Durability of wood-plastic composite lumber 113

Similar documents
YEARBOOK OF SCIENCE & TECHNOLOGY

Laboratory Tests on Fungal Resistance of Wood Filled Polyethylene Composites

Considerations in the Weathering of Wood-Plastic Composites

Changes in WoodFlour/HDPE CompositesAfterAccelerated Weathering With andwithoutwater Spray

Market and Technology Trends and Challenges for Wood Plastic Composites in North America

Coating WPCs Using Co-Extrusion to Improve Durability

Comparing Composites. Page 2: Types of Composite Deck; The Importance of 360-degree cap. Page 3: No protective cap. Page 8: Partially capped

International Journal of Research and Reviews in Pharmacy and Applied science.

HIGH PERFORMANCE WOOD PANEL

HIGH PERFORMANCE WOOD PANEL

CONFERENCE PAPER. No. 105 (2002) Effects of UV Radiation on Building Materials. M. S. Jones

POTENTIALS FOR JUTE BASED COMPOSITES

THE INTERNATIONAL RESEARCH GROUP ON WOOD PRESERVATION. The Effect on Biological and Moisture Resistance of Epichlorohydrin Chemically Modified Wood

sure your product is fit-for-purpose

Properties of thermally modified wood

7 th International Conference on Woodfiber-Plastic Composites Madison, WI May 19-20, 2003

PERP Program Thermoplastic Wood Composites New Report Alert

Specifically you have requested that we provide you with comment regarding:

The comparative performance of woodfiber-plastic and wood-based panels

Finishing Wood Decks

RESEARCHES CONCERNING THE CHEMICAL PRESERVATION OF WOOD USED IN CONDITIONS OF HAZARD CLASS 4

Latest Advancements in The Acetylation of Wood Fibers To Improve Performance of Wood Composites. R. M. Rowell 1 and R. Simonson 2

New bridge services is a leader in temporary fences and fence related /industrial application materials, with its view on a sustainable future for our

The Effects of Weathering on Wood-Thermoplastic Composites Intended for Outdoor Applications

58-MONTH REPORT. Performance of Selected Wood-Protection-Coated Lumber Products in Hilo, Hawaii

Moisture and Fungal Durability of Wood-Plastic Composites Made With Chemically Modified and Treated Wood Flour

Percentage of Decking Demand By Material (Sources: [1, 2, 5])

SYNOPSIS MOISTURE SORPTION PROPERTIES OF ACETYLATED LIGNOCELLULOSIC FIBERS

Wood Preservation. 2) Aboveground contact (low decay hazard that does not usually require pressure treatment), and

Effect of Particle Size on Properties of Wood-Flour Reinforced Polypropylene Composites

EFFECTS OF WOOD FIBER CHARACTERISTICS ON MECHANICAL PROPERTIES OF WOOD/POLYPROPYLENE COMPOSITES

DENSITY RANGE OF COMPRESSION-MOLDED POLYPROPYLENE-WOOD COMPOSITES Robert L. Geimer. Craig M. Clemons. James E. Wood,Jr.

Natural Fibers in Resin Transfer Molded Composites

Maleic Anhydride Polypropylene Modified Cellulose Nanofibril Polypropylene Nanocomposites With Enhanced Impact Strength

Study Of Mechanical and Physical Properties of Wood Plastic Composite, Polypropylene, Rose, Teak and Neem Wood Sunil C 1 Dr. G. B.

AMERICAN WOOD PROTECTION ASSOCIATION 2017 All Rights Reserved

Ing. Mag. Dr. P. Hausberger, Ing. M. Szakacs, BSc

PHYSICAL AND BENDING PROPERTIES OF INJECTION MOULDED WOOD PLASTIC COMPOSITES BOARDS

AMERICAN WOOD PROTECTION ASSOCIATION 2017 All Rights Reserved

Compounding and Processing Additives for Woodfiber-Plastic Composites

greenprofile wpc Wood plastic composite (WPC) profile extrusion

Dimensional Stabilization of Wood in Use

WATER UPTAKE AND FLEXURAL PROPERTIES OF NATURAL FILLER/HDPE COMPOSITES

Stabilization Technologies LLC Charlotte, NC Joe R Webster Ph.D

Preservation of Wood

Marek Gnatowski, Ph.D. Polymer Engineering Company Ltd.

DURABILITY OF WOOD FLOUR-RECYCLED THERMOPLASTIC COMPOSITES UNDER ACCELERATED FREEZE-THAW CYCLING

FUNCTIONS FILLERS AND ADDITIVES FOR POLYMERS Krigina A.S. Vladimirskiy State University named after the Stoletov brothers Vladimir, Russia

PLASTIC PIPE TERMS & DEFINITIONS

TCR AWPA TECHNICAL COMMITTEE REGULATIONS (APRIL 2012)

Highly Filled Formaldehyde-Free Natural Fiber Polypropylene. Composites 1

The Durability of Composites for Outdoor Applications Dr Cris Arnold.

Innovation in Window Application

EcoComp 2003 Queen Mary, University of London September 1-2,2003

Opportunities for Lignocellulosic Materials and Composites

Stabilizers for Coatings Applications Overview Hostavin Hostanox

HIGHLY FILLED LIGNOCELLULOSIC REINFORCED THERMOPLASTICS: EFFECT OF INTERPHASE MODIFICATION ABSTRACT

Index. B Basalt, as concrete aggregate, durability in chloride and sulfate solution, 605 Basalt, as concrete aggregate, influence

Laboratory and environmental decay of wood plastic composite boards: flexural properties

Duro Clad. urbanline.com.au

Newtech Ultrashield. UH05 Naturale Composite Decking & Accessories. The Next Generation of Wood Plastic Composite Decking

Chapter 15-2: Processing of Polymers

METAL-POLYMER FUNGICIDAL- BIOCIDAL PROTECTION SYSTEMS. Orley Pinchuk. Thursday, March 23 Wood Protection 2006 New Orleans, Louisiana, USA

Physical and Mechanical Properties of Chemically Modified Wood

IS 4-13 Industry Specification for Preservative Treatment for Millwork

EFFECTS OF PROCESSING METHOD AND FIBRE CHARACTERISTICS ON MICROSTRUCTURE AND PROPERTIES OF WOOD-PLASTIC COMPOSITES

N B S Easy DECKING. Composite decking. New Bridge Services Pty Ltd Contact : N B S Easy Decking

Evaluation Report CCMC R AZEK Deck

Project Report for public use

Progress on cellulose nanofiberfilled thermoplastic composites

December 1, 2014 PARTIES INTERESTED IN STRUCTURAL WOOD-BASED PRODUCTS

Durability of High Wood-Content WPCs

THE INTERNATIONAL RESEARCH GROUP ON WOOD PRESERVATION. Processes and properties. Durability of Wood/Plastic Composites Made From Parthenium species

Dimensional Stability of Particle Board and Radiata Pine Wood (Pinus radiata D. Don) Treated with Different Resins

Effect of PVC on Imaging Materials Mark Mizen, Ph.D. ISO TC42 WG5 Meeting, Copenhagen, Denmark June 4, 2013

Poo Chow. Zhaozhen Bao. John A. Youngquist. Roger M. Rowell. James H. Muehl. Andrzej M. Krzysik

Dimensional Stability of Particle Board and Radiata Pine Wood (Pinus radiata D. Don) Treated with Different Resins

Multi-component Biocide Protects Wood from Fungi and Insects in UC2 Applications

UNDERSTANDING PRODUCT USE OF PRESSURE-TREATED LUMBER

STARFON TM. Trade Name. Manufacturer. Summary. Detailed Description

VII Forum Internacional de Plasticultura

AA S E A L - O N C E P R O D U C T

EFFECTS OF WEATHERING ON COLOR LOSS OF NATURAL FIBER THERMOPLASTIC COMPOSITES 1

This document is a preview generated by EVS

Progress on Cellulose Nanofiber-filled Thermoplastic Composites

The Potential of Silane Coated Calcium Carbonate on Mechanical Properties of Rigid PVC Composites for Pipe Manufacturing

ECOLOGICAL SYNTHETIC WOOD SYSTEM. Outdoor Decks Flooring Tiles Accessories

Evaluation Report CCMC R Fiberon Solid Decking- Horizon, Horizon Symmetry, Sanctuary, and Protect Advantage

Effect of Processing Method on Surface and Weathering Characteristics of Wood Flour/HDPE Composites

and corrosion in wood

Material HDT Continuous Use Temp. Radal (Polyphenylsulfone) 400 F 300 F

Tin, PVC Stabilizers and Polymers (TPP) It s all about the chemistry

Tin, PVC Stabilizers and Polymers (TPP) It s all about the chemistry

Wood supply and demand

Limited Structural Guarantee

AMERICAN WOOD PROTECTION ASSOCIATION 2017 All Rights Reserved

Laboratory Tests on Fungal Resistance and Hardness of Bagasse RMP Fiber/PP Composite

CHAPTER VI CROSSLINKING OF CHITOSAN WITH COTTON FABRIC

Reaching new heights. in reflection & endurance. RENOLIT REFLEXOLAR. The cost-effective co-extruded PV back sheet

NovaDeck. NovaDeck is available in 5 colors and 3 different finishes, enriching the possibilities when designing.

Transcription:

Durability of wood-plastic composite lumber 113 Durability of wood-plastic composite lumber Wood-plastic composite (WPC) lumber has been marketed as a low-maintenance, high-durability product. Retail sales in the United States were slightly less than $1 billion in 2008. Appliations include decking, railing, windows, doors, fencing, siding, moldings, landscape timbers, car interior parts, and furniture. The majority of these products are and thus are exposed to moisture, decay, mold, and weathering. WPCs are composites made primarily from wood or cellulose-based materials and plastic(s). The wood utilized is usually in particulate form, such as wood flour or very short wood fibers. Because of the thermal stability of wood, only thermoplastics that melt at temperatures equal to or below 200 C (392 F), which is the degradation point of wood, are utilized in the production of WPCs. The most common plastics used for WPCs are polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC). The WPC blends can vary in percentage, with wood content up to 70%, but 50% wood/50% plastic is common. It was first thought that mixing plastic and wood together would result in plastic encapsulation of wood, thereby preventing both moisture sorption and fungal decay. However, after over a decade of use in outdoor exposure, issues have surfaced that are caused by wood decay, susceptibility to mold, and polymer degradation. After the firstgeneration products showed these problems, the industry began io address the performance issues by improving the formulations with additives, including fungicides, mildewcides, and photostabilizers. Further improvements are continually being investigated today. Researchers around the globe are currently working on understanding the fundamental mechanisms of degradation and on ways to improve WPCs. Moisture- Moisture is required for biological decay of wood. Air-dried wood should have no more than 20% moisture by weight to resist decay. If free water is added to attain 25-30% moisture content or higher, decay will occur in nondurable species. Wood can

114 Durability of wood-plasticcomposite lumber Fig. 1. Effect of processing on the moisture sorption of WPCs containing 50% pinewood flour during water soaking. also be too wet for decay because there is not enough air for the fungi to develop. The overall uptake of moisture in WPCs is relatively slow compared to solid wood, and the amount of moisture absorbed by WPCs can vary widely as a result of the influences of the wood flour content, wood particle size, processing methods, and additives. However, moisture uptake in the outer 5 mm (0.2 in.) of WPC commercial products has been shown to be sufficient for fungal attack to occur. Water evaporation from the WPC is also very slow because the plastic inhibits moisture movement, thus providing an opportunity for biodegra- to occur. Laboratory research and field evaluations indicate that WPCs absorb moisture to the point where they can be degraded by fungi. There are different ways to produce WPCs. The three most common ways are extrusion, compression molding, and olding. WPC processing methods influence the moisture sorption, thus making them more ess susceptible to decay. Extruded composites absorb the most moisture, compression-molded ones absorb less, injection molded ones absorb the least (Fig, 1). A thin, polymer-rich surface layer forms in injectionmolded composites. In addition, higher pressures are used in this process, resulting in the collapse of the wood fiber bundles, which makes a higherdensity composite compared with extrusion and sion molding. The amount of moisture absorbed is also influenced by wood particle size and additives. Another variable is whether the WPC is extruded as a solid or a rofile. A hollow profile will create a larger surface area that or moisture sorption. The hydroxyls (chemical groups in which oxygen and hydrogen are bonded and act as a single entity) of wood are primarily responsible for water sorption, which leads to wood swelling. This then can lead to warping and expansion. When WPCs are exposed to moisture, the wood fibers swell, causing stress that can result in damage to the matrix (for example, microcracks), fracture of the wood particles due to restrained swelling, and ultimately interfacial breakdown. For solid wood, moisture alone reduces the strength and stiffness. However, fungal decay reduces these measures by the greatest amount. The mechanical properties of WPCs are more severely affected by moisture absorption than by fungal colonization. The microcracks in the matrix and the damage to the wood particles cause a loss in elasticity and strength. Decay. Fungi have four basic growth requirements: food (for example, wood, which contains hemicellulose, cellulose, and lignin), moisture (above the fiber saturation point; about 30% moisture content), proper temperature [10-35 C (50-95 F), optimum: 24-32 C (75-90 F)], and oxygen (from the air). Currently, the indicator of decay in laboratory testing of WPCs is by weight loss using solid wood standards. The soil-block test [American society for Testing and Materials (ASTM) D 1413 or ASTM D 2017] is utilized in North America, and the agarblock test [European Standards (EN) 113] is used in Europe. In both types of tests, WPC specimens are exposed to a single fungus (either white-rot or brown-rot) and then mass loss of pecimen is calculated ercent, based on initial dry mass. Because WPCs vary in their percentage of wood content, the weight losses can be ow (Fig. test fungi commonly used are the brown-rot fungi Gloeophyllum trabeum and Poria placenta, and the white-rot fungus Coriolus versicolor. Mechanical property losses can be used to evaluate decay specimens. Both three-point bending tests and dynamic mechanical analysis (DMA) have been utilized. Weight s a more sensitive indicator of fungal decay than flexural strength testing, except when using WPCs with high wood contents (for example, 70%). Laboratory decay testing is helpful in predicting the long-term durability of WPCs, but tudies are needed to verify overall performance. Field exposure can encompass deterioration caused by moisture, fungi, ultraviolet (UV) light, wind, temperature, freeze/thaw cycling, wet/dry cycling, termites, and mold oth aboveground specimens (Fig 3) and in-ground specimens (Fig. 4). Fig. 2. Effect of moisture content on fungal attack of WPCs 50% pinewood flour after 12 weeks of exposure in the soil-block test.

Durability of wood-plastic composite lumber 115 Fig. 3 Aboveground WPC deck boards after 6 years of field exposure in Madison, Wisconsin. Fig. 4. In-ground field test of WPC specimens [1.9 cm 1.9 cm 45.7 cm (0.75 in 0.75 in. 18 in.)] in Saucier, Mississippi. Mold and stain ungi that grow superficially on wood are called molds, and those that cause discoloration of wood in storage and service are called stain fungi. Both mold and stain fungi are members of the Ascomycetes and Deuteromycetes (Fungi Imperfecti), yet a few of the molds are Zygomycetes (Mucorales). The aesthetic quality of wood-based products is significantly lowered as a result of discoloration by both mold and stain fungi. Stain fungi produce extracellular enzymes to utilize sugars, proteins, and extractives, which are nonstructural components of sapwood. In general, the stain fungi not decay the structural components (that is, the wood cell wall), but some can cause soft rot. Mold and stain fungi are mainly an aesthetic problem for WPCs, but their effects ifficult to stop without periodic washing with dilute bleach solution. Polymer degradation. WPCs exposed to weathering by solar radiation (ultraviolet light), oxidation, and rain water may experience color change as well as loss of mechanical properties. The color change affects the aesthetic quality, whereas the mechanical loss affects the performance. Weathering destroys the surface of the WPC by surface oxidation, matrix crystallinity changes, and interfacial degradation, which can lead to openings and pathways for moisture and decay to occur. The UV resistance of WPCs is evaluated in the laboratory for minimum test durations of 2000 h of exposure in a weatherometer according to ASTM specifications. Flexural strength is determined before and after exposure. Various standards are used to reference both the plastic and the wood components. Mechanical and physical properties are determined, along with WPC degradation standards (that is, moisture, biodeterioration, UV resistance, and so on). Methods of protection. As stated previously, have four basic requirements (food, moisture, temperature, and oxygen). Temperature and oxygen are very difficult to control imit, oisture and nutrient exclusion - be regulated. Nutrient exclusion can be achieved by encapsulating the wood fibers in plastic, reducing the amount and size of wood the WPC. It can also be achieved via the processing method. If the moisture content of the wood filler can be kept below 20%, then WPC decay may be prevented. This can be done not only by completely encapsulating the wood particles in plastic, but also by hydrophobation (treatments that increase water resistance) of the WPC surface or by chemical modification of the wood portion. The wood hydroxy1 groups an be chemically modified to make them hydrophobic. This is done by either bullring the cell walls or crosslinking the cellulose hydroxyls. Chemical modification of the wood changes the wood fibers from hydrophilic to a permanent hydrophobic state. Anhydrides, isocyanates, and epoxides are the most common modification agents. Acetylation (bonding of an acetyl group onto an organic molecule) een most actively investigated with solid wood because of its low toxicity ow cost, and it is currently being commercialized. The most common way to protect WPCs from decay is via addition of additives such as chemical biocides or antimicrobials. The preservative zinc borate is often utilized because it has relatively low water solubility (making it resistant to leaching), it can withstand common extrusion temperatures, it has low toxicity (for both humans and the environment), and it has low cost. It is effective against wood decay fungi and insects, but it is not effective against mold and stain fungi at low concentrations. Other broad-spectrum treatments can be utilized against mold, mildew, and bacteria. Photostabilizers are often added to WPCS to improve weatherability and decrease polymer degradation. For the polyolefins (plastics composed solely of carbon and hydrogen), ultraviolet absorbers (UVAs), free-radical scavengers, and pigments are generally used. Benzophenones and benzotriazoles are UVAs. Hindered amine light stabilizers (HALS) are an example of free-radical scavengers. Pigments are also utilized and protect by physically blocking the light. As an added bonus, they allow consumers to choose from a variety of colors for product. Moisture control is the key to protecting WPCs from biological decay and weathering, and to preserving ultimate performance. Research continues in this area with opportunities utilizing new and improved processing methods or new paints

116 Earliest humans in the Americas surface coatings. Nanotechnology may also help with fundamental material characterization of the WPCs, and the use of nanoparticles may improve moisture, decay, and photodegradation resistance as well as thermal expansion and creep. For background information see COMPOSITE MA- TERIAL; LUMBER; PLASTICS PROCESSING; POLYMER; STRUCTURAL MATERIALS; WOOD OOD ENGINEERING DESIGN; WOOD PRODUCTS; WOOD PROPERTIES in the McGraw-Hill Encyclopedia of Science & Technology. Rebecca E. lbach Bibliography. A. Klyosov (ed.), Wood-Plastic Composites, John Wiley & Sons, Hoboken, NJ, 2007; K. Oksman and M. Sain (eds.), Wood-Polymer Composites, CRC Press, Box Raton, FL, 2008; R. M. Rowell (ed.), Handbook of Wood Chemistry and Wood Composites, CRC Press, Boca Raton, FL, 2005; T. P. Schultz et al. (eds.), Development of Commercial Wood Preservatives Efficacy Environmental, and Health Issues, American Chemical Society, Washington, D.C., 2008; N. Stark (ed.), Ninth International Conference on Wood and Biofiber Plastic Composites, Forest Products Society, Madison, WI, 2007.

McGRAW-HILL YEARBOOK OF SCIENCE & TECHNOLOGY 2010 Comprehensive coverage of recent events and research as compiled by the staff of the McGraw-Hili Encyclopedia of Science & Technology II New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

The McGraw-Hili Companies " On the front cover A bee visits a rose flower in Indiana. (f'boto: David L. Dilcber) ISBN 978-007-163928-<5 MHID 0-07-163928-4 ISSN 0076-2016 McGRAW-H ILL YEARBOOK OF SCIENCE & TECHNOLOGY Copyright 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as pe rmitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, o r stored in a data-base or retrieval system, without prior written permission of the publisher. The fo llowing articles are excluded from McGraw-Hill Copyright: AJlernative nuclcosomal stfilcture; Applications of Bayes' theorem for predicting environmenral damage; Durability of wood-plastic composite lumber; lron based superconductors; Satellite detection of thunderstorm intensity; Soy p rotein adhesives; Tools to assess community-based cumulative risk and exposures; Tractor-trailer truck aerodynamics. 1 2 3 4 5 6 7 8 9 0 DOW/DOW 0 5 4 3 2 I 0 9 This book was printed on acid/ree pape1: it was set in Garamond Book and Neu e Helvetica Black Condensed by Aptara, New Delhi, I ndia. The art was preparetl by Aptara. The book was printed and bound by RR Donnelley.