[ Cl ] - [[Mg 2+ ] ] Experiment 7: Oxidation-Reduction Reactions. transfer e -

Similar documents
OXIDATION-REDUCTION EXPERIMENT

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions

Duncan. UNIT 8 - Chemical Equations BALANCING EQUATIONS PRACTICE WORKSHEET 14.) C2H6 + O2 CO2 + H2O. 2.) Na + I2 NaI 3.) N2 + O2 N2O 4.

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION

A Cycle of Copper Reactions

Electrochemistry Written Response

Chemistry. TOPIC : Redox Reactions. products are PH3 and NaH2PO2. This reaction is an examplee of. (b) Reduction (d) Neutralization

PREPARATION & ANALYSIS OF AN IRON COORDINATION COMPOUND PART A: PREPARATION OF AN IRON COORDINATION COMPOUND

Oxidation and Reduction

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s),

ADVANCED AP PLACEMENT CHEMISTRY. Activity Series. Introduction. Objective. Chemicals and Equipment

JSUNIL TUTORIAL, SAMASTIPUR

Name: Date: Period: Page: Predicting Products. Predict the products, and balance each reaction. Use the reaction type as a hint.

Learn Chemistry. Starter for Ten 9. Redox. Registered Charity Number

21. sodium nitrite 31. potassium carbonate. 23. aluminum hydroxide 33. nickel (II) carbonate. 24. ammonium hydroxide 34.

Name: Mods: Date Agenda Homework

Compounds & Reactions Week 1. Writing Formulas & Balancing Equations. Write the chemical formula for each molecular (covalent) compound.

1. The equation that represents the equilibrium in a saturated solution of Fe 2 (SO 4 ) 3 is.. The precipitate which forms first is

The following are the completed but unbalanced equations. Each equation is numbered to match each step of the cycle:

1. Which of the given statements about the reaction below are incorrect?

Ionic Naming Quiz #1. Ionic Naming Quiz #1. March 26, Day 05 Ionic Quiz, SDR Note, Exit Card.notebook

Compiled by Rahul Arora What do you mean by corrosion? How can you prevent it?

Which of these is the formula for disulfur heptoxide? A. S 2 O 7 B. S 7 O 2 C. SO 2 D. N 2 O

Ionic Naming Quiz #1. Ionic Naming Quiz #2 Write the formulas for the following ionic compounds:

Activity of metals SCIENTIFIC. Demonstration and Inquiry. Introduction. Concepts. Background. Inquiry Approach. Demonstration Questions

Summer Assignment Coversheet

The Reactivity Series

The ion with Vanadium in its oxidation state of 5 exists as a solid compound in the form of a VO 3

Thermal decomposition. Metal carbonates

SOLUBILITY STUDY GUIDE- Multiple Choice Section

Some Basic Concepts of Chemistry

Topic Reacting masses Level GCSE Outcomes 1. To calculate reacting masses 2. To set out mole calculations in a grid format

Lab #7: Redox Titration Lab Exercise Chemistry II 10 points Partner: USE BLUE/BLACK INK!!!! Date: Hour:

GraspIT AQA GCSE Chemical changes

What is: (a) aqua fortis, (b) aqua regia (c) Fixation of Nitrogen?

Balance the following equations: 1. Al + N 2 AlN. 2. Fe + O 2 Fe 3 O CaCO 3 CaO + CO 2 4. NH 4 NO 3 N 2 O + H 2 O. 5. KI + Cl 2 KCl + I 2

PERCENT Y IELD: COPPER T Ra NSFORMATIONS

Predicting Reaction Products

N5 Chemistry Unit 3: Chemistry in Society Homework 3.2

Chemistry Themed MATERIALS Part 2 Reactivity of Metals and Redox

LAD B3 (pg! 1 of 6! ) Analysis by Redox Titration Name Per

INDIAN SCHOOL MUSCAT

Equation Writing and Predicting Products Chemistry I Acc

OXIDATION-REDUCTION TITRATIONS-Permanganometry

Please write the balanced net ionic reaction for each one. Then answer the accompanying question.

ICSE-Science 2 (Chemistry) 2004

Today! Demonstrations of Redox Chemistry! Electrochemistry! electrons moving about! equilibrium with a control knob! The disappearing Aluminum Rod!

85 Q.14 In which of the following substances does nitrogen have the lowest oxidation number?

1. What volume of water is required to make a 4.65 M solution from 5.2 g of NaBr (MM = g/mol)?

Experiment 1 Hard-Soft Acids and Bases: Altering the Cu + /Cu 2+ Equilibrium with Nitrogen, Oxygen, or Halide Ligands

Chapter 11. Reactivity of metals

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES

Chapter 12 Reactivity of Metals 12.1 Different Reactivities of Metals Recall an experiment performed in F.3

Look at the measuring cylinders. What happened to the volume of the water and the wax after freezing? the volume of water... the volume of wax...

Formula & Equation Writing

Boiling point in C. Colour in aqueous solution. Fluorine 188 colourless. Chlorine 35 pale green. Bromine X orange.

CHM111 Lab Redox Titration Grading Rubric

Unit 5 ~ Learning Guide Name:

Experiment 3: Determination of an Empirical Formula

Chemical reactions and electrolysis

Applications of Oxidation/Reduction Titrations. Lecture 6

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER ICSE

Our country, our future S2 CHEMISTRY DURATION: 2 HOUR

Reactivity Series. Question Paper. Cambridge International Examinations. Score: /39. Percentage: /100

Copper Odyssey. Chemical Reactions of Copper

Exercise 6a. Balancing equations

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals

Warning. Chlorine Gas (Cl 2 ) Chlorine gas production

INTERPRETING CHEMICAL FORMULAS AND SYMBOLS

Will a displacement reaction occur?

DOWNLOAD PDF CYCLE OF COPPER REACTIONS

Experiment #8. Redox Titration

Sample Answers/Solutions - Study of Compounds

The Synthesis of Copper Metal

GraspIT AQA GCSE Chemical changes

Chemical Formulas. In a chemical formula, the element with the positive charge is always written first.

COPPER CYCLE EXPERIMENT 3

Q1. From the following list of substances, choose the substances which meet the description given in parts (i) to (v) below :

+ 10Cl 2Mn H 2 O + 5Cl 2. Deduce the half-equation for the oxidation of chloride ions to chlorine.

OXFORD CAMBRIDGE AND RSA EXAMINATIONS GCSE A172/02. TWENTY FIRST CENTURY SCIENCE CHEMISTRY A/ADDITIONAL SCIENCE A Modules C4 C5 C6 (Higher Tier)

Unit F FR (part B) Solubility Equilibrium, Ksp (pg 1 of 16)

Qualitative Analysis: Group I, II and Transition Metals. Prelab. 2. Refer to the flowcharts on the pages 5 and 6 to answer the following:

Periodic Properties: Analysis of Group I, II and Transition Metals. Prelab. 2. Refer to the flowcharts on the pages 5 and 6 to answer the following:

Test sticks and test papers for semi-quantitative determinations

Pre-Lab Exercises Lab 5: Oxidation and Reduction

Chapter 17 Solubility and Complex Ion Equilibria

*20GSD5201* Double Award Science: Chemistry. Unit C2 Higher Tier WEDNESDAY 15 JUNE 2016, AFTERNOON [GSD52] *GSD52* *G5802* TIME 1 hour 15 minutes.

30th International Chemistry Olympiad

OXFORD CAMBRIDGE AND RSA EXAMINATIONS GCSE A172/01. TWENTY FIRST CENTURY SCIENCE CHEMISTRY A/ADDITIONAL SCIENCE A Modules C4 C5 C6 (Foundation Tier)

CHEMISTRY PAPER 1998

Around Conservation of Matter

Formula & Equation Writing

INTERNATIONAL INDIAN SCHOOL, RIYADH STD: X SUBJECT- CHEMISTRY CHAPTER 1: CHEMICAL REACTIONS WORKSHEET #1

Group IV and V Qualitative Analysis

The oxides of nitrogen and the details of the oxygen states of nitrogen and the N:O ratio can be presented in a tabular form as:

1601 Redox Titration

28. Some reactions of alcohols Student Sheet

(a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out. piece of zinc shiny surface

look down at cross on paper paper cross on paper

Transcription:

Experiment 7: OxidationReduction Reactions PURPOSE Become familiar with the concepts of oxidation and reduction and how these reactions occur. Carry out several such reactions and learn to recognize when oxidationreduction is occurring. Develop an understanding of the relative strengths of oxidizing and reducing agents and rank oxidationreduction couples in a series. Use an oxidationreduction series to determine if a reaction will occur spontaneously. Balance oxidation reduction reactions by the halfreaction method. BACKGROUND In a previous experiment, "Double Displacement Reactions", you became familiar with several reactions in which ions exchange partners in order to form new compounds. A very large number of chemical reactions are of this variety. An equally large number of reactions do not fall into this category but instead involve the exchange of electrons to form new compounds. Reactions involving exchange of electrons are called oxidationreduction reactions. An example of such a reaction is the reaction of magnesium metal and chlorine gas. Mg (S) + C1 2 (g) MgCl 2 (S) At first glance, the electron exchange may not be apparent. However, when you examine the above reaction in more detail you can see it. It actually consists of two parts that occur simultaneously. (1) Mg Mg 2+ + 2e Each magnesium atom loses 2 electrons to form a magnesium 2 + cation. (2) 2e + Cl 2 2 Cl Each chlorine molecule gains 2 electrons to form 2 Cl anions. The reaction can be pictured as below: Mg transfer e transfer e Cl Cl [[Mg 2+ ] ] [ Cl ] [ Cl ] 71

Subsequently the two oppositely charged ionic species then interact to form magnesium chloride crystals. An oxidationreduction reaction may be thought of as a competition between two substances for electrons. Consider the two reactions below, which are the reverse of each other: Reaction (1) net ionic equation: reduction halfreaction: Cu(NO 3 ) 2 (aq) + Zn(s) Cu(s) + Zn(NO 3 ) 2 (aq) Cu 2+ (aq) + Zn(s) Cu(s) + Zn 2+ (aq) Cu 2+ (aq) + 2 e Cu(s) oxidation halfreaction: Zn(s) Zn 2+ (aq) + 2 e oxidizing agent = Cu 2+ reducing agent = Zn Reaction (2) net ionic equation: Zn(NO 3 ) 2 (aq) + Cu(s) Zn(s) + Cu(NO 3 ) 2 (aq) Zn 2+ (aq) + Cu(s) Zn(s) + Cu 2+ (aq) reduction halfreaction: Zn 2+ (aq) + 2 e Zn(s) oxidation halfreaction: Cu(s) Cu 2+ (aq) + 2 e oxidizing agent = Zn 2+ reducing agent = Cu Reaction (1) will occur spontaneously and Reaction (2) will not if Cu 2+ is a stronger oxidizing agent (i.e. likes to be reduced or you could say likes to acquire electrons) more than Zn 2+. Conversely, reaction (2) will occur and (1) will not if Zn 2+ is a stronger oxidizing agent (i.e. like to be reduced or you could say likes to acquire electrons more than Cu 2+ ). In an oxidationreduction reaction, the species that gains electrons is reduced and the substance that loses electrons is oxidized. This may seem odd at first, but remember electrons have a negative charge so gaining an electron will lower the oxidation number of the atom receiving the electron. In the above reaction magnesium is oxidized and chlorine is reduced. The substance that gains electrons in the reaction (i.e. is reduced) can also be called the oxidizing agent. In the Mg + Cl 2 reaction, Cl 2(g) is the oxidizing agent because it is reduced and in the process it oxidizes (removes electrons from) the magnesium metal. Similarly, the substance that loses electrons in a reaction (i.e. is oxidized), can be called the reducing agent. In the above reaction magnesium metal is a reducing reagent. 72

In summary then: electron X Y X loses electron(s) X is oxidized X is the reducing agent X increases its oxidation number Y gains electron(s) Y is reduced Y is the oxidizing agent Y decreases its oxidation number To understand redox reactions, you must be able to determine the oxidation number of elements using the rules below. Rules for Assigning Oxidation Numbers Always start at the top of the list and work down. 1. The total sum of the oxidation numbers of all the atoms in a molecule must add up to the charge on the molecule. Example: the oxidation number must sum to zero in H 2 O, and CaSO 4, and 3 in PO 4 3. 2. An uncombined element has an oxidation number of zero. (for example, Li (solid), Mg (solid), H 2 ) 3.The oxidation number of a monoatomic ion = charge of the monatomic ion. Examples: Oxidation number of S 2 is 2, Oxidation number of Al 3+ is +3 4. When combined with other elements, Group IA elements are always +1. (for example, Li in LiCl or Na in Na 2 S) 4. When combined with other elements, the oxidation number of all Group 2A metals = +2 ( for example, Mg in MgF 2, Ca in CaO) 5. F has an oxidation number of 1. 6. H has an oxidation number of +1. 7. O has an oxidation number of 2. 73

Rules higher in the list take precedence over those lower in the list. PROBLEM: Determine the oxidation number (O.N.) of each element in these compounds: (a) Water (b) sulfate ion (c) Hydrogen peroxide (a) H 2 O Rule (1) Charges sum to zero Rule (6) H is +1. Rule (7). O is 2 (b) SO 4 2 Rule (1) Charges sum to 2 Rule (7) O is 2 (there are four of them however) Therefore S must be +6 Check S +6 + O 2 (4) = 2 (c) H 2 O 2 Rule (1) Charges sum to zero. Rule (6) H is +1... Rule (7). O is 2 HOWEVER this can not be since if H is +1 and O is 2 the sum will not be zero H +1 (2) + O 2 (2) =2! IF there is a conflict in the rules, ignore the rule lowest on the list therefore H 2 O 2 Rule (1) Charges sum to zero. Rule (6) H is +1 and O has to be 1. When oxygen is 1, it is called a peroxide. You will know when this happens by applying the above rules. A very powerful method for balancing oxidation reduction equations is the halfreaction method. The method consists of the following very systematic steps. If the steps are not followed exactly in this order, you will not be able to balance the reaction correctly. The steps are 1. Identify which atom is oxidized and which atom is being reduced. Split the reaction into two halves one for the reduction and one for the oxidation process 2. Balance the two half reactions separately by: a. Balance elements other than O and H. b. Balance O by adding H 2 O c. Balance H by adding H + ions d. Balance the charge by adding electrons (e) 3. Looking at the two balanced half reactions... multiply them by some numbers so that both will have the same number of electrons. 4. Add the two half reactions together. Collect like terms and cancel terms that appear on both sides of the equation. 5. If in acidic conditions, you are done. If in basic conditions, add OH 1 to both sides to combine with the H + to form H 2 O. 6. Check to make sure the atoms and charges are balanced. 74

Example: Balance the equation: MnO 4 + Cl 1 Cl 2 + Mn 2+ Looks like Cl 1 is oxidized 1 to 0 and Mn is reduced from 7+ to 2+ reduced half rxn oxidized half rxn Step 1 MnO 4 Mn 2+ Cl Cl 2 Step 2a MnO 4 Mn 2+ no change Mn balanced 2Cl Cl 2 Cl now balanced Step 2b MnO 4 Mn 2+ + 4H 2 O balance the 4 O s on the left 2Cl Cl 2 no change O balanced add 4H 2 O (aren t any) Step 2c 8H + + MnO 4 Mn 2+ + 4H 2 O balance the 8H s on the right 2Cl Cl 2 no change H balanced add 8H + (aren t any) Step 2d 8H + + MnO 4 Mn 2+ + 4H 2 O 2Cl Cl 2 the sum of the charges on left side is ( 8(+1) 1 = +7 the sum of the charges on left side is 2(1)=2 on the right side its +2 add 5 ( 5e ) to balance on the right side its 0 add 2 ( 2e) to balance 5e + 8H + + MnO 4 Mn 2+ + 4 H 2 O 2Cl Cl 2 + 2e Step 3 Multiplying the left equation by 2 and the night equation by 5, so both have 10 e 2 x(5 e + 8H + + MnO 4 Mn 2+ + 4 H 2 O) 5x (2Cl Cl 2 + 2 e ) 10 e + 16 H + + 2MnO 4 2Mn 2+ + 8 H 2 O 10Cl 5 Cl 2 +10e Step 4 (adding the two equations together and combining like terms, and cancel same terms on opposite sides) 10e + 16H + + 2MnO 4 2Mn 2+ + 8H 2 O 10Cl 5 Cl 2 +10e Answer in acidic condition 16H + + 2 MnO 4 + 10Cl 2Mn 2+ + 5Cl 2 + 8H 2 O Step 5 In basic conditions only. add OH 1 to both sides to get rid of H + (bases mostly contain OH 1 and H 2 O so they can appear in your answer but H +1 can not) 16 H + + 2 MnO 4 + 10 Cl 2 Mn 2+ + 5 Cl 2 + 8 H 2 O + 16 OH 1 +16 OH 1 ( H +1 and OH 1 make H 2 O) 16 H 2 O + + 2 MnO 4 + 10 Cl 2 Mn 2+ + 5 Cl 2 + 8 H 2 O +16 OH 1 cancel H 2 O on opposite sides 8H 2 O + + 2 MnO 4 + 10 Cl 2 Mn 2+ + 5 Cl 2 + 16 OH 1 75

OxidationReduction Reactions Procedure SAFETY CAUTION: Parts A and B should be done in the hood CYCLOHEXANE: EXTREMELY FLAMMABLE LIQUID AND VAPOR. VAPOR MAY CAUSE FLASH FIRE. HARMFUL OR FATAL IF SWALLOWED. HARMFUL IF INHALED. CAUSES IRRITATION TO SKIN, EYES, AND RESPIRATORY TRACT. CHLORINE WATER: CORROSIVE. CAUSES EYE AND SKIN BURNS. CAUSES DIGESTIVE AND RESPIRATORY TRACT BURNS. BROMINE WATER: CORROSIVE. CAUSES EYE AND SKINBURNS. CAUSES DIGESTIVE AND RESPIRATORY TRACT BURNS. IODINE WATER: POISON! CAUSES SEVERE IRRITATION OR BURNS TO EVERY AREA OF CONTRACT. MAY BE FATAL IF SWALLOWED OR INHALED. VAPORS CAUSE SEVERE IRRITATION TO SKIN, EYES, AND RESPIRATORY TRACT. OXIDIZER. MAY CAUSE ALLERGIC SKIN OR RESPIRATORY REACTION. POTASSIUM BROMIDE: HARMFUL IF SWALLOWED OR INHALED. MAY CAUSE IRRITATION TO SKIN, EYES, AND RESPIRATORY TRACT. POTASSIUM IODIDE: MAY CAUSE IRRITATION TO SKIN, EYES, AND RESPIRATORY TRACT. A. Determine the colors of free halogens in water and in cyclohexane In the second part of the lab we will using the color of solutions of cyclohexane in order to determine whether a reaction is occurring or not. In order to do this, we must first determine the color that the elements we are working with (Cl 2, Br 2, and I 2 ) are in cyclohexane. 1. Obtain 3 small test tubes. Put 20 drops of Cl 2 water into the first tube. Put 20 drops of Br 2 water into the second tube Put 20 drops of I 2 water into the third tube. Observe and record the color of each of the above aqueous solutions. 2. Add 10 drops of cyclohexane to each of the above solutions. Notice where the layer of cylohexane forms. It should be the thinner layer since you use less of it. Notice that the nonpolar cyclohexane does not dissolve in the polar water. 3. Stopper each tube and, holding the stopper in place, shake each tube vigorously for 30 seconds. 4. Observe and record the color of the cyclohexane layer in each tube. You will be using cyclohexane to identify which halogen is present after a reaction takes place in the mixtures below. 5. Discard the above solutions in the cyclohexane residue waste container B. Relative strength of halogens as oxidizing agents. 1. The reaction of Br 1 (from KBr) with Cl 2 and I 2 a. Obtain 2 small test tubes. b. Put 15 drops 0.1 M KBr into both tubes. c. Add 10 drops of chlorine water (Cl 2 ) the first tube and 10 drops of iodine water (I 2 ) to the second. 76

d. Add 10 drops of cyclohexane to each tube, stopper, and holding the stopper in place, shake vigorously for about 30 seconds. Bases on the color you see, what halogen is present in each tube? Write a balanced net ionic equation any the reaction that must have occurred to form the halogen present. If no reaction occurred write No Reaction in the blank on the data sheet. e. Discard the above solutions in the cyclohexane residues waste container 2. The reaction of I 1 (from KI) with Cl 2 and Br 2 a. Obtain 2 small test tubes. b. Put 15 drops 0.1 M KI into both tubes. c. Add 10 drops of chlorine (Cl 2 ) water the first tube and 10 drops of bromine water (Br 2 ) to the second. d. Add 10 drops of cyclohexane to each tube, stopper, and holding the stopper in place, shake vigorously for about 30 seconds. Based on the color of the cyclohexane layer, what halogen is present in each tube? Write a balanced net ionic equation any the reaction that must have occurred to form the halogen present. If no reaction occurred write No Reaction in the blank on the data sheet. e. Discard the above solutions in the cyclohexane residue waste container 3. The reaction of Cl 1 (from KCl) with I 2 and Br 2 a. Obtain 2 small test tubes. b. Put 15 drops 0.1 M KCl into both tubes. c. Add 10 drops of iodine (I 2 ) water the first tube and 10 drops of bromine water (Br 2 ) to the second. d. Add 10 drops of cyclohexane to each tube, stopper, and, holding the stopper in place, shake vigorously for about 30 seconds. Based on the color of the cyclohexane layer, what halogen is present in each tube? Write a balanced net ionic equation any the reaction that must have occurred to form the halogen present. If no reaction occurred write No Reaction in the blank on the data sheet. e. Discard the above solutions in the cyclohexane residue waste container. 4. On your report page, arrange the reduction couples 2Cl Cl 2 + 2e, 2I I 2 + 2e, and 2Br Br 2 + 2e into a series with the strongest reducing agent on the top left and the strongest oxidizing agent on the bottom right. This can be accomplished by looking at which combinations reacted and which did not react, and keeping in mind that elements that are easily reduced are strong oxidizing agents. Where would you predict fluorine would fit in this series? Hint: Look at the periodic table. Add it to your series in its proper position. C. Relative strengths of copper, lead, and zinc as reducing agents. In this part of the experiment, we will investigate the behavior of small pieces of copper, lead, and zinc by dropping a small piece of shiny metal (you may need to scuff its surface with sandpaper) into a solution of the other two metal ions. Safety Caution: COPPER (II) NITRATE Solution: STRONG OXIDIZER. HARMFUL IF SWALLOWED. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. ZINC NITRATE Solution: CAUSES IRRITATION. HARMFUL IF SWALLOWED.STRONG OXIDIZER. SILVER NITRATE: WARNING! CAUSES SEVERE EYE IRRITATION. HARMFUL IF SWALLOWED OR INHALED. CAUSES IRRITATION TO SKIN AND RESPIRATORY TRACT.AFFECTS EYES, SKIN AND RESPIRATORY TRACT. FURTHERMORE, SILVER NITRATE WILL STAIN YOUR SKIN AND CLOTHING 1. Place a piece of zinc into about 20 drops of 0.10 M copper (II) nitrate solution and another piece of zinc into 20 drops of lead (II) nitrate solution. Examine each reaction mixture and record your observations on the Report Sheet. Look for a reaction on the surface of the metal. Some reactions may be slow so let the mixtures sit before taking your observations. If you conclude from your observations that a reaction has occurred, write its net ionic equation. If no reaction occurs, do not write an equation, 77

write N.R. Keep in mind that the solutions are all nitrates, but the nitrate ions are not involved in the reactions (i.e. are spectator ions), and that if there is a reaction, it will involve the oxidation of the solid metal and the reduction of the metal ion from the solution. Discard solutions in the metal ion residues waste container. 2. Repeat the above experiments with the following combinations a. a piece of solid Cu + 20 drops 0.1 M lead (II) nitrate solution b. a piece of solid Cu + 20 drops 0.1 M zinc nitrate solution c. a piece of solid Pb + 20 drops 0.1 M copper (II) nitrate solution d. a piece of solid Pb + 20 drops 0.1 M zinc nitrate solution. Again record your observations and write the net ionic equations for any reactions that happened. If no reaction occurs, do not write an equation, write N.R. Discard solutions in the metal ion residues waste container. Discard metal pieces in the waste basket. Summarize your results in a table like you did in the halogen experiment. On your report page, arrange the reduction couples: Cu Cu +2 + 2e, Zn Zn +2 + 2e, and Pb Pb +2 + 2e into a series with the strongest reducing agent on the top left and the strongest oxidizing agent on the bottom right. This can be accomplished by looking at which combination reacted and which did not react, and keeping in might that elements that are easily reduced are strong oxidizing agents. D. The Ag Ag + + e couple. Place a small piece of copper into about 15 drops of 0.10 M silver nitrate solution. Write a net ionic equation for the reaction that occurs. Add silver to its proper place in the table containing Cu, Zn, and Pb. Discard solution into the silver residues waste container. Discard metal into the waste basket. E. Other oxidationreduction reactions. In this part of this part of the lab we will perform more complex redox reactions which must be balanced using the half reaction method. You will again notice color changes which will help you determine the reaction that occurred. 1. The MnO 4 / HSO 3 reaction (version A) Place 3 ml of KMnO 4 solution into a large test tube. Add 2 ml of 1.0 M H 2 SO 4. Place a white piece of paper behind the test tube and slowly add a few milliliters of 0.01 M NaHSO 3 while stirring the solution with a glass rod. Note all the color changes you see. The unbalanced reaction you just did is MnO 4 + HSO 3 Mn 2+ + SO 4 2 Record your observations and then balance the equation using the halfreaction method. 2. The MnO 4 /HSO 3 reaction (version B) In another large test tube, place 3 ml of KMnO 4 solution and add 2 ml of 1.0 M NaOH. Place a white piece of paper behind the test tube and slowly add a few milliliters of 0.01 MNaHSO 3 while stirring the solution with a glass rod. Note all the color changes you see. The unbalanced reaction you just did is MnO 4 + HSO 3 MnO 4 2 + SO 4 2 Record your observations and then balance the equation using the halfreaction method. 3. The H 2 O 2 /I reaction Place 3 ml of potassium iodide solution (0.1 M) in a large test tube. Add 1 drop of concentrated sulfuric acid. Add hydrogen peroxide (3 % solution) slowly while stirring until you notice a color change is produced. The unbalanced reaction you just did is H 2 O 2 + I H 2 O + I 2 78

Record your observations and then balance the equation using the halfreaction method. 4. The thiosulfate (S 2 O 3 2 ) bromine reaction. Add 10 drops of Br 2 water to a six inch test tube and then add 0.10 M sodium thiosulfate drop by drop until the solution goes coloress. Add 3 drops of 0.10 M AgNO 3 solution. A yellow precipitate of AgBr confirms that Br was formed. The thiosulfate ion is oxidized to tetrathionate ion (S 4 O 6 2 ). Record your observations and write a balanced reaction for the equation using the half reaction method. Discard the residue in the silver residues container. 5. Hydrogen peroxideiron (II) reaction. Transfer a few crystals (812) of solid FeSO 4 into a 6inch test tube. Dissolve the crystals in about 20 drops of water. Add 3 drops of 3% H 2 O 2. Record any observations. Add 5 drops of dilute ammonium hydroxide. Record your observations. The gelatinous product is a hydrate of Fe 2 O 3. The product from the reduction of the hydrogen peroxide in this reaction is water. Record your observations and write a balanced equation for the reaction using the half reaction method. The residue (rusty water and ammonia) may be washed down the sink. 6. Oxalatepermanganate reaction. Place 20 drops of 0.10 M potassium oxalate, K 2 C 2 O 4, in a six inch test tube. Add 3 drops of dilute (3 M) sulfuric acid to the tube. Add one drop of 0.10 M potassium permangante to the solution. If it remains colored, warm gently in a hot water bath until the solution goes colorless. After the solution goes colorless continue adding KMnO 4 one drop at a time, stirring and counting the drops until the solution turns pink or brown and remains colored. Record the total drops of KMnO 4 solution (including the first drop you used) needed to react completely with the 20 drops of K 2 C 2 O 4. The oxalate ion is oxidized to CO 2 and the permanganate is reduced to almost colorless Mn 2+ ion. Write an equation for the reaction. How does your ratio of drops potassium permanganate solution used / drops potassium oxalate solution used, compare to the coefficients of your balanced equation? Dispose of the solution in the metal ion residues waste container. 79

OxidationReduction Reactions Report Name A. Colors of the free halogens in water and cyclohexane Color of Chlorine in water in cyclohexane Color of Bromine in water in cyclohexane Color of Iodine in water in cyclohexane B. The relative strengths of halogens as oxidizing agents. REMEMBER: K is a spectator ion!!!! Observations: Cl 2 + KBr Net ionic equation for any reaction Observations: I 2 + KBr Net ionic equation for any reaction. Observations: Cl 2 + KI Net ionic equation for any reaction Observations Br 2 + KI Net ionic equation for any reaction. Observations: Br 2 + KCl Net ionic equation for any reaction. Observations I 2 + KCl Net ionic equation for any reaction Conclusions: Rank the half reaction couples by writing the half reactions in a table such that the strongest reducing agent will be on the top left and the strongest oxidizing agent will be on the bottom right. Use the periodic table to predict where fluorine should fit. Relative strengths of Br 2, Cl 2, I 2, and F 2 and their ions as oxidizingreducing agents. Strongest reducing agent > + 2e > + 2e > + 2e + 2e Weakest reducing agent Weakest oxidizing agent Strongest oxidizing agent 710

C. Observations: Zn + Cu 2+ Net ionic equation for any reaction Observations: Zn + Pb 2+ Net ionic equation for any reaction..observations: Cu + Pb 2+ Net ionic equation for any reaction. Observations Cu + Zn 2+ Net ionic equation for any reaction Observations Pb + Cu 2+ Net ionic equation for any reaction Observations: Pb + Zn 2+ Net ionic equation for any reaction D. Observations: Cu + Ag + Net ionic equation for any reaction Strongest reducing agent Weakest reducing agent > + 2e > + 2e > + 2e + 2e Weakest oxidizing agent Strongest oxidizing agent A table like the one above can be used to predict whether a reaction will occur. For a reaction to occur the reducing agent must be higher in the table than the oxidizing agent. Use your table to predict whether each of the following reactions will occur. Write the expected products or no reaction in each blank. a. Zn + Ag + b. Ag + Pb 2+ c. Pb + Ag + 711

E. Other oxidationreduction reactions: 1. The MnO 4 / HSO 3 reaction version A Observations: Note all the color changes you see. Balance the reaction: MnO 4 + HSO 3 Mn 2+ + SO 4 2 2. The MnO 4 / HSO 3 reaction version B What is the difference between this reaction and the previous reaction? Observations: Balance the reaction: MnO 4 + HSO 3 MnO 4 2 + SO 4 2 712

3. The H 2 O 2 /I reaction Observations: Balance the reaction H 2 O 2 + I H 2 O + I 2 4. Reaction of S 2 O 3 2 ion with Br 2 Observations: Balanced net ionic equation for the reaction: 713

5. Reaction of Fe 2+ ion with H 2 O 2 Observations: Balanced net ionic equation for the reaction 6. Reaction of MnO 4 ion with C 2 O 4 2 ion Observations: Number of drops MnO 4 solution to react completely with 20 drops C 2 O 4 2 solution. Balanced net ionic equation for the reaction 714

Post Lab 1. Balance the following oxidationreduction equations by the half reaction method in acidic solution a. Cr 2 O 7 2 + Cl 1 Cl 2 + Cr 3+ (acidic ) b. Zn + H 2 SO 4 Zn 2+ + H 2 S (acidic) c. I + IO 3 I 2 (acidic) d. MnO 4 + C 2 O 4 2 Mn 2+ + CO 2 (basic) e. Cr(OH) 3 + ClO 3 1 CrO 4 2 + Cl 1 (basic) f. Iron filings are added to FeCl 3 solution. Fe + Fe 3+ Fe 2+ g. Bismuth metal is dissolved in hot concentrated HNO 3 and a brown gas is given off. Bi + NO 3 Bi 3+ + NO 2 (g) h. A mixture of Na 2 S. NaClO. and NaOH solutions is warmed, giving a suspended precipitate. S 2 + ClO S 0 + Cl i. SO 2 gas is bubbled into K 2 Cr 2 O 7 solution (acidic). SO 2 + Cr 2 O 7 2 Cr 3+ + SO 4 2 j. CN (aq) + MnO 4 (aq) CO 2 (g) + NO (g) + MnO 2 (s) (acidic) k. CH 4 (g) + CrO 4 2 (aq) CO 2 (g) + Cr(OH) 3 (s) (acidic) Convert the above balanced equation to an equation balanced in base. l. S 2 O 8 2 (aq) + Cl (aq) ClO (aq) + SO 4 2 (aq) (acidic) Convert the above balanced equation to an equation balanced in base. 2. Imagine that the hypothetical elements, A, B, C, and D, form the ions A 2+, B 2+, C 2+, and D 2+, respectively. The following equations indicate reactions which can, or cannot, occur. Use this information to write a potential series for the cations. B 2+ + A A 2+ + B B 2+ + D N.R. A 2+ + C C 2+ + A 715

Name Prelab report 1. Determine the oxidation number of all of the element in the substances below. MnO 2 Fe 2 O 3 Na 2 O 2 H 2 K 2 Cr 2 O 7 Mn Fe Na H K O O O Cr O 2. Balance the half reaction: NO 3 1 NO 2 Is nitrogen in NO 3 oxidized, or is it reduced? 3. Balance the equation below as it occurs in acidic solution. MnO 4 + Fe 2+ Fe 3+ + MnO 2 In the above equation circle the oxidizing agent. What element is being oxidized in the above reaction? What element is being reduced? 716