Final Results: PWR MOX/UO 2 Control Rod Eject Benchmark

Similar documents
OECD Nuclear Energy Agency Nuclear Science Committee OECD/NEA AND U.S. NRC PWR MOX/UO 2 CORE TRANSIENT BENCHMARK

Use of SERPENT at PSI/EPFL for thermal system analysis.

Reactivity Control of a Soluble-Boron-Free AP1000 Equilibrium Cycle

Task 1 Progress: Analysis of TREAT Minimum Critical and M8CAL Cores with SERPENT and SERPENT/PARCS

The Pennsylvania State University. The Graduate School. College of Engineering INVESTIGATION OF COUPLED CODE PRESSURIZED WATER REACTOR

Dissolution, Reactor, and Environmental Behavior of ZrO 2 -MgO Inert Fuel Matrix Neutronic Evaluation of MgO-ZrO2 Inert Fuels

FINAL REPORT. Bayshore Unit 1 Cycle 13 Reload Core Design

SERPENT activities at VUJE, a.s.

Analysis of Unprotected Transients in the Lead-Cooled ALFRED Reactor

Numerical Benchmark Results for 1000MWth Sodium-cooled Fast Reactor

Analysis of Core Physics Test Data and Sodium Void Reactivity Worth Calculation for MONJU Core with ARCADIAN-FBR Computer Code System

Burn up Analysis for Fuel Assembly Unit in a Pressurized Heavy Water CANDU Reactor

ANALYSIS OF THE VVER-1000 COOLANT TRANSIENT BENCHMARK PHASE 1 WITH RELAP5/PARCS

MCNP5 CALCULATIONS COMPARED TO EXPERIMENTAL MEASUREMENTS IN CEA-MINERVE REACTOR

Reactivity requirements can be broken down into several areas:

Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

HELIOS-2: Benchmarking Against Hexagonal Lattices

Annals of Nuclear Energy

UKEPR Issue 04

ONCE-THROUGH THORIUM FUEL CYCLE OPTIONS FOR THE ADVANCED PWR CORE

COMPARISON OF A NUSCALE SMR CONCEPTUAL CORE DESIGN USING CASMO5/SIMULATE5 AND MCNP5

Pre-Conceptual Core Design of a LBE-Cooled Fast Reactor (BLESS) Ziguan Wang, Luyu Zhang, Eing Yee Yeoh, Linsen Li, Feng Shen

A Nuclear Characteristics Study of Inert Matrix Fuel for MA Transmutation in Thermal Spectrum

OECD Transient Benchmarks: Preliminary Tinte Results TINTE Preliminary Results

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor

Impact of Integral Burnable Absorbers on PWR Burnup Credit Criticality Safety Analyses

IRIS Core Criticality Calculations

Activities for Safety Assessment of Fast Spectrum Systems

Technical Support to an Operating PWR vis-à-vis Safety Analysis

Burn-up Credit Criticality Benchmark

Full MOX Core Design in ABWR

APPLICATION OF SERPENT 2 FOR SODIUM FAST REACTOR NEUTRONICS AND SAFETY ANALYSIS

Mixed-oxide (MOX) fuel performance benchmarks

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

Neutronics, Thermal Hydraulics and Safety Parameter Studies of the 3 MW TRIGA Research Reactor at AERE, Savar

Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

Preliminary Assessment of Criticality Safety Constraints for Swiss Spent Nuclear Fuel Loading in Disposal Canisters

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

Calculation of Pellet Radial Power Distributions with Monte Carlo and Deterministic Codes

PREPARATION OF THE STAND-ALONE TRACE MODEL FOR NEACRP-L335 BENCHMARK

Neutronic Challenges in SCWR Core Design. T. K. Kim Argonne National Laboratory

Robert Kilger (GRS) Criticality Safety in the Waste Management of Spent Fuel from NPPs

IAEA REPORT 2006 PRELIMINARY NEUTRONICS CALCULATIONS OF THE FIXED BED NUCLEAR REACTOR FBNR. Submitted to the INTERNATIONAL ATOMIC ENERGY AGENCY

IAEA REPORT 2006 PRELIMINARY NEUTRONICS CALCULATIONS OF THE FIXED BED NUCLEAR REACTOR FBNR. Submitted to the INTERNATIONAL ATOMIC ENERGY AGENCY

Specification for Phase VII Benchmark

Neutronic analysis of light water Small Modular Reactor with flexible fuel configurations

Readiness of Current and New U.S. Reactors for MOX Fuel

Research Article Study of Thorium-Plutonium Fuel for Possible Operating Cycle Extension in PWRs

Fall 2005 Core Design Criteria - Physics Ed Pilat

A Comparison of MCNPX/WIMS-D5 Burnup Calculation with SAS2H/KENO-v for the IRIS Reactor

Innovations and Safety Ensuring in WWERs on the Base of Collaboration on the National and International Levels

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

NEUTRONICS ASSESSMENT OF STRINGER FUEL ASSEMBLY DESIGNS FOR THE LIQUID-SALT-COOLED VERY HIGH TEMPERATURE REACTOR (LS-VHTR)

German SFR Research and European Sodium Fast Reactor Project

Systematic Evaluation of Uranium Utilization in Nuclear Systems

Journal of American Science 2014;10(2) Burn-up credit in criticality safety of PWR spent fuel.

Sodium versus Lead-Bismuth Coolants for the ENHS (Encapsulated Nuclear Heat Source) Reactor

ATHLET/KIKO3D results of the OECD/NEA benchmark for coupled codes on KALININ-3 NPP measured data

Feasibility to convert an advanced PWR from UO2 to a mixed (U,Th)O2 core

International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium

AEN WPRS Sodium Fast Reactor Core Definitions (version 1.2 September 19 th )

CASMO5 DEVELOPMENT. Joel Rhodes, Nicholas Gheorghiu, & Rodolfo Ferrer International Users Group Meeting Charlotte, NC, USA May 2-3, 2012

Effect of Radial Peaking Factor Limitation on Discharge Burnup

Heterogeneous sodium-cooled fast reactors with low sodium void effect.

Core Modification for the High Burn-up to Improve Irradiation Efficiency of the Experimental Fast Reactor Joyo

Core Design of a High Temperature Reactor Cooled and Moderated by Supercritical Light Water

Fission gas release from high burnup fuel during normal and power ramp conditions

IAEA Technical Meeting on Priorities in Modelling and Simulation for Fast Neutron Systems

Validation of the Monte Carlo Code MVP on the First Criticality of Indonesian Multipurpose Reactor

LEU Conversion of the University of Wisconsin Nuclear Reactor

Reactivity insertions for the Borax accident in ORPHEE research reactor

Neutronic calculations of reactor PIK using SERPENT code

Proposal of movable reflector for fast reactor design

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May 2008

Fast Reactor Research in Rossendorf

DEVELOPMENT OF ADVANCED MIXED OXIDE FUELS FOR PLUTONIUM MANAGEMENT

Inventory Prediction and BUC Calculations Related to MEU/LEU IRT Fuels of LVR-15 Research Facility

Primary - Core Performance Branch (CPB) Reactor Systems Branch (SRXB) 1

Evaluation of Implementation 18-Month Cycle in NPP Krško

A Comparison of the PARET/ANL and RELAP5/MOD3 Codes for the Analysis of IAEA Benchmark Transients

SIMULATE5 Status. Tamer Bahadir, Sten-Orjan Lindahl & Gerardo M.Grandi 2012 International Users Group Meeting Charlotte, NC, USA May 2-3, 2012

MOX use in PWRs EDF operation experience Jean-Luc Provost Nuclear Operation Division EDF - Generation

Detailed 10 B depletion in control rods operating in a Nuclear Boiling Water Reactor

DESIGN OF A PROTEUS LATTICE REPRESENTATIVE OF A BURNT AND FRESH FUEL INTERFACE AT POWER CONDITIONS IN LIGHT WATER REACTORS

A NEUTRONIC FEASIBILITY STUDY OF THE AP1000 DESIGN LOADED WITH FULLY CERAMIC MICRO-ENCAPSULATED FUEL

LACKING SPENT NUCLEAR FUEL CRITICAL BENCHMARKS? - GOT REACTOR CRITICALS? William J. Anderson Framatome ANP, Inc.

Advanced Methods for BWR Transient and Stability Analysis. F.Wehle,S.Opel,R.Velten Framatome ANP GmbH P.O. BOX Erlangen Germany

Tools and applications for core design and shielding in fast reactors

Physics Design of 600 MWth HTR & 5 MWth Nuclear Power Pack. Brahmananda Chakraborty Bhabha Atomic Research Centre, India

MONTE CARLO CALCULATIONS ON THE FIRST CRITICALITY OF THE MULTIPURPOSE REACTOR G.A. SIWABESSY. Liem Peng Hong Center for Multipurpose Reactor - BATAN

Nuclear Power Plants (NPPs)

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS

Numerical Modeling and Calculation of the Fuel Cycle for the IRT-Sofia Research Reactor

Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration

Analysis of Mixed-Oxide Fuel Behavior During RIA Tests Using FALCON MOD01. Robert Montgomery ANATECH Corp., USA. Ken Yueh EPRI, USA

MYRRHA FUEL TRANSIENT TESTS PROJECT AT THE TRIGA-ACPR REACTOR

ENCAPSULATED NUCLEAR HEAT SOURCE REACTORS FOR ENERGY SECURITY

Improved PWR Core Characteristics with Thorium-containing Fuel

Transcription:

Final Results: PWR MOX/UO 2 Control Rod Eject Benchmark T. Kozlowski T. J. Downar Purdue University January 25, 2006 This work has been sponsored by the U.S. Nuclear Regulatory Commission. The views expressed herein are strictly those of the authors, and do not represent U.S. NRC staff position.

Benchmark Description Background Proposed by U.S. NRC / RES in 2001 as part of Pu Disposition Research Sponsored by U.S. NRC (Purdue) and OECD/NEA Motivation Assessment of heterogeneous transport and nodal diffusion transient methods for MOX RIA Comparison of MOX/UO 2 and UO 2 core transient response to CEA Numerical Benchmark Based on 4-loop Westinghouse PWR reactor Steady-state at HZP and HFP conditions Transient Rod Eject from HZP conditions Heterogeneous Reference Solution (DeCART 47G MOC) 2

Benchmark Description (Cont.) Group constants provided 2G assembly homogenized XS with ADF and pin power form functions 4G assembly homogenized XS with ADF and pin power form functions 8G assembly homogenized XS with ADF and pin power form functions Number densities for heterogeneous calculation Benchmark conditions Reactivity insertion problem (important for Weapons Pu transient w/ small B-eff) Initial HZP conditions, critical boron concentration, CR ejected from the full core Compare: Eigenvalue Assembly and Pin Power distribution CR worth Transient power, reactivity and fuel temperature 3

OECD/NRC MOX Rod Ejection Benchmark: Core Loading Pattern 1 2 3 4 5 6 7 8 U 4.2% U 4.2% U 4.2% U 4.5% U 4.5% M 4.3% U 4.5% U 4.2% A (CR-D) (CR-A) (CR-SD) (CR-C) 35.0 0.15 22.5 0.15 37.5 17.5 0.15 32.5 B U 4.2% U 4.2% U 4.5% M 4.0% U 4.2% U 4.2% M 4.0% U 4.5% (CR-SB) 0.15 17.5 32.5 22.5 0.15 32.5 0.15 17.5 U 4.2% U 4.5% U 4.2% U 4.2% U 4.2% M 4.3% U 4.5% M 4.3% C (CR-A) (CR-C) (CR-B) 22.5 32.5 22.5 0.15 22.5 17.5 0.15 35.0 D U 4.5% M 4.0% U 4.2% M 4.0% U 4.2% U 4.5% M 4.3% U 4.5% (CR-SC) 0.15 22.5 0.15 37.5 0.15 20.0 0.15 20.0 U 4.5% U 4.2% U 4.2% U 4.2% U 4.2% U 4.5% U 4.2% E (CR-SD) (CR-D) (CR-SA) 37.5 0.15 22.5 0.15 37.5 0.15 17.5 M 4.3% U 4.2% M 4.3% U 4.5% U 4.5% M 4.3% U 4.5% F (CR-SB) (CR-SC) 17.5 32.5 17.5 20.0 0.15 0.15 32.5 U 4.5% M 4.0% U 4.5% M 4.3% U 4.2% U 4.5% Assembly Type G (CR-C) (CR-B) (CR-SA) CR Position 0.15 0.15 0.15 0.15 17.5 32.5 Burnup [GWd/t] U 4.2% U 4.5% M 4.3% U 4.5% Fresh H Once Burn 32.5 17.5 35.0 20.0 Twice Burn Note: 27% of the assemblies are MOX 4

Assembly Design UOX Fuel UOX IFBA Fuel Guide Tube or Control Rod Guide Tube MOX 2.5 % MOX 3.0% MOX 4.5 or 5.0% WABA Pin Guide Tube 5

Refueling Strategy Assembly Type Fresh Fuel Once Burned Twice Burned 0 GWd/tHM 20.0 GWd/tHM 35.0 GWd/tHM UOX 4.2% 28 28 17 UOX 4.5% 24 24 20 MOX 4.0% 8 8 4 MOX 4.3% 12 12 8 Total 72 72 49 Note: 27% of the assemblies are MOX 6

Fuel Composition Assembly Density Type [g/cm 3 ] HM Material UOX 4.2% 10.24 U-235: 4.2 w/o, U-238: 95.8 w/o UOX 4.5% MOX 4.0% 10.24 10.41 U-235: 4.5 w/o, U-238: 95.5 w/o Corner zone: 2.5 w/o Pu-fissile Peripheral zone: 3.0 w/o Pu-fissile MOX 4.3% 10.41 Central zone: 4.5 w/o Pu-fissile Corner zone: 2.5 w/o Pu-fissile Peripheral zone: 3.0 w/o Pu-fissile Central zone: 5.0 w/o Pu-fissile Uranium vector: 234/235/236/238 = 0.002/0.2/0.001/99.797 w/o Plutonium vector: 239/240/241/242 = 93.6/5.9/0.4/0.1 w/o 7

Sample Fuel Number Densities Format HELIOS Identifier 0.0 17.5 20.0 22.5 32.5 35.0 37.5 42595 9.99999E-21 1.76830E-05 2.10532E-05 2.43736E-05 3.70448E-05 4.00530E-05 4.29970E-05 43599 9.99999E-21 2.40933E-05 2.73519E-05 3.05554E-05 4.27999E-05 4.57139E-05 4.85671E-05 46608 9.99999E-21 2.01585E-06 2.51039E-06 3.04915E-06 5.62129E-06 6.36298E-06 7.14199E-06 54631 9.99999E-21 1.06985E-05 1.20328E-05 1.33047E-05 1.77608E-05 1.87169E-05 1.96103E-05 55633 9.99999E-21 2.61076E-05 2.96475E-05 3.31193E-05 4.62932E-05 4.94008E-05 5.24312E-05 92235 9.71492E-04 5.80775E-04 5.36589E-04 4.94761E-04 3.49384E-04 3.18203E-04 2.88980E-04 92236 9.99999E-21 7.11583E-05 7.86753E-05 8.56486E-05 1.08470E-04 1.12982E-04 1.17044E-04 92238 2.18794E-02 2.16336E-02 2.15964E-02 2.15585E-02 2.13988E-02 2.13569E-02 2.13140E-02 94238 9.99999E-21 5.08451E-07 7.13536E-07 9.62084E-07 2.42733E-06 2.91468E-06 3.44917E-06 94239 9.99999E-21 1.07858E-04 1.14067E-04 1.19049E-04 1.30075E-04 1.31236E-04 1.31952E-04 94240 9.99999E-21 2.21196E-05 2.60945E-05 3.00003E-05 4.43591E-05 4.75380E-05 5.05287E-05 94241 9.99999E-21 1.09779E-05 1.37246E-05 1.64876E-05 2.67336E-05 2.89421E-05 3.09761E-05 94242 9.99999E-21 1.26448E-06 1.86575E-06 2.60137E-06 6.85451E-06 8.22176E-06 9.69682E-06 95241 9.99999E-21 1.76423E-07 2.49678E-07 3.33089E-07 7.19747E-07 8.17423E-07 9.11165E-07 8001 4.57018E-02 4.57018E-02 4.57018E-02 4.57018E-02 4.57018E-02 4.57018E-02 4.57018E-02 44601 9.99999E-21 2.19801E-05 2.51017E-05 2.82139E-05 4.05465E-05 4.35951E-05 4.66278E-05 45603 9.99999E-21 1.19458E-05 1.37890E-05 1.55849E-05 2.22112E-05 2.37128E-05 2.51478E-05 45605 9.99999E-21 4.57383E-08 4.84212E-08 5.09780E-08 6.02870E-08 6.24351E-08 6.45223E-08 46605 9.99999E-21 7.71152E-06 9.18176E-06 1.07211E-05 1.74893E-05 1.93171E-05 2.11929E-05 46607 9.99999E-21 3.32193E-06 4.08714E-06 4.91198E-06 8.76228E-06 9.85276E-06 1.09907E-05 47609 9.99999E-21 1.21185E-06 1.49268E-06 1.79259E-06 3.14995E-06 3.52120E-06 3.90237E-06 49615 9.99999E-21 9.92244E-08 1.11432E-07 1.23041E-07 1.63316E-07 1.71839E-07 1.79758E-07 54634 9.99999E-21 3.25852E-05 3.71928E-05 4.17910E-05 6.00974E-05 6.46538E-05 6.92024E-05 60643 9.99999E-21 1.97780E-05 2.21845E-05 2.44529E-05 3.21512E-05 3.37326E-05 3.51775E-05 60645 9.99999E-21 1.48964E-05 1.68123E-05 1.86793E-05 2.56639E-05 2.72896E-05 2.88670E-05 61647 9 99999E 21 5 80911E 06 6 27491E 06 6 67053E 06 7 69046E 06 7 83361E 06 7 94163E 06 8

Benchmark Calculations Part 1: Fixed T/H conditions: HZP ARO and HZP ARI, 1000 ppmb (2D) k eff assembly and pin power distribution rod worth Part 2: Operating conditions: HFP, ARO (3D) critical boron concentration assembly and pin power distribution Part 3: Beginning of transient conditions: HZP, partly rodded (3D) critical boron concentration assembly and pin power distribution Part 4: Rod ejection transient (3D) Ejection of the highest worth rod from conditions calculated in Part 3 9

Benchmark Conditions HFP 100.0 % rated power (3565 MW) inlet coolant temperature of 560 K inlet pressure of 15.5 MPa HZP 1.0e-4 % rated power (3565 W) inlet coolant temperature of 560 K inlet pressure of 15.5 MPa Transient ejection of highest worth rod at HZP ARI, critical boron concentration rod fully ejected in 0.1 sections no reactor scram after the ejection boron concentration in the position of the other control rods are constant. 10

Benchmark Participants and Submitted Homogeneous Solutions Nodal solutions Code, unique solution label CORETRAN 1/FA CORETRAN 4/FA EPISODE NUREC PARCS 2G PARCS 4G PARCS 8G SKETCH Organization (Country) PSI (Switzerland) PSI (Switzerland) Osaka University (Japan) KAERI (Korea) Purdue Univ. (USA) Purdue Univ. (USA) Purdue Univ. (USA) JNES (Japan) Solution method Nodal diffusion Nodal diffusion Nodal diffusion Nodal diffusion Nodal diffusion Nodal diffusion Nodal diffusion Nodal diffusion Groups/ Homogenization 2G Nodal 2G Nodal 2G Nodal 2G Nodal 2G Nodal 4G Nodal 8G Nodal 2G Nodal Cross section library 2G benchmark library 2G benchmark library 2G benchmark library 2G benchmark library 2G benchmark library 4G benchmark library 8G benchmark library 2G benchmark library 11

Benchmark Participants and Submitted Heterogeneous Solutions Heterogeneous solutions Code, unique solution label Organization (Country) BARS Kurchatov Inst. (Russia) DeCART SNU/KAERI (Korea) DORT GRS (Germany) MCNP Kurchatov Inst. (Russia) Solution method Lambda matrix MOC S N Monte Carlo Groups/ Homogenization 5G Cell hom 47G Cell het 16G Cell hom Continuous Cell het Cross section library UNK generated HELIOS based HELIOS generated ENDF/B-VI with NJOY 12

Part 1, 2D fixed T/H Eigenvalue and Assembly Power Comparison Eigenvalue Todal Rod Assembly Power Error Worth ARO ARI ARO ARI [dk/k] %PWE %EWE %PWE %EWE nodal CORETRAN 1/FA 1.06387 0.99202 6808 1.06 1.69 2.01 2.52 CORETRAN 4/FA 1.06379 0.99154 6850 0.96 1.64 1.67 2.18 EPISODE 1.06364 0.99142 6849 0.96 1.64 1.66 2.16 NUREC 1.06378 0.99153 6850 0.96 1.63 1.64 2.16 PARCS 2G 1.06379 0.99154 6850 0.96 1.63 1.67 2.18 PARCS 4G 1.06376 0.99136 6865 0.90 1.42 1.61 2.26 PARCS 8G 1.06354 0.99114 6868 0.86 1.25 1.65 2.49 SKETCH 1.06379 0.99153 6850 0.97 1.67 1.67 2.16 heterogeneous BARS 1.05826 0.98775 6745 1.29 1.92 3.92 10.30 DeCART 1.05852 0.98743 6801 ref ref ref ref DORT 1.06036 - - 0.86 1.12 - - MCNP 1.05699 0.98540 6873 0.67 1.26 1.33 3.67 Max. difference 688 662 128 ei refi PWE = ref Power-Weighted Error (PWE) Error-Weighted Error (EWE) EWE = i i i i e i e e i i i calci refi ei = 100 ref i 13

Part 1, 2D fixed T/H Pin Power Comparison ARO Assembly Position (A,1) (B,2) (C,3) (D,4) (E,5) (F,6) nodal CORETRAN 1/FA 0.85 1.05 0.91 2.37 1.38 4.89 CORETRAN 4/FA - - - - - - EPISODE 0.25 0.23 0.42 1.37 0.47 4.04 NUREC 0.24 0.22 0.31 0.67 0.32 0.87 PARCS 2G 0.28 0.21 0.29 0.54 0.32 0.51 PARCS 4G - - - - - - PARCS 8G - - - - - - SKETCH 0.22 0.22 0.32 0.71 0.32 1.05 heterogeneous BARS 0.26 0.45 0.55 0.40 0.33 0.61 DeCART ref ref ref ref ref ref DORT 1.52 0.59 0.92 0.33 1.64 0.41 MCNP - - - - - - 14

Part 1, 2D fixed T/H Pin Power Comparison ARI Assembly Position (A,1) (B,2) (C,3) (D,4) (E,5) (F,6) nodal CORETRAN 1/FA 6.22 1.31 5.95 3.26 7.75 3.99 CORETRAN 4/FA - - - - - - EPISODE 2.44 0.28 2.32 1.35 2.37 3.83 NUREC - 0.33-0.66-0.77 PARCS 2G - 0.63-0.65-0.50 PARCS 4G - - - - - - PARCS 8G - - - - - - SKETCH 2.63 0.33 2.67 0.79 2.97 1.19 heterogeneous BARS 0.42 0.30 1.55 0.33 1.96 0.66 DeCART ref ref ref ref ref ref DORT - - - - - - MCNP - - - - - - 15

Part 2, 3D Hot Full Power Eigenvalue, Assembly Power, T/H Conditions Critical Assembly Power Error Core Average T/H Properties Boron Doppler Moderator ModeratorOutlet ModOutlet Mod. Concent. %PWE %EWE Temp. Density Temp. Density Temp. [ppm] [K] [g/cm3] [K] [g/cm3] [K] nodal CORETRAN 1/FA 1647 0.31 0.51 908.4 706.1 581.0 658.5 598.6 CORETRAN 4/FA 1645 0.26 0.46 908.4 706.1 581.0 658.5 598.6 EPISODE 1661 0.40 0.64 846.5 701.8 582.6 697.4 585.5 NUREC 1683 0.31 0.44 827.8 706.1 581.1 661.5 598.7 PARCS 2G 1679 ref ref 836.0 706.1 581.3 662.1 598.8 PARCS 4G 1674 0.31 0.50 836.1 706.1 581.3 662.1 598.8 PARCS 8G 1672 0.55 0.86 836.2 706.1 581.3 662.1 598.8 SKETCH 1675 1.04 1.39 836.6 705.5 580.9 659.6 598.9 Max. difference 38 81 4 2 39 13 16

Part 2, 3D Hot Full Power Pin Power Comparison Assembly Position (A,1) (B,2) (C,3) (D,4) (E,5) (F,6) nodal CORETRAN 1/FA 1.07 0.92 0.90 2.62 1.38 4.60 CORETRAN 4/FA - - - - - - EPISODE 3.08 2.67 3.01 3.47 3.44 10.47 NUREC 0.08 0.17 0.24 0.32 0.13 0.89 PARCS 2G ref ref ref ref ref ref PARCS 4G - - - - - - PARCS 8G - - - - - - SKETCH 0.09 0.11 0.18 0.58 0.22 0.87 17

Part 2, 3D Hot Full Power Axial Power 1.6 1.4 1.2 1.0 CORETRAN 1/FA CORETRAN 4/FA EPISODE NUREC PARCS 2G PARCS 4G PARCS 8G SKETCH Relative Power [-] 0.8 0.6 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Axial Height [cm] 18

Part 3, 3D Hot Zero Power Critical Boron Concentration, Delayed Neutron Fraction and Assembly Power Comparison Critical Delayed Assembly Boron Neutron Power Concent. Fraction Error [ppm] [pcm] %PWE %EWE nodal CORETRAN 1/FA 1351 568 1.26 4.10 CORETRAN 4/FA 1346 568 1.09 3.72 EPISODE 1340 579 1.05 3.42 NUREC 1343 576 1.05 3.43 PARCS 2G 1341 579 1.05 3.49 PARCS 4G 1337 579 1.11 3.06 PARCS 8G 1334 580 1.20 2.85 SKETCH 1341 579 1.06 3.77 heterogeneous BARS 1296 579 2.65 5.66 DeCART 1265 - ref ref Max. difference 86 12 19

Part 3, 3D Hot Zero Power Pin Power Comparison Assembly Position (A,1) (B,2) (C,3) (D,4) (E,5) (F,6) nodal CORETRAN 1/FA 6.46 0.81 6.66 3.44 6.71 4.81 CORETRAN 4/FA - - - - - - EPISODE 2.51 0.57 2.33 1.41 2.39 3.88 NUREC 2.38 0.68 2.14 0.64 2.33 0.80 PARCS 2G - 0.82-0.62-0.46 PARCS 4G - - - - - - PARCS 8G - - - - - - SKETCH 2.65 0.70 2.65 0.80 2.79 1.09 heterogeneous BARS 0.38 0.60 1.83 0.33 0.41 0.45 DeCART ref ref ref ref ref ref 20

Part 3, 3D Hot Zero Power Axial Power 1.6 Relative Power [-] 1.4 1.2 1.0 0.8 0.6 CORETRAN 1/FA CORETRAN 4/FA EPISODE NUREC PARCS 2G PARCS 4G PARCS 8G SKETCH BARS DeCART 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Axial Height [cm] 21

Part 4, 3D Transient Integral Parameter Comparison Peak Peak Peak Power Time Power Reactivity Integral [sec] [%] [$] [%-sec] nodal CORETRAN 1/FA 0.35 140 1.08 24.8 CORETRAN 4/FA 0.33 166 1.14 26.4 EPISODE 0.33 160 1.13 26.9 NUREC 0.36 139-28.4 PARCS 2G 0.34 142 1.12 27.2 PARCS 4G 0.33 152 1.12 27.8 PARCS 8G 0.32 172 1.14 29.1 SKETCH 0.34 144 1.12 28.0 heterogeneous BARS 0.21 522 1.29 41.7 Max. difference 0.04 32 0.06 4.3 22

Part 4, 3D Transient Core Power and Reactivity 600.0 1.4 Core Power [%] 500.0 400.0 300.0 CORETRAN 1/FA CORETRAN 4/FA EPISODE NUREC PARCS 2G PARCS 4G PARCS 8G SKETCH BARS Reactivity [$] 1.2 1.0 0.8 0.6 CORETRAN 1/FA CORETRAN 4/FA EPISODE N/A PARCS 2G PARCS 4G PARCS 8G SKETCH BARS 200.0 0.4 100.0 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Time [sec] 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Time [sec] 23

Part 4, 3D Transient Assembly and Point Pin Peaking 6.0 12.0 Assembly Peaking [fxy] 5.0 4.0 3.0 CORETRAN 1/FA CORETRAN 4/FA N/A NUREC PARCS 2G PARCS 4G PARCS 8G SKETCH BARS Point-Pin Peaking [fq] 10.0 8.0 6.0 CORETRAN 1/FA N/A N/A NUREC PARCS 2G N/A N/A SKETCH BARS 2.0 4.0 1.0 2.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Time [sec] 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Time [sec] 24

Part 4, 3D Transient Moderator Temperature and Density 563.5 756.0 Core Average Moderator Temperature [K] 563.0 562.5 562.0 561.5 561.0 CORETRAN 1/FA CORETRAN 4/FA EPISODE NUREC PARCS 2G PARCS 4G PARCS 8G SKETCH BARS Core Average Moderator Density [kg/m3] 754.0 752.0 750.0 748.0 CORETRAN 1/FA CORETRAN 4/FA EPISODE NUREC PARCS 2G PARCS 4G PARCS 8G SKETCH BARS 560.5 746.0 560.0 559.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Time [sec] 744.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Time [sec] 25

Conclusions Nodal diffusion codes are capable of modeling static MOX core 1-2% assembly and pin-power error at ARO 2-4% assembly and pin-power error at ARI Nodal diffusion codes are consistent in modeling transient MOX core Lack of high-order reference to assess absolute performance All nodal results almost identical, the only significant difference can be seen in pin power prediction due to differences in pin power reconstruction methods 1 node per FA discretization is not sufficient for MOX core even with advanced nodal methods (ANM) The difference between 1/FA and 4/FA is small but noticeably improves results It was found that the group effect is not very significant for this problem Negligible difference at static conditions The difference between 2G diffusion and 8G diffusion is 17% for peak power and 7% for power integral Code improvement needs High order heterogeneous transport transient capability 26

Benchmark Schedule December 2002: - Distribute first draft specifications February 2003: - Obtain participant s comments March 2003: - Implement participant s comments into specifications April 2003: - Recalculate benchmark May 2003: - Distribute final draft of the specifications - WPPR14: finalize specifications and schedule August 2003: - Provide any additional data for the benchmark December 2003: - Release 2nd revision with all comments February 2004: - Request preliminary results for WPPR meeting March 2004: - Prepare final 8 group xsec set August 2004: - Request for final results September 2004: - WPRS01: final results from 4 participants October 2004: - Request final results before end of the year December 2004: - Generate final DeCART reference June 2005: - WPRS02: close benchmark January 2006: - submit final report for participants review January 2006: - WPRS03: present final report December 2006: - publish final report 27