements. The measured fine crystal counts increased with supersaturated concentration and temperature during isothermal crystallization. On the other hand, coarse counts were observed to increase with decreasing supersaturated concentration and temperature. The total crystal counts (coarse + fine crystals) obtained from FBRM increased as the temperature increased at all concentrations. The robustness of FBRM in understanding isothermal lactose crystallization at various concentrations and temperatures was successfully evaluated in the study. Key words: lactose crystallization, focused beam reflectance measurement Introduction Lactose is the most abundant carbohydrate present in milk. It is found in concentrations of 4.4 to 5.2% and is one of the major constituents in infant formulations, dried milk, and whey products. Commercial production of lactose involves concentration of whey or whey permeate by evaporation followed by batch crystallization. During the process, α-lactose crystallizes as tomahawk-shaped crystals. Crystal size distribution and lactose yield are the most important criteria to monitor during industrial crystallization of lactose and are influenced by the degree of supersaturation, rate of cooling, agitator speed, presence of impurities, and viscosity of supersaturated feed material. The dairy industry currently is depending on refractometer measurements to follow lactose crystallization, but this approach provides no information on crystal size distribution during crystallization. In situ monitoring of lactose crystallization to meet the special requirements of crystal size distribution (CSD) is needed. Focused beam reflectance measurement (FBRM) could be used to monitor the CSD and chord length distribution (CLD) in situ from supersaturated lactose solution. The FBRM uses a monochromatic laser (785 nm) rotating at a constant speed of 2 meters per second. As particles pass in front of the probe window, light is backscattered from the particles to the sapphire window. The duration of the backscatter is measured and particle chord length is obtained. Schematic representation of working principle of 35

Dairy Research 214 FBRM is shown in Figure 1. The objective of the present study was to evaluate the applicability of FBRM for in situ monitoring of the isothermal crystallization of lactose. Experimental Procedures Experimental Design A 2 3 factorial design was used in the study, with temperature and concentration as independent variables. Concentrations (5%, 55%, and 6%) w/w were randomly assigned to temperatures (2ºC and 3ºC) and resulted in 6 measurements. Experiments were conducted randomly and in two replications. Preparation of Supersaturated Lactose Solution Lactose solutions of desired supersaturation were prepared using 99.7% pure alpha lactose (Davisco Foods International, Inc., Le Seuer, MN). Desired concentrations of lactose (w/w) were obtained by dissolving 25, 275, and 3 g of α-lactose in 25, 225, and 2 g of distilled water to prepare 5%, 55%, and 6% (w/w) supersaturated solutions, respectively. The lactose and water mixture was heated to 87±3 C under continuous stirring to dissolve all the crystals. A lid was placed on the beaker to avoid moisture loss during heating. After ensuring the dissolution of all the crystals, the supersaturated lactose solution was rapidly cooled to the desired experimental temperature (2ºC or 3ºC) without agitation. Isothermal Crystallization of Lactose Isothermal lactose crystallization studies were carried out in a batch crystallizer specially designed for this work. The FBRM probe (Particle Track E25, Mettler-Toledo AutoChem, Inc., Columbus, OH) was immersed in a purpose-built batch crystallizer for in situ monitoring of the crystallization process as shown in Figure 2. The batch crystallizer was placed in a temperature-controlled water bath that could maintain a constant temperature. An overhead stirrer with a four-bladed propeller (Caframo, Georgian Bluffs, Ontario, Canada) was placed in the crystallizer to facilitate stirring. As shown in Figure 2, the propeller was maintained at 2.5 cm above the bottom of the beaker containing the supersaturated sample. The FBRM in-situ probe was fixed at a height of 5 cm from the bottom of the beaker and at an angle of 3 ± 5 to the vertical axis of the stirrer for all the crystallization experiments. Crystallization Monitoring Using an FBRM Probe Before the start of each experiment, the FBRM probe was cleaned thoroughly with distilled water to avoid interference from unwanted particles, as suggested by the manufacturer. The data from the FBRM probe were acquired using ic FBRM (version 4.3.391, Mettler-Toledo) every 3 minutes for the first 6 minutes and every 3 minutes thereafter during isothermal crystallization. Three categories of crystal chord length ranges,.5 5 µm, 5 3 µm, and 3 2, µm, were monitored and are designated fine, coarse, and large, respectively. Determination of Extent of Crystallization and Rate Constant At regular intervals, an approximately 1 ml of the crystal suspension was removed from the crystallizer using a dropper to measure the refractive index of the suspension. The refractive index, expressed in terms of Brix, of lactose solution was measured using a 36

Dairy Research 214 digital refractometer (Reichert Technologies, Depew, NY). A calibration curve was used to convert the Brix reading to actual lactose concentration solution, and refractometer readings were subsequently used to calculate the mass of crystals and extent of crystallization at any time t during isothermal crystallization. Mass of crystals at any time t was calculated from the initial lactose concentration C() and lactose concentration C(t) at time t using Equation 1. Water was assumed to represent 5% of the total mass of lactose crystal. MCrystal(t) = MH 2 O() C() C(t) 95.5C(t) (1) where MCrystal(t) is mass of crystals at given time t, MH 2 O() represents 5% of the total mass of lactose crystal, C() is initial concentration, and C(t) is concentration at time t. The extent of crystallization at time t was calculated using Equation 2 from the mass of crystals at time t obtained from Equation 1 and saturation concentration of lactose at temperature 2ºC and 3ºC. %Y(t) = MCrystal(t) MCrystal( t ) X1 (2) where Y(t) is the extent of crystallization at time t, MCrystal(t) is the mass of crystals obtained from Equation 1, and MCrystal(t ) is the mass of crystals at lactose solubility at experimental temperature. From the concentration difference C, plotted against time t, it was observed that the curve shows best the first-order decay fit. The rate constant can be deduced from plotting Equation 3, the first-order decay equation, where [A ] is the initial concentration of lactose solution before crystallization and k is the rate constant. [A] is the concentration difference C, at a given time t, where C = C(t) C(t ), with C(t ) as lactose solubility value at the temperature of interest. ln ( [A] ) = kt (3) [A ] Results and Discussion Determining Extent of Crystallization and the Rate Constant from Brix Values The extent of crystallization was determined during the isothermal crystallization of lactose for 5%, 55%, and 6% concentrations at 2ºC and 3ºC. Figure 3 shows the extent of crystallization during isothermal crystallization of lactose for 5%, 55%, and 6% concentrations at 2ºC and 3 C, respectively. Figure 3 shows that the extent of crystallization was higher at 3 C than at 2 C for all concentrations of lactose. The time required for isothermal crystallization to reach 9% was 3, 36, and 42 minutes for 6%, 55%, and 5% lactose solutions, respectively. On the other hand, the extent of crystallization at 2 C did not reach 9% even at 63 minutes for all the lactose concentrations studied. The extents of crystallization at 3 C were calculated to be 93%, 95%, and 96% for 5%, 55%, and 6% solutions, respectively. The extents of crystallization at 2 C were calculated to be 8%, 83%, and 86% for 5%, 55%, and 6% solutions, respectively. 37

Dairy Research 214 Extent of crystallization increased with lactose concentration at a given experimental temperature. A maximum extent of crystallization was observed for the 6% supersaturated solution concentration followed by 55% and 5% lactose concentrations at 3ºC. A similar trend was observed at 2ºC. Rate constants for the isothermal crystallization of lactose at 2 C and 3 C were calculated using Equation 3. For calculation purposes, it was assumed that the rate of mutarotation proceeded at a higher rate than crystallization of α-lactose. This assumption is based on the fact that mutarotation is not a limiting factor during crystallization of lactose. The rate constants obtained at different concentrations and temperatures are shown in Figure 4, which shows that the rate constants were higher at 3 C than at 2 C for the three lactose concentrations studied. Overall, refractometry is a suitable technique to calculate crystal mass throughout lactose crystallization. Another advantage of this technique is that it can be implemented easily regardless of crystallizer design; however, refractometer readings do not provide information on crystal size distribution. Evaluation of FBRM Data Plots of fine crystal counts (<5µm) obtained from FBRM during the isothermal crystallization of lactose at various temperatures and concentrations against time are shown in Figure 5. A steep increase in the fine crystal count was observed during the initial phase of crystallization (first 15 minutes) and can be attributed to primary nucleation of lactose crystals. These findings were in agreement with the extent of crystallization and the rate constant as shown in Figures 3 and 4, respectively. A further increase in fine crystal counts after the initial rapid increase was due to secondary nucleation and disintegration of lactose crystals. The disintegration of lactose crystals was caused by attrition and collisions between crystals and the crystallizer walls and impeller. The plot of coarse crystal counts (5 3 µm) obtained from FBRM during isothermal crystallization of lactose at various temperatures and concentrations is shown in Figure 6, which shows a substantial difference between coarse crystal counts of lactose at 3ºC and 2ºC. The growth of crystals at 2ºC was also relatively higher than that of the lactose crystals obtained at 3ºC. The number of coarse crystals increased as temperature and supersaturation decreased; in other words, isothermal crystallization at 2 C and a concentration of 5% were favored to produce the largest mean-squared crystals in the present study. In contrast, the count of fine crystals increased as temperature and supersaturation increased. These results suggest that growth of crystals was favorable as temperature decreased, whereas an increase in temperature favored nucleation and formation of finer crystals. Counts of larger particles (3 1,2 µm) were found to be negligible and were not included in the analysis. Evaluation of Chord Length Distribution Chord length distributions obtained from FBRM at various time intervals during isothermal crystallization of lactose for all the treatments are shown in Figure 7. Crystal counts at 3 minutes at 3ºC were clearly higher than at 2ºC for all supersatu- 38

Dairy Research 214 rated concentrations, which supports observations from Figure 5. Total crystal counts increased with time for the first 6 to 8 hours and decreased during the last few hours in 55% and 6% concentrations. At 5% concentration, however, counts were reported to increase more at 2ºC than at 3ºC throughout the experiment, which is also apparent in Figure 6. A decrease in total crystal counts can be explained as a combination of the breakage of crystals and the interference of smaller crystals. A prominent decrease in the number of coarse crystals at 3ºC can be explained by the fact that, as the growth and density of crystals increases, the probability of the probe detecting particle width rather than particle length is high. Impeller speed, apart from enabling active crystallization by uniform supersaturation and mass transfer, also causes breakages, which could be an additional explanation for a decrease in coarse crystal count as time proceeds and was easy to track using FBRM. Conclusion The efficiency of FBRM in studying lactose crystallization with respect to operation parameters such as concentration and temperature was evaluated. FBRM is a powerful tool, and it can be used to follow secondary nucleation as a result of attrition and breakage apart from chord length distribution and crystal size. The results of this study imply that changes in concentration and temperature were well understood in terms of crystal size and counts over time using FBRM. The data obtained from FBRM supplements and strengthens refractive index data. c b a 2. 1. 1 1 1 Chord length, microns Laser source Laser return Optics module Focused beam Figure 1. (a) Focused beam reflectance measurement (FBRM) probe design, (b) detection of particles by probe using a laser moving at constant velocity, and (c) chord length distribution graph obtained from crystal distribution. 39

Dairy Research 214 FBRM laser source FBRM probe Temperature probe PC Stirrer Water bath Figure 2. Experimental setup for evaluation of lactose crystallization using focused beam reflectance measurement (FBRM). 1 Extent of crystallization, % 8 6 4 2 3 C, 5% 3 C, 55% 3 C, 6% 2 C, 5% 2 C, 55% 2 C, 6% 1 2 3 4 5 6 Time, minutes Figure 3. Extent of crystallization for 5%, 55%, and 6% at 2⁰C and 3⁰C. 7 4

Dairy Research 214.7.6 2 C 3 C Extent of crystallization, %.5.4.3.2.1 5 55 6 Concentration, w/w% Figure 4. Rate constants of different concentrations at 2⁰C and 3⁰C. 9, 2 C, 55% 3 C, 55% 2 C, 5% 3 C, 5% 2 C, 6% 3 C, 6% 8, 7, 6, Fine counts 5, 4, 3, 2, 1, 1 2 3 4 5 6 7 Time, minutes Figure 5. Count of fine crystals (<5µm) for 5%, 55%, and 6% concentrations at 2⁰C and 3⁰C. 41

Dairy Research 214 2,5 2 C, 55% 3 C, 55% 2 C, 5% 3 C, 5% 2 C, 6% 3 C, 6% 2, Coarse counts 1,5 1, 5 1 2 3 4 5 6 Time, minutes 7 Figure 6. Count of coarse crystals (5 3µm) for 5%, 55%, and 6% concentrations at 2⁰C and 3⁰C. 42

Dairy Research 214 3 minutes 12 minutes 24 minutes 36 minutes 48 minutes 6 minutes 2. 1. a 2. 1. b 1 1 1 1 1 1 3. 2. 1. 2. 1. c 1 1 1 e 1 1 1 Chord length, microns 2. 1. 2. 1. d 1 1 1 f 1 1 1 Chord length, microns Figure 7. Chord length distributions of crystals obtained from focused beam reflectance measurement data at different time periods. (A) 2ºC, 5%; (b) 3ºC, 5%; (c)2ºc, 55%; (d) 3ºC, 55%; (e) 2ºC, 6%; (f) 3ºC, 6%. 43