Dynamic Reliability Assessment of Slurry Pumps via Condition Monitoring

Similar documents
EVALUTION OF EROSION WEAR OF CETRIFUGAL PUMP USING CFD

The Prescriptive Promise

NUMERICAL SIMULATION AND OPTIMIZATION OF SOLID-LIQUID TWO-PHASE FLOW IN A BACK-SWEPT AXIAL FLOW PUMP

by Osamu Isumi Turbine Designing Section Manager Takashi Niiyama Design Engineer Mitsubishi Heavy Industries, Ltd. Hiroshima, Japan Kazushi Mori

Hydraulics Laboratory Experiment Report

The Impact Wear Behavior of Large Rocks on Slurry Pump Materials and Equipment.

Benchmark your hydraulic dredge performance

2. (a) How do you classify water turbines? (b) Define and explain different efficiencies of a water turbine. [8+8]

SANY ASPHALT BATCHING PLANT

PROVISIONAL PATENT APPLICATION NS306. Method for Establishing Self-Lubricated Flow of Bitumen Froth or Heavy Oil in a Pipeline

Hannah Yan. Mobile/Skype/WhatsAPP: Wechat:yhr MSP HEAVY DUTY SUMP PUMPS

SANY ASPHALT BATCHING PLANT

DEVELOPMENT AND TESTING OF THE GLENN EDWARDS DREDGE PUMPS

INVESTIGATION OF GAS CIRCULATOR RESPONSE TO LOAD TRANSIENTS IN NUCLEAR POWER PLANT OPERATION

Pumps, Turbines, and Pipe Networks, part 2. Ch 11 Young

RESEARCH & DEVELOPMENT REPORT

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

Pumping System Vibration

Best Practice Pump Control

DIAGRAM FOR CALCULATING PIPE SIZES, DISCHARGE VELOCITIES AND LOSS OF HEAD IN STANDARD STEEL PIPE PIPE FRICTION LOSS CHART

Opportunities for Data Analytics in Power Generation Prognostics: The Final Frontier

SXVS HEAVY DUTY SUMP PUMPS

Smart Manufacturing Machine Learning for Predictive Maintenance. Javier Díaz, Aingura IIoT Dan Isaacs, Xilinx

Application Note. Case study Machine condition monitoring strategy at the Zarnowiec pumped storage power station

FINAL Examination Paper (COVER PAGE) Programme : Diploma in Mechanical Engineering. Time : 8.00 am am Reading Time : 10 Minutes

Prognosis Monitoring System: methods and application cases

CALIBRATION OF TURBINE GAS METER BY MATCHING REYNOLDS NUMBER AND DENSITY. Introduction

Condition-Based Maintenance Decision-making Support System (DSS) of Hydropower Plant

Pressure Pulsations and Vibration Measurements in Francis Turbines with and without Freely Rotating Runner Cone Extension

University Curriculum Development for Decentralized Wastewater Management

In-Situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis

Enhancing Compressor Productivity How to get more from your machinery assets

Large scale backfill technology and equipment

Surface Aeration System Modeling Using COMSOL

Code No: R Set No. 1

Pumping Plant Detailed Evaluation Worksheet

DEVELOPMENTS IN IMPELLER TECHNOLOGY FOR MIXING VISCOUS, NON-NEWTONIAN FLUIDS. Richard K. Grenville Director of Mixing Technology

ANALYSIS OF THE DYNAMIC STIFFNESS OF A CENTRIFUGAL PUMP BY ODS

NOVEL TECHNOLOGIES FOR WEAR PROTECTION AND MONITORING IN DREDGING

Submersible Pump Fulfills Quarry Stone Washing Requirements. By Mike Bjorkman, Vice President and Director of Marketing, BJM Corp.

VFD Facts: Discovering the True Potential of Smart Pump Technology

Examine Pump, Process & Control Elements to Solve Fluid Piping System Problems

Dragflow Highlights and performance of Dragflow products Verona - Italy

SXVS HEAVY DUTY SUMP PUMPS

Power Recovery Turbines

Erosion Effects in Flowmeters

oe4625 Dredge Pumps and Slurry Transport Vaclav Matousek October 13, 2004

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF CENTRIFUGAL PUMP PERFORMANCE IN REVERSE MODE`

Experiment No.2 STUDY & TRIAL ON A FRANCIS TURBINE & PLOTTING OF MAIN /OPERATING CHARACTERISTICS.

Cavitation measurements on a pump-turbine model

OIL-INJECTED ROTARY SCREW COMPRESSORS. G ( kw / hp) / G VSD ( kw / hp)

*Corresponding authors. Tel.: x415, address: (N. Zhu)

Computational Fluid Dynamic Analysis in De-staging of Centrifugal Pumps

Remote Condition Monitoring systems and products

DEVELOPMENT OF DOWNHOLE PUMP FOR BINARY CYCLE POWER GENERATION USING GEOTHERMAL WATER

Available from IPP: 3.2MW Cogeneration Plant. (4x 800KW Reciprocating Natural Gas Generators)

Pure Axial Flow with Aerofoil Theory.

Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications

Wastewater Effluent Flow Control Using Multilayer Neural Networks

GE APM Reliability Management for Wind

Calculate the Costs of Piping System Elements

UR-Smart by Unipart Rail

How to Save Money and Become More Sustainable Through Energy Efficiency

A Performance Based Method to Determine Refrigerant Charge Level For Commissioning Unitary AC and HP Systems

ES Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY

Vibration Field Problem Resolved with Analytical Diagnostic Approach and Innovative Impeller Design. Bruno Schiavello - Giancarlo Cicatelli

AKTUELLE FORSCHUNGSERGEBNISSE ZUR INSTANDHALTUNG UND WEITERBETRIEB VON WINDTURBINEN

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2015/2016 ME257. Fluid Dynamics

CFD Analysis of Domestic Centrifugal Pump for Performance Enhancement

Research on Stabilization of Blade Vibration of Wind Turbine Based on Intelligent Control Theory

Bad Actor Elimination in Pumps. Vasanth Bhat and Thangavel Suthan Singapore Refining Company

FIRST LARGE-SCALE SOLAR SEASONAL BOREHOLE THERMAL ENERGY STORAGE IN CANADA

T Series. Self-Priming Centrifugal Pumps

MONITORING CRYOGENIC TURBINES USING NO-LOAD CHARACTERISTICS

Modal Analysis as a Tool to Resolve Pump Vibration Issues

An Investigation on Occurrence of Backflow Phenomena Caused in Axial Flow Pump, Part. II: Upstream Backflow

Table of Contents. Foreword... xvii Executive Summary... xxi. Chapter One Pump Fundamentals, 1

5 Ways to Increase CSD Production

Experimental Investigation of Twisted Bladed Savonius Wind Turbine Rotor

Pumping Systems for Industrial, Agriculture and Domestic applications

Pump Optimization through the use of Polymer Composite Coating Technology

Prohibition of Boiler Feed Water Pump Failure in Power Plant

High Efficiency Liquid-Solid Separators

Model-Based and Data-Driven Strategies for Wind Turbine Prognostics and Health Management

A Continuous Spray-type Seed Treater 1

C. heating turbine exhaust steam above its saturation temperature. D. cooling turbine exhaust steam below its saturation temperature.

Specific speed and impeller diameter

3rd International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2015)

Download From:

Performance Comparison of Air-source Heat Pumps Using Economizer Vapor Injection and Internal Heat Exchanger in Cold Regions

Reliability, Availability and Maintenance (RAM) & Prognostics and Health Managemenrt (PHM) - 4.0

Performance Improvement on Water-cooled Cold-Plate

REPORT ON THE BENEFITS OF ICE- BASED THERMAL STORAGE FOR DISTRICT COOLING IN THE UAE MARKETS

Simulation model of a variable-speed pumped-storage power plant in unstable operating conditions in pumping mode

VIBRATION ANALYSIS OF VERTICAL PUMPS

RETRO-COMMISSIONING OF A HEAT SOURCE SYSTEM IN A DISTRICT HEATING AND COOLING SYSTEM Eikichi Ono 1*, Harunori Yoshida 2, Fulin Wang 3 KEYWORDS

Rugged, reliable and efficient sump pumps... your assurance of a dry basement!

Optimizing Energy Consumption in a Biofuels Plant

HW-1: Due Tuesday 13 Jun 2017 by 2:00:00 pm EDT to Your Division s GradeScope Site

Maintenance Costs. Start With. Not when it comes to your pumps! Photo 1: Extensive damage on subject pump

Transcription:

Dynamic Reliability Assessment of Slurry Pumps via Condition Monitoring Introduction Ming J Zuo, PhD, PEng University of Alberta, Canada Email: ming.zuo@ualberta.ca Time-based reliability models and tools have been widely used in design for reliability and for determining maintenance and replacement schedules of systems and components. Metrics such as mean time to failure (MTTF) and mission reliability have become common measuring sticks of the reliability performance of engineering systems. All reliability engineers are familiar with lifetime distributions like the exponential distribution and the Weibull distribution. These models and tools are very useful when the operating condition of the system can be well controlled. The operating condition may include many factors such as the temperature and humidity levels in a room wherein telecommunications equipment is located; the ambient temperature, the humidity, precipitation condition, and wind velocity around a wind turbine; the road condition of automobiles; and the fluid medium of a pump. Some of these factors are easier to control than others; for example, room temperature, room humidity, paved road conditions, and pure liquid are controllable, while wind velocity and ice formation on wind turbine blades and the characteristics of the medium of a slurry pump used in the oil sands industry are impossible to control. Because time-based reliability models and tools are not very useful for systems working under such dynamic operating conditions, such as slurry pumps, it is more difficult to assess their reliability over time. In this case, instead of tracking the time or usage of the system, we must find a way to assess the health condition of the system over time. In this article, we describe a research project aiming to develop a dynamic reliability assessment tool for slurry pumps. Slurry Pumps Slurry pumps are used to pump a mixture of liquids and solids (called slurry). They are widely used in mining operations around the world and in oil sands operations in Alberta, Canada. For oil sands operations, the slurry to be pumped is composed of water, bitumen, and rocks. The rocks may be as large as several inches in diameter, and depending on the geographical locations, the hardness and abrasive properties of these rocks may be quite different. These rocks in the slurry cause severe wear of the wetted components, which are in contact with the pumped medium (the slurry). Wetted components include the impeller, casing, and suction liners. The diameter of the impeller may be as large as 60 inches. Once the amount of wear on a wetted component reaches a certain threshold level, it must be replaced with a new one; however, there are no well-established methods to determine the optimal time when the slurry pump should be shut down for replacement of its wetted components. Shutting down too early results in premature replacement of these components; if not shut down preventively in time, the pump will break down due to severe wearing of these components and this results in loss of production and economic loss. Developing a dynamic reliability assessment method for the wetted components of slurry pumps will enable full utilization of these expensive components while preventing unexpected downtime of the production system. 1

The Experimental System To find out what metrics to observe as indicators of the wear status of the wetted components, we have designed a slurry pump test loop (See Fig. 1). Key components of this test loop are the slurry pump, 40HP drive motor, 3 diameter pipes, inlet pressure control tank, sand addition tank for creating a mixture of sand and water (simulated slurry), cooling tank to control the temperature of the medium, flow rate control valves, and measuring instruments for pump speed, motor current, pressure, slurry temperature, flow rate, slurry density, and vibration. The locations of the vibration accelerometers are shown in Fig. 2. Note that the pump to be studied in this pump loop is much smaller than the ones used in field oil sands operations. Experiments Conducted The focus of the study is on the impeller because it gets worn out much faster than other wetted components. The impeller of the pump test loop has five vanes. Based on the experience of engineers of field slurry pumps, one of the major locations of wear is the trailing edge of the vanes. Thus, we decided to run the pump loop using four different impellers each with one of the following wear conditions at the trailing edges of the vanes: no material loss (damage level 0), slight material loss (level 1), medium material loss (level 2), and severe material loss (level 3). The impeller at damage levels 0 and 1 is shown in Fig. 3. As shown in Fig. 3, at damage level 1, there is a vane length loss of about one inch. For each impeller used (at a specific damage level), we ran the pump loop at several pump speeds (1600 revolutions per minute (rpm), 1800 rpm, 2000 rpm, 2200 rpm, and 2400 rpm) and several flow rates (70% of the best efficiency point flow rate (BEPQ), 85% BEPQ, 100% BEPQ, and 110% BEPQ). Vibration data from the three accelerometers and process data including inlet and outlet pressures, flow rate, density and motor current consumption were all collected with a data acquisition system. Fig. 1 Schematic of the slurry pump test loop. 2

Fig. 2 Vibration accelerometer locations (left) and schematic for direction convention (right). (a) Fig. 3 (a) Impeller at damage level 0; (b) Impeller at damage level 1. (b) Data Analysis Using the data collected, we examined many measures that potentially reflected the damage trend of the impeller. Based on the process data, we examined the trends of the head ratio (HR), the efficiency ratio (ER), and the power ratio (PR) versus the damage level. From the vibration data, we evaluated many time-domain features like root mean square (RMS), standard deviation, and kurtosis as well as many frequency-domain features like the amplitude at the blade passing frequency, its harmonics, and frequency centre. A fuzzy preference-based rough sets algorithm was used to select a subset of features that best reflected the damage trend. Principal component analysis was then performed to generate the first principal component as the final indicator of the damage trend. An example plot of the generated first principal component from the process indicators is shown in Fig. 4. From these extensive data analyses of both process data and vibration data, we developed an algorithm to automatically generate the 3

appropriate metric to monitor. This metric provided effective indication of the damage level progression. Future Work Now that we have identified the appropriate metric to track as the indicator of impeller trailing edge damage progression, our next step is to test this metric using field data. This next step will identify the threshold level of this metric beyond which the pump is deemed failed and the impeller needs to be replaced. Data collected from multiple pumps will be used to identify the level of uncertainty when such a threshold is used. The information on the level of uncertainty provides a reliability measure of the running pumps. This dynamic information will provide field engineers with the knowledge that once such a threshold is reached, the engineers have a certain time window, say two weeks, to prepare for the impeller replacement. Fig. 4 The first principal component generated from process indicators versus the damage level. 4

Conclusion When the operating condition is dynamic and thus impossible to control, it is much more difficult to develop effective reliability assessment methodology. Fortunately, many researchers are working in the area of diagnostics and prognostics which will generate useful results for condition based decision making in terms of reliability assurance and cost minimization. Bibliography: [1] Girindra Mani, Dan Wolfe, Xiaomin Zhao, and Ming J Zuo, Vibration based wear assessment in slurry pumps. Engineering Asset Management Review. Accepted June 15, 2010. [2] Xiaomin Zhao, Qinghua Hu, Yaguo Lei, and Ming J Zuo, Vibration-based fault diagnosis of slurry pump impellers using neighborhood rough set models. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 224 (C4): 995-1006, 2010. [3] Jian Qu and Ming J Zuo, Support Vector Machine Based Data Processing Algorithm for Wear Degree Classification of Slurry Pump Systems. Measurement. 43 (6): 781-791, 2010. [4] Tejas Patel, Ming J Zuo, and Xiaomin Zhao, Experimental investigations on effect of impeller vane trailing edge wear on slurry pump performance. Proceedings of The Canadian Society for Mechanical Engineering Forum 2010, CSME FORUM 2010, June 7-9, 2010, Victoria, British Columbia, Canada, CD-ROM, 7 pages. [5] Jian Qu and Ming J Zuo, An LSSVR-based machine condition prognostics algorithm for slurry pump systems. Proceedings of The Canadian Society for Mechanical Engineering Forum 2010, CSME FORUM 2010, June 7-9, 2010, Victoria, British Columbia, Canada, CD-ROM, 8 pages. [6] Xiaomin Zhao, Qinghua Hu, Yaguo Lei, and Ming J Zuo, Vibration-based fault diagnosis of slurry pumps using the neighborhood rough set model. Proceedings of ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2009), San Diego, California, USA (August 30 - September 2, 2009). CD-ROM, 8 pages. [7] Jian Qu, Chuxiong Miao, Mohammad Hoseini, Dan Wolfe, and Ming J. Zuo, Wear degree prognostics for slurry pumps using support vector machines. Proceedings of the 8th International Conference on Reliability, Maintainability and Safety (ICRMS 2009), Chengdu, China (July 20-24, 2009). 940-943. [8] Girindra Mani, Dan Wolfe, Xiaomin Zhao, and Ming J Zuo, Slurry pump wear assessment through vibration monitoring. Proceedings of the Third World Congress on Engineering Asset Management and Intelligent Maintenance Systems, Beijing, China, October 27-30, 2008 (CD-ROM). 1068-1076. [9] Yao Wang, Ming J. Zuo, and Xianfeng Fan, Design of an experimental system for wear assessment of slurry pumps, Proceedings of the Second CDEN Design Conference, July 18-20, 2005 (Kananaskis, Alberta), CD-ROM, 7 pages. [10] Ming J. Zuo, R Jiang, and RCM Yam. Approaches for reliability modeling of continuous state devices, IEEE Transactions on Reliability, Vol. 48, No. 1, 9-18, 1999. 5