The Locomotive. A Copper-Plated Thief: The Problem of Copper Deposits in Turbines

Similar documents
Copper Turbine Deposits

Steam Cycle Chemistry in Air-Cooled Condensers. NV Energy ACC User s Group * November 12-13, 2009 Andrew Howell * Xcel Energy

Carbohydrazide A Hydrazine Replacement: 10 Years of Utility Experience

Western BLRBAC Review/Refresher of Tappi Water Quality Guidelines and Contamination Procedures for mill boilers operating on high purity water

1. Scaling. H.O.: H-5/21, KRISHNA NAGAR, DELHI Tel.: , Fax:

Steamate* technology. superior protection against condensate system corrosion. Water Technologies & Solutions technical bulletin

GLIMPSES OF IMPROPER WATER CHEMISTRY IN A SUBCRITICAL PULVERIZED COAL FIRED BOILER AT A THERMAL POWER PLANT

Boiler Water Chemistry: Getting From the Source to the Boiler Colleen M. Layman, PE

9707 Key West Avenue, Suite 100 Rockville, MD Phone: Fax:

BOILER WATER TREATMENT TECHNOLOGY. DSS HEAD OFFICE - SERPONG May 2008

Condensate System Troubleshooting andoptimization

Non-Toxic, OEM Compliant Metal Protection. A Surface-Active Metal Passivation Technology For Low, Medium & High Pressure Boilers

Cation Conductivity + Sodium = Good Steam Monitoring

MEASUREMENT OF SODIUM IN WATER/STEAM CIRCUITS

CONSENSUS ON OPERATING PRACTICES FOR THE SAMPLING AND MONITORING OF FEEDWATER AND BOILER WATER CHEMISTRY IN MODERN INDUSTRIAL BOILERS

Hydrazine, sodium and dissolved oxygen measurement The power of boiler chemistry

View from the Penthouse

BOILER FEED WATER AND ITS TREATMENTS

Amines in Air Cooled Condensers San Diego Annual Conference September 24, Bill Stroman

Steam Power Station (Thermal Station)

Oxidation And Degradation Products Of Common Oxygen Scavengers

NALCO BT-28 Condensate Corrosion Inhibitor

PRESENTATION OF CONDENSATE TREATMENT

MARAMA Webinar August 7, Angelos Kokkinos Chief Technology Officer Babcock Power, Inc.

Finding the Root Cause is Critical

Condensate Management Monitoring Condensate

Technology Options for Existing Coal Units

Solus* AP - advanced boiler all-polymer internal treatment technology

Due Diligence: Efficiency Increase in Existing Power Stations - a Practice Report-

CONDENSATE-FEEDWATER-BOILER SYSTEM ON-LINE ANALYZERS. On-Line Analyzer Sample Point Alarm Points Comments

Combined Cycle Power

Sampling Systems & Analytics

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY

Report on the PowerPlant Chemistry Forum in Johannesburg, South Africa

CCI. Aftermarket. Services

Optimizing Steam and Cooling Systems for Reliability and Sustainability. Presented By: Kevin Emery

ACC Chemistry and the Use of Amines Mike Caravaggio ACC Users Group Xi an, Shanxi October 2015

Preservation Guidelines for CCGT & Conventional Power Plant during Short- and Long-Term Shutdowns. Final Report/ Guidelines

A. the temperature of the steam at the turbine exhaust increases. B. additional moisture is removed from the steam entering the turbine.

Appendix B. Glossary of Steam Turbine Terms

Boiler and Turbine Steam and Cycle Chemistry - Program 64

Fossil Materials and Repair - Program 87

CHAPTER 2 STUDY OF 210 MW BOILER SYSTEM 2.1 DESCRIPTION OF 210 MW BOILER

VVER-440/213 - The reactor core

STEAM TURBINE-GENERATOR & AUXILLIARY SYSTEMS Presentation by: RANA NASIR ALI General Manager, Power Plants Projects, at PITCO November 02, 2017

Low Emission Water/Steam Cycle A Contribution to Environment and Economics. Peter Mürau Dr. Michael Schöttler Siemens Power Generation, (PG) Germany

Air Cooled Condenser Users Group: Corrosion Product Transport Monitoring

Newman Station Units 1, 2, and 4 Condition Assessment Report. El Paso Electric, Inc. El Paso, TX

Boiler/Cooling Water Processes and Parameters

Guide to Optimal Steam Generation

Boiler Life and Availability Improvement Program - Program 63

Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases.

Corrosion. in Boiler Tube Bundles

Presented by: Jeff Freitag, The Water Guy Jon Tiegs, General Manager

Feedwater Heaters (FWH)

Introduction for ACC FAC and Cycle Chemistry Session

On-Line Water Chemistry Measurements for Power Plants

WATER CHEMISTRY FOR LARGE UTILITIES BOILERS FOR CHEMIST & BOILER ENGINEERS

Filmforming Amines General aspects and application in power plants today

3 Steps to Better Steam Temperature Control Proven Strategies to Minimize Thermal Stress and Tube Leaks

PI Heat and Thermodynamics - Course PI 25 CRITERION TEST. of each of the following a. it

novel polymer technology for boiler deposit control

Operational flexibility enhancements of combined cycle power plants

NSSS Design (Ex: PWR) Reactor Coolant System (RCS)

KEYWORDS: Deaerator, Condensate, Oxygen Removal, Boiler Feed Water, Heater, Water Treatment

the effects of ammonia and organic amines on the water chemistry of gas turbine heat recovery steam generators and associated equipment

Chemistry and Corrosion Issues in Supercritical Water Reactors

FLOW-ACCELERATED CORROSION IN NUCLEAR POWER PLANTS: APPLICATION OF CHECWORKS AT DARLINGTON

Acid conductivity basics and some experiences

GEOTHERMAL POWER PLANTS FOR MEDIUM AND HIGH TEMPERATURE STEAM AND AN OVERVIEW OF WELLHEAD POWER PLANTS

NALCO BT-31 BOILER INTERNAL TREATMENT

UNDERAPPRECIATED RISKS AND DANGERS OF ORGANIC / TOC CONTAMINATION IN POWER PLANT CYCLE CHEMISTRY

Reading Problems , 11.36, 11.43, 11.47, 11.52, 11.55, 11.58, 11.74

Leakage Failure Analysis in a Power Plant Boiler

Heat Recovery Steam Generator (HRSG) Dependability - Program 88

GE Polyamine Technology

Addressing Boiler Water Problems Before They Start. Presented by Cleaver Brooks Steve Connor & Bill Hooke November 30, 2016

News. Power Generation 11. ph Control Reduces Acid Consumption in Neutralization Process up to 90 % Perspectives in Pure Water Analytics THORNTON

Kogan Creek Power. Condenser. Contents. Update For ACC User Group. Kogan Creek Power Station and its Air

Downsizing a Claus Sulfur Recovery Unit

BEST PRACTICES: THE ENGINEERING APPROACH FOR INDUSTRIAL BOILERS. Natalie R. Blake Marketing Manager ONDEO Nalco Europe B. V. Leiden, The Netherlands

AP1000 European 21. Construction Verification Process Design Control Document

EBD WATER TREATMENT FOR WATER BOILERS AND COOLING TOWERS

Welcome to. Kendal Power Station

HRSG Inspection Planning Guide

THE CONDENSER: A SHORT DESCRIPTION. The Problem

The International Association for the Properties of Water and Steam. Technical Guidance Document: Steam Purity for Turbine Operation

C. heating turbine exhaust steam above its saturation temperature. D. cooling turbine exhaust steam below its saturation temperature.

Shearon Harris Nuclear Power Plant Units 2 and 3 COL Application Part 2, Final Safety Analysis Report CHAPTER 10 STEAM AND POWER CONVERSION

In looking back at the history of boiler

NALCO BT-53 Multifunctional Boiler Treatment

Item Hydrogen Gas Plant

Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure on

Recent Technologies for Steam Turbines

Design Considerations for Advanced Combined Cycle Plant Using Fast Start Drum Type HRSGs

NALCO BT-58 Multifunctional Boiler Treatment

Chapter 10 POWER CYCLES. Department of Mechanical Engineering

Coal Fired Power POWER GENERATION. Rev. 2

POWER PLANT- BOILER OPERATIONS SIMULATOR

NEW TECHNOLOGIES IN COAL-FIRED THERMAL POWER PLANTS FOR MORE EFFECTIVE WORK WITH LESS POLLUTION

Transcription:

A Copper-Plated Thief: The Problem of Copper Deposits in Turbines By Dave Daniels and John Latcovich, The Hartford Steam Boiler Introduction Operators at a coal-fired, 2,600 PSI power plant performed monthly tests to determine the generating capacity of the unit with the steam valves wide open. Every month the test showed fewer megawatts generated. Typical was a 33 MW loss over a five-month period. Upon examination of the turbine, the utility found the culprit: copper deposits on the high-pressure (HP) blades. A chemical cleaning of the highpressure turbine blades restored all the lost capacity, but monthly tests after the cleaning indicated the deposits were building again. Further chemical or physical cleaning would be required. To identify the source of the copper, the plant embarked on a rigorous feedwater sampling program. Sample results indicated that the source of some of the copper was the copper-alloy HP feedwater heaters, so the plant replaced the heaters with stainless steel. After the change, feedwater analysis showed copper levels in the feedwater were at or below the EPRI Guidelines. Yet, the monthly tests continued to show deposits were building, robbing the plant of generating capacity. Since that time, the plant has scheduled semi-annual cleanings of the turbine to remove copper deposits. Maintenance costs and lost generation have skyrocketed. A Growing Problem Until recently such a scenario was thought to be an isolated problem. But the number of utilities reporting copper deposits on their turbine blades is growing rapidly. When a conference on this topic was held in Salt Lake City in the summer of 1996, the attendance was overwhelming. The problem also was the subject of papers and discussion at the 1996 International Water Conference. What is causing the deposit accumulation? How does it affect a turbine's ability to generate power? Why are some units affected and not others? What can be done to prevent the problem from occurring? How can the problem be corrected, if it already exists? 1996-2013 The Hartford Steam Boiler All rights reserved. All recommendations are general guidelines and are not intended to be exhaustive or complete, nor are they designed to replace information or instructions from the manufacturer of our equipment. Contact your equipment service representative or manufacturer with questions.

Page 2 The jury is still out on many of these questions. Many utilities with this problem are still trying to separate cause and effect from coincidence. While we cannot provide all the answers, we will discuss some of the conditions common to units with this problem. We will draw some interim conclusions, propose a few steps that can be taken to reduce the risk and provide you some details on copper removal methods. Who Is At Risk? Copper deposition on turbines seems to be most prevalent in units that meet one or more of the following criteria: Drum boilers operating at or above 2,600 PSI Copper alloys in the low-pressure and high-pressure feedwater heaters A history of high levels of corrosion product transport during start-up Excess hydrazine feed Have had problems with drum internals (e.g., cracks in the steam chest) Let s take these facts in turn and see what conclusions we can reach. Effect of Operating Pressure: This problem seems to be almost exclusively confined to drum units that operate at 2,600 PSI pressure or greater. Why 2,600 PSI? Why not 1,800 PSI or supercritical units? One reason we do not see copper problems in supercritical units is that the use of mixed metallurgy (copper and iron components) in the feedwater system is confined to drum units. This is particularly true in the United States. Supercritical units tend to have all ferrous metallurgy in the feedwater system, so they avoid this problem. Supercritical units also have condensate polisher systems that can trap corrosion products during start-up. Why mixed metallurgy units operating at 1,800 PSI and lower do not seem to have this problem is still an open question. It could be a function of temperatures in the feedwater, steam flow through the drum, superheat temperatures or a combination of all these. Or, it could be that all the data isn't in yet. Copper Alloy Feedwater Heaters: The second point seems obvious. But it s important to note that to date we do not see reports of units with copper deposition problems which started with all-ferrous feedwater heaters and a copper-alloy condenser. Testing in two cases has shown that copper-alloy HP heaters are the most likely source of copper corrosion products, particularly during operation. It should be noted, however, that unit operators who replace feedwater heaters with all-ferrous heaters after copper deposition on the turbine starts, do not see relief from the deposition problem. It seems that once the damage is done it cannot be as easily undone by removing this source. Theoretically, copper has only a few paths that will allow it to eventually find its way to the turbine. Copper corrosion must first take place somewhere in the condenser or the feedwater heaters. This can be the result of the protective copper oxide layer being physically or chemically removed from its parent surface. The corrosion products may stay in solution or may deposit out in another area of the feedwater piping or in the boiler. Once in the boiler, the copper must be chemically or mechanically carried over into the steam. In a boiler operating at the correct steam drum water level and where all the drum internals are doing their job, the mechanical transport of water droplets should be less than 0.2 percent of the steam flow. These water droplets, in turn should only contain small amounts of copper. Chemical carryover of copper oxide (copper oxide actually dissolved into steam) should be even smaller. Once the copper leaves the boiler drum, it may precipitate in the superheater tubes before the steam goes to the turbine. Both copper in the steam and copper that was previously precipitated in the superheater may migrate towards the turbine, eventually precipitating out on the HP turbine blades. There is one way that copper can bypass the boiler and go straight into the superheater: through the attemperation 1996-2013 The Hartford Steam Boiler All rights reserved.

Page 3 sprays. Some units use attemperation sprays extensively during start-up and operation. Start-Up Practices: The amount of copper transport during start-up is a function of a utility's lay-up and start-up practices. These corrosion products typically are copper oxides and ferrous oxides that formed during the shutdown on any surface where oxygen and water were in prolonged contact with metal. During start-up these products find their way into the boiler, superheater and reheater and onto the turbine. Utilities that monitor copper levels in the feedwater and steam report copper levels during start-up that are up to 1,000 times higher than any levels seen during normal operation. Depending on lay-up practices and how the unit is started, it may take days before these copper levels return to normal. At these high levels the amount of copper transported into the boiler and superheater can be significant. Typically, the boiler is chemically cleaned every few years and the copper removed. But the same is not true of the superheater, which typically continues to accumulate copper over the life of the unit. In the long run, start-up and lay-up practices may turn out to be the most critical factors in how much copper deposition a unit experiences. Excess Hydrazine Feed: There is a very strong correlation between excess hydrazine feed and copper transport during operation. For years hydrazine has been the oxygen scavenger of choice in boilers with superheat and reheat sprays. This includes most utility boilers. The hydrazine reacts with dissolved oxygen quickly at temperatures typical of those in the deaerator storage tank. Any hydrazine that does not react with oxygen by the time the water leaves the deaerator will quickly decomposes to ammonia in the HP heaters. Ammonia at these temperatures can be very corrosive to copper alloys. Utilities that have fed excess hydrazine also have reported excessive corrosion in the HP heaters. Being volatile, the ammonia leaves the steam drum with the steam. Most of the ammonia reaches the condenser, where it s either swept out through the vacuum pumps or steam jet air ejectors, or is condensed on the copper-alloy condenser tubes. Ammonia that condenses on copper tubes in the condenser causes corrosion of these tubes, particularly at the tube sheet. Some ammonia travels with the extraction steam to the shell side of the copper-alloy feedwater heater. Where ammonia and copper meet, we have the potential for copper corrosion and generation of a copper-ammonia complex. This may occur at any copper-alloy condenser, feedwater heaters or other component. The copper-ammonia complex travels through the feedwater system and into the boiler until it becomes unstable. At this point, the ammonia volatilizes and the copper finds the nearest surface on which to precipitate. This may be a boiler tube, superheater tube or turbine. Hydrazine decomposition is not the only source of ammonia. Neutralizing amines will all eventually break down into ammonia and carbon dioxide. Overfeed of amines can be just as harmful as the overfeed of hydrazine. So far, we have listed two different types of copper corrosion products that are created: copper oxides that are created during shutdown and sloughed off the surface during startup, and ammonia-copper corrosion products that are created by an excess of hydrazine or amine. Problems in the Steam Drum: Many of the utilities that have copper deposition problems also have had problems in the steam drum. In at least two cases this has been related to leaks in the steam chest. In some drums, water entering the drum impinges on the outside of the area above the secondary separators. If there is a crack in this area, feedwater can be pulled in and carried with the steam. These leaks allow water contaminated with copper and iron oxides (particularly during start-up) to have easy access to the super-heater. Other drum problems such as level control problems, or broken primary or secondary separators also 1996-2013 The Hartford Steam Boiler All rights reserved.

Page 4 could be at fault. Any problem that would allow significant amounts of boiler water to enter the superheater could create a copper-deposition problem. How Do The Deposits Cause Generation Loss? As the superheated steam passes through the high-pressure turbine blades, the solubility of copper and copper-based corrosion products in the steam decreases. Copper deposits then precipitate out in the high-pressure turbine as pure copper metal. The deposits affect the efficiency of the turbine in two ways: first by creating a rough surface that reduces the aerodynamic efficiency across the blades, and secondly, reducing the flow capacity or open area of the turbine blading. The net result of these changes is to reduce the output power and to increase the heat rate (fuel consumption) of the steam turbine. Prevention First If you have one or more of the risk factors, the fact that you do not have a copper problem today doesn't mean that one will not develop. This is one of those problems that develops over time and requires diligent effort to avoid. The most important things you can do to prevent copper turbine deposits is reduce the sources. That means: Improving lay-up and start-up procedures to reduce corrosion product transport Reducing the amount of ammonia in the steam by reducing the amount of hydrazine residual and neutralizing amines that are added to the feedwater, while still maintaining the desired ph and dissolved oxygen levels Minimizing the amount of attemperation or de-superheat spraying during start-up when corrosion product transport is the most severe Regularly inspecting drum internals for problems with steam separators or cracks in the steam chest Replacing copper-alloy feedwater heaters with all-ferrous designs, particularly HP heaters Replacing the heaters was included as the last item for a reason. It is considered a last resort. You may need to do it, but try to get control of corrosion in the feedwater system first. Every material has its strengths and weaknesses. Adding a third material to the feedwater system (many copper-alloy heaters are being replaced with stainless steel) may just increase your headaches. What If The Problem Already Exists? If you are seeing significant deposits of copper on the turbine, chances are very good that you have a significant supply of copper in your superheater. At one unit, deposit analysis estimated almost 2,000 pounds of copper in the superheater. In addition to the steps listed above, you will need to remove that copper, either by replacing or chemically cleaning the superheater. Chemical cleaning of a superheater is not trivial. It requires serious planning and creation of temporary piping before you can start the job. Some estimate a lead time of more than one year to get ready for this cleaning. If you think that you will need to clean your superheater, it s best to get preparations started now. How Do You Remove Copper Deposits From The Turbine? Mechanical Cleaning: One obvious means is by mechanical cleaning. This requires a major outage for complete turbine disassembly, rotor removal, grit blasting of the parts with deposits, and re-assembly. Such efforts can take up to six weeks and cost in excess of $350,000 for a 400 MW steam turbine. Because the deposits may return, accomplishing one or two mechanical cleanings per year does not make this an attractive system. Chemical Cleaning: A second solution offered by HydroChem Industrial Services Inc. uses a foam cleaning process that is performed without requiring disassembly of the turbine. While the turbine is on the turning gear and turbine metal temperatures are between 150 and 170 F, ammoniated foam is continually injected through the HP turbine flow path with auxiliary steam via a chemical injection valve installed at a governor/control valve position on the steam chest. 1996-2013 The Hartford Steam Boiler All rights reserved.

Page 5 Once the foam enters the unit, the copper oxide deposits dissolve and are removed through the cold reheat line where an antifoam agent is injected to break the foam into a liquid. Upon completion, the turbine is rinsed with auxiliary steam until the turbine is clean and ready for service. Particular care is taken to ensure foam and the resultant dissolved deposits do not contaminate the intermediate pressure and low pressure turbines, heaters, and the condenser. Steam purity measurements at both the HP inlet and cold reheat lines are monitored until the levels are the same after rinsing. The foam cleaning takes approximately 24-36 hours to complete. Prior to conducting the foam cleaning, HydroChem pre-engineers the injection supply/return lines and turbine interface connections so that the cleaning process can be scheduled to begin in concert with the client s schedule. The piping can remain in place to facilitate subsequent cleanings. The results of the chemical cleanings have been excellent. More than 60 turbines have been cleaned which removed from 20-70 pounds of copper and increased turbine output power up to 85 MW. Recently, this process was conducted for an HSB client. The cleaning removed 60 pounds of copper and resulted in a 54 MW increase in power for their 511 MW steam turbine. This process presents a much more cost competitive alternative to remove copper deposits than mechanical cleaning and the associated outage costs. About the Author David Daniels is a Senior Scientist at Radian International LLC, Austin, Texas, with more than 15 years experience in steam cycle chemistry and water treatment. Daniels provides training and consulting services to utility, pulp and paper, and other industrial steam generating facilities. He often works with inspectors and clients of HSB to improve steam cycle chemistry to reduce a client's risk of chemistry-related failures. John Latcovich is Hartford Steam Boiler s Fleet Manager for Rotating Equipment. He has more than 27 years experience with rotating machinery and works with HSB inspection specialists and clients on rotating equipment technical, operational, and maintenance issues. Acknowledgments A special thanks to Bob Lindenberger of HydroChem who provided details of their cleaning process. Also, to Julian Zizak (HSB Inspection Specialist) who closely followed and reported on implementation of the cleaning process with the HSB client discussed in this article. Summary Copper deposits on turbines can rob generating units of significant amounts of capacity. More research is being done into this problem to find the root causes and specific conditions that lead to this problem. While all the answers are not in yet, there are a number of steps that utilities can take now to prevent and correct the problem. 1996-2013 The Hartford Steam Boiler All rights reserved.