ELECTROLESS PLATING Cu ON Mo POWDER AND ITS REACTION MECHANISM

Similar documents
» LiNi 0.5 x Co 2x Mn 0.5 x O 2 Æ º

Crystallization Behaviour of the Si-Al-Zr-O Amorphous Bulk

ÅÔ½ß (electrochemical noise EN)

Formation Mechanism of TaC by Tantalum-contained Resin Precursor

Effect of Combined Additives of CaF 2 -Y 2 O 3 on Microstructrue and Thermal Conductivity of AlN-BN Composite Ceramics

¾Å ÒÅ º Sm 0.15 Gd 0.05 Ce 0.8 O 1.9

Effect of ZrO 2 on Crystallization and Phase Transformation in Lowtemperature Processed BaO-Al 2 O 3 -SiO 2 Glass-ceramics

ÃÞ Al-Zn(7%)-Sn(0.1%)-Ga(0.015%) NaCl ι 2% CrO 3 +5% H 3 PO 4

ELECTRONIC STRUCTURE OF DIFFERENT REGIONS AND ANALYSIS OF STRESS CORROSION MECHANISM OF Al Zn Mg Cu ALLOYS

Ce(NO 3 ) g/l KMnO g/l HF 2 ph ÓÞ

0.18«S 0.034«P 0.035, Si 0.3, Mn0.55, Ô Fe. Vol.30 No ½ 8 Þ Journal of Chinese Society for Corrosion and Protection Aug.

Fabrication and characterization of photocatalyst coatings by heat treatment in carbon powder for TiC coatings

Ultrasonic enhanced electroless copper plating on microporous polyurethane foam

AlCrTaTiNi/(AlCrTaTiNi)N ÖÞ

Journal of Inorganic. Materials ² Û: X(2006) Journal of Inorganic Materials Jul., 2006

FRICTION AND WEAR PROPERTIES OF Ni FREE Zr BASED BULK METALLIC GLASSES IN SIMULATED BODY FLUID

EFFECT OF GROWTH TEMPERATURE ON THE CATALYST-FREE GROWTH OF LONG SILICON NANOWIRES USING RADIO FREQUENCY MAGNETRON SPUTTERING

Influence of preparation method on the performance of Mn Ce O catalysts

Ñ ³ PtRu/MWCNTs Þ PtRuNi/MWCNTs

Deposited by Sputtering of Sn and SnO 2

SiC Ð Æ

This journal is The Royal Society of Chemistry S 1

Electromagnetic-shielding, Wood-based Material Created Using a Novel Electroless Copper Plating Process

Graphene/Fe 3 O Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties

Vol.30 No Journal of Chinese Society for Corrosion and Protection Apr. 2010

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with

(1) J = DC. Vol.31 No Journal of Chinese Society for Corrosion and Protection Jun Æ ¼ : TG457 Ó«Ç : A ¼ :

Electroless plating of Cu Ni P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics

Optimized by Disorder Engineering on Iron doped Ni 3 S 2. nanosheets for Oxygen Evolution Reaction

Highly thermally conductive and electrically insulating polymer nanocomposites with boron nitride nanosheet/ionic liquid complexes

Electroless copper plating on microcellular polyurethane foam

Vol.30 No Í 4 Journal of Chinese Society for Corrosion and Protection Apr ĐÅ : TG174 Ú : A ²Ù : «

Synthesis and characterization of pulsed electrodeposited Cu-Y 2 O 3 coating

Tungsten Oxide Nanorods Array and Nanobundle Prepared by Using Chemical Vapor Deposition Technique

Effect of normalization on the microstructure and texture evolution during primary and secondary recrystallization of Hi-B electrical steel

Synthesis, Characterization and Optical Properties of ZnS Thin Films

Ultra-stretchable, sensitive and durable strain sensors based on. polydopamine encapsulated carbon nanotubes/elastic bands

A Study on Seed Damage in Plating Electrolyte and Its Repairing in Cu Damascene Metallization

Oxidation behavior of Cu nanoclusters in hybrid thin films

Nirosta 4003 T4003 Ö. Vol.32 No Ö 4 Journal of Chinese Society for Corrosion and Protection Apr. 2012

Supporting Information. Trapping the Catalyst Working State by Amber-Inspired Hybrid

J. Mater. Sci. Technol., 2010, 26(11),

A method for fabricating a micro-structured surface of polyimide with open and closed pores

Optical, microstructural and electrical studies on sol gel derived TiO 2 thin films

: A : O ,2 - L- Kondo [8,9 ] TA) , ED TA TEA. ,. Lin [4 ],, ED TA ,ED TA

An Analysis of Desulfurization and Regeneration Reaction Rates of Zinc Titanate Sorbent

Interface Reaction Between Electroless Ni Sn P Metallization and Lead-Free Sn 3.5Ag Solder with Suppressed Ni 3 P Formation

Supporting information

Shape and Composition Effects on Photocatalytic Hydrogen. Production for Pt-Pd Alloy Cocatalysts

Supporting Information. Selective Metallization Induced by Laser Activation: Fabricating

Electronic Supplementary Information (ESI) Self-assembly of Polyoxometalate / Reduced Graphene Oxide

State-of-the-art Flame Synthesis of Nanoparticles

The Effect of Reducing Agents on Electroless Copper Plating Process

Effect of Volume Spray Rate on Highly Conducting Spray Deposited Fluorine Doped SnO2 Thin Films

Electronic Supplementary Information (ESI)

Bottom-Up Fill for Submicrometer Copper Via Holes of ULSIs by Electroless Plating

Department of Materials Science and Engineering, Yonsei University. 134 Shinchon-dong, Seodaemoon-gu, Seoul (Korea)

Anomaly of Film Porosity Dependence on Deposition Rate

Low Thermal Budget NiSi Films on SiGe Alloys

8-9% n. a. n. a. n. a n. a. n. a. n. a n. a. n. a. n. a. n. a.

º µ µ Œ Õß Àπ ß Õæ æå Enterococcus faecium SU-1

Supporting Information

ITC factory, Bangalore. Using non imaging concentrator for boiler feed water preheating

Vacuum 85 (2011) 792e797. Contents lists available at ScienceDirect. Vacuum. journal homepage:

Supporting Information

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode

Study of electroless copper plating on ABS resin surface modified by heterocyclic organosilane self-assembled film

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai , PR China

Thin Copper Seed Layers in Interconnect Metallization Using the Electroless Plating Process

Nitrogen Doped Carbon Nanomaterials as Non-metal. Electrocatalysts for Water Oxidation

Two-machine Open-shop Scheduling With Outsourcing

Surface Pretreatments for Remove of Native Cu Oxide Layer

Corrosion Protect DLC Coating on Steel and Hastelloy

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

FORMING OF FULLERENE-DISPERSED ALUMINUM COMPOSITE BY THE COMPRESSION SHEARING METHOD

Supporting Information

Supporting Information

Supporting Information

Synthesis and characterization of electroless Ni P coated graphite particles

Contact Angle of TiO 2 /SnO 2 Thin Films Coated on Glass Substrate

Supplementary. Effects of crystal phase and composition on structurally. ordered Pt-Co-Ni/C ternary intermetallic electrocatalysts for

A Simple Nickel Activation Process for Electroless Nickel-Phosphorus Plating on Carbon Fiber

Preparation of CuAlO 2 Thin Films by Sol-Gel Method Using Nitrate Solution Dip-Coating

YG6. Murakami 30 min. Effect of Cobalt-Etched Treatment on the Adhesion between Diamond Films and WC Co Cemented Carbide

Enhanced cyclability of Li O 2 batteries with cathodes of Ir and MnO 2 supported on well-defined TiN arrays

Supplementary Figure 1. Schematic representation of (Mo2/3Sc1/3)2AlC assuming a, Monoclinic (C2/c) and b, orthorhombic (Cmcm) symmetry.

CHAPTER 8 CONCLUSIONS AND SCOPE FOR FUTURE WORK

SOLID SOLUTION METAL ALLOYS

Supporting Information

Sn Wears Super Skin: A New Design For Long Cycling Batteries

Preparation of Trivalent Chromium Coating on 6063 Aluminum Alloy Jian-Zhen HUANG 1,a,* and You-Xiong LUO 1,b

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition

Supporting Information

Supporting Information

Effect of melt temperature on the oxidation behavior of AZ91D magnesium alloy in 1,1,1,2-tetrafluoroethane/air atmospheres

Microstructural Evolution of Ti-Mo-Ni-C Powder by Mechanical Alloying

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency

CH 3 COOHÆCH 3 COONH 4 ¾ CH 3 COONa«¾É

Water-Enhanced Oxidation of Graphite to Graphene Oxide with Controlled Species of Oxygenated Groups

Effects of Silver Coating Covered with Copper Filler on Electrical Resistivity of Electrically Conductive Adhesives

Transcription:

45 «4 Vol.45 No.4 2009 4 405 409 ACTA METALLURGICA SINICA Apr. 2009 pp.405 409 Mo ³ß Cu Đ Æ 1) ÊÉ Þº²¾ º Ò¾ µ, 410083 2) ÊÉ ²¾ º, 410083» ³³ Sn Pd Å Mo Ô Cu ÎƼ Cu/Mo, ³³ XRD, SEM, EDS XPS Ú ÎÞ ¼. ³³ XPS ¼ Mo Ô Cu ¾ ÁÕ. Ú³¼ Ô Cu ¾ È Pd µ Þ Î Ú Cu Ê Å Ð³. Ý Ô Cu, Mo, Cu/Mo, È ¾ Å TQ153.1 ²Ö A ¼ÕÅ 0412 1961(2009)04 0405 05 ELECTROLESS PLATING Cu ON Mo POWDER AND ITS REACTION MECHANISM WANG Guangjun, WANG Dezhi, ZHOU Jie, WU Zhuangzhi, XU Bing 1) Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 2) School of Materials Science and Engineering, Central South University, Changsha 410083 Correspondent: WANG Dezhi, professor, Tel: (0731)8877221, E-mail: dzwang@mail.csu.edu.cn Manuscript received 2008 04 17, in revised form 2008 12 10 ABSTRACT By using Sn Pd catalyst system, the electroless plating Cu on the surface of Mo powder was performed to fabricate Cu/Mo composite powder. Composition, morphology and formation process of Cu/Mo particles were analyzed by XRD, SEM/EDS and XPS. The formation mechanism of Cu/Mo particles can be described as follows: the PdCl 2 (activator) deposited on the surface of Mo particles firstly and then was reduced by SnCl 2 (sensitizer) to nano Pd particles, which are the nucleation sites for Cu deposition, finally Cu coating formed. KEY WORDS electroless plating Cu, Mo powder, Cu/Mo composite powder, reaction mechanism Cu/Mo ³ Å Þ,», ¹ Á ¹ É, Ñ Å ½» [1]. Cu/Mo ³ Ã Ï ²Ð Å Ñ Ù. Ð Ù, Ñ Cu Ð Mo ² Ñ, Cu ³. Ñ Ù Cu Ñ, Ä Ú. Î ½Ä Ö Cu/Mo ³, Ì» à ٠ÉØ» [2,3]. ϲ, Ã Û Mo/Cu ³ Þ ±Ò [4] ; ÝÉ Ø Ð, ÝÓ ¾, ³ [5]. Û «¼, ϲ Ó, ±, ÝÓÏ ¾ Ú. Mo º Cu, Ý ÑÅÐ Ù * : 2008 04 17, Đ : 2008 12 10 Ð Ü : ˹, Ì, 1982, ± Ï Cu/Mo ³ Mo ÉÔÔ, Ñ, ËÑÄË, Ù Cu/Mo ³. À¾,» À Õ Õ Á Õ ( Ãß Æ ) [6] Ä. ϲ ¹ Mo Å, ± Í Mo ĐÐ Õ. ÂÈ, Õ Á Õ Ö Ó, ½ Ð ¼. Õ» ÁÅ Ç Ä ½ [7,8], Ï Ñ ÀÖ, ÏÏ µ Mo «Õ Cu. Õ Cu Mo Õ Cu, XPS Û Đ É± ĐÐ. 1 µ Ð 1.1 ºÜ Mo ¼ Cu ß, º Ð

406 Ý ¹ Å 45 «Ñ Ì, Õ ÈÐÛ ĐÐ ±, Í Õ. µ Ç Á Õ Cu ± [7,8], Đ Û ½ ± : (1) Ä. HF ĐÐÄ ±, Mo ß Ö Mo Æ Ä. (2) À. 10 g/l SnCl 2 + 40 ml/l HCl À ĐÐÀ ±. (3) Ã. 0.5g/L PdCl 2 +40 ml/l HCl à ĐÐà ±. «¼ ĐÐ Ñ, Ó Ò Ö Ô. 1.2 Cu «¼ ± Mo ² Õ Cu, à ± Æ Ï Õ, ph Ê Ì 12.5 13,  Mo, Ö 55 ĐÐĐ. Õ Cu Æ Ö Ô ÀÔ 100 30 min. Õ CuSO 4 Î, (HCHO) Î. Đ, (TEA) Þ (EDTA), Å Ã Ñ Ö Đ. Î 2, 2 ÒÓ (2, 2 bipridyl) Þ (PEG). µ Õ ( ) Î: 15 g/l CuSO 4 5H 2 O, 22 ml/l HCHO(37%,» ¾), 20 mg/l 2, 2 bipridyl, 30 g/l TEA, 3 g/l EDTA, 1 g/l PEG. 1.3 ÞÙ½ ± D/max2500 X Æ «Æ (XRD) Û ÆĐÐ Ñ, CuK α ÆÆ, Ç, Î 4 /min, 2θ ÍÎ 10 80 ; Sarion200 Ý (SEM) ÛĐ Ð Æ ß Đл; Tecnai G2 ÄÆ Ì (TEM)» ± Mo ß ; ESCALAB250 Ü Ã, X Æ º (XPS) ¹ Mo Õ Cu ÖØ, X Æ AlK α,» 1486.6 ev, 150 W. 2 µ ¹ 2.1 Cu/Mo «Þ XRD ± Æ 1 ÎÕ Cu Cu/Mo XRD. Î Mo Cu. Scherer Cu È Î 25 nm. µ XPS, 2θ=36 Î Cu 2 O «Æ. 2.2 Cu/Mo «XPS ± ν Õ, Û ĐÐ Æ Ö. Æ 2 Î Ar + Ð Mo XPS. Æ 3 Î XPS ¹» Æ Mo ¾¼ µ. ÃÆ, Å, O ¾, Cu ¾, À Á Cu 2 O Mo Cu Cu 2 O 10 20 30 40 50 60 70 80 2, deg 1 Cu/Mo Å XRD Fig.1 XRD pattern of Cu/Mo composite powder a b Cu 2p 1 C 1s 1000 800 600 400 200 0 Energy, ev 2 Cu/Mo Å XPS Fig.2 XPS of Cu/Mo composite powders before (a) and Atomic fraction of element, % after (b) Ar + etching for 100 s 100 80 60 40 20 Cu 2p Mo 3d 0 0 20 40 60 80 100 Etch time, s 3 Cu/Mo ½» Fig.3 Relationships of elements concentration and etch time measured by XPS Æ, Ý Æα Cu 2 O»,  Ç, Cu 2 O ² Mo Cu ÕºÆ Ý ½. ϲ, É ¹ 60 ĐÐ, Cu ² Æ Cu 2 O [9]. Ý Û ½ Cu 2 O, À Ô¼É È Cu Å Ã µ. 2.3 Cu/Mo «SEM/EDS ± Æ 4a b ½ Mo ¼ Õ Cu

4 Ê : Mo Ó Cu Í Ð Ç 407 5 Cu/Mo Å EDS Fig.5 EDS of Cu/Mo composite powder c Cu 2p 1 b a C 1s Mo 3p 3 Mo 3d5 Sn 3d Mo 3p 1 Pd 3d 1000 800 600 400 200 0 6 Mo Ô Cu ÁÕ XPS Ø Fig.6 XPS for sensitized (a), activated (b) and Cu coated (c) Mo powders 4 Å SEM Ó Fig.4 SEM micrographs of powders (a) original Mo powder (b) Cu/Mo composite powder (c) high magnified image of Fig. 4b Cu/Mo ß. Æ, º Á ¼. Æ ÓÎÄ. ÃÆ 4c Mo ½Ë»Õ, È Î 100 nm. EDS (Æ 5) Á ² Cu, ¼ XPS Ù½ÑÂ. 2.4 Cu ÛÞ XPS ± Æ 6 Î Mo Õ Cu ÂÖØ XPS Ù. ÃÆ 6 a, À Mo ß Sn Mo. ÃÆ 6 b, À ± Mo PdCl 2, Mo ½ Pd, ÂÈ, Mo Sn. Õ Cu Mo, ¹ Cu º ÖÎ Ì, Ý XPS ÖÐÎ É,  ϻ Mo Û (Æ 6 c), O ² ¹ Æ. 1 Î Mo Õ Cu ÖØ Ù Ê. Æ 7 Î ÂÖØ Sn 3d 5/2 Ù 475 500 ev È XPS. ÃÆ 7a, Mo À Sn 3d 5/2 Ù ÊÎ 486.9 ev, 1 Cl 2p 3/2 Ù ÊÎ 198.7 ev, Àº Ù Ê ¼À SnCl 2 Sn 3d 5/2 Cl 2p 3/2 Ù ÊÑ, À ÁÀ SnCl 2 Mo. À Mo PdCl 2 Ã, Sn 3d 5/2 Cl 2p 3/2 Ù Ê 487.1 ev ( Æ 7b) 199.45 ev( 1). À Á Mo Ã, Sn 2+ Pd 2+ Æ Sn 4+, Ý Sn 4+ SnCl 4 ß Mo, Đ Î: Sn 2+ + Pd 2+ Sn 4+ + Pd (1) Æ 8 Îà Pd 3d 5/2 Ù 329 347 ev È

408 Ý ¹ Å 45 «Ø 1 Ð Î Mo Ô Cu Õ Sn, Pd, Cl Cu XPS Ø Ï Table 1 Binding energies of some compounds and XPS measured binding energies of Sn, Pd, Cl and Cu during plating Cu on Mo powder Compound and powder Pd 3d 5/2 Sn 3d 5/2 Cl 2p 3/2 Cu 2p 3/2 PdCl 2 335.0 (Pd) 198.4 (PdCl 2 ) 337.2 (PdCl 2 ) 198.4 (PdCl 2 ) SnCl 2 487.0 (SnCl 2 ) 198.7 (SnCl 2 ) CuSO 4 936.3 (CuSO 4 ) Sensitized Mo powder 486.9 (SnCl 2 ) 198.4 (SnCl 2 ) Activated Mo powder 335.5 (Pd) 487.1 (SnCl 4 ) 199.45 (SnCl 4 ) 336.86 (PdO) Cu coated Mo powder 932.62 (Cu) (ev) 934.65 (Cu 2 O) 935.69 (CuO) (a) Sn 3d 5/2 486.9 ev (b) Sn 3d 5/2 487.1 ev Sn 3d 3/2 Sn 3d 3/2 500 495 490 485 480 500 495 490 485 480 7 ÁÕ Mo XPS Sn 3d 5/2 «Fig.7 High resolution spectra of Sn 3d 5/2 peak in XPS of sensitized (a) and activated (b) Mo powders Pd 3d 3/2 Pd 3d 5/2 335.5 ev I (Pd) II (PdO) 348 346 344 342 340 338 336 334 332 330 328 8 Mo  XPS Pd 3d 5/2 «Ú Fig.8 Decomposition of Pd 3d 5/2 peak in XPS of activated Mo powder XPS. ÃÆ Pd 3d 5/2 Ù Ê 335.5 ev, ¼ÈÛ ÎÎ Pd, À Á Mo PdCl 2 Ã, ˽ΠPd. ÃÝ ÆÁ½Ã Sn 2+ Pd 2+ Æ Sn 4+. Æ 8 ÇÎ Pd Ù Î 335.5 ev, ÑÛ Pd Ù (335.1 ev [10] ) ½ 0.4 ev. Meenan [11] BaTiO 3 ÁÆ «Õ Cu» Pd 3d 5/2 Ù +0.4 ev, ßβ ¹ß Pd Sn. ϲÃÆ 7b À Mo ËÀ Sn, ½ß Pd Sn,  Pd 3d 5/2 Ù Å Pd Sn ß Û. ßÎ Pd 3d 5/2 Ù +0.4 ev ² ¹ Pd ÈÖ. XPS Õ È Pd Í Pd κ Ù. À² Î Ã Ì, Å» e 2 /(2R), R λ, e λ. »¼ Ì Û º ÑÂ, Fermi Ï ½ e 2 /(2R), Ýκ٠ÕÝ [12]. ÛÉ Ï, κ٠E = e 2 /(2R), Â Ç Ñ R = e 2 /(2 E)., Pd κ»Î 0.4 ev,  Pd Î 1.8 nm. Mo PdCl 2 Ã, Ë Î 1.8 nm Pd

4 Ê : Mo Ó Cu Í Ð Ç 409, ÝÀ Pd Î Õ Cu Æ Ã Ú. Æ 8 PdO II, Ù Î 336.86 ev, À² ÎÉ Ï Pd Ã, Ô ± Æ PdO. XPS Ù (Æ 6), Õ Cu, Mo ß Pd ¼ Sn. Æ 9 Î Cu/Mo Cu 2p Ù 925 965 ev XPS. ÃÆ Û, I Ù Î 932.62 ev, Û Î Cu, II Ù Î 934.65 ev, Û Cu 2 O, III Ù Î 935.69 ev, Û CuO. À Á Mo Õ Cu. XPS, Cu 2 O CuO Ù ¼ Ê ÓÒ, Â Ô ÍĐ. 2.5 Mo Ù Cu Þ «¼ Mo Õ Cu ÖØ XPS, Mo Õ Cu Рɱ, Æ 10. Mo À, Mo Ë SnCl 2 (Æ 10a). À Mo Ã, ¹ PdCl 2 SnCl 2 Cu 2p 1/2 Cu 2p 3/2 960 950 940 930 I (Cu) II (Cu 2 O) III (CuO) 9 Mo Ô Cu XPS Cu 2p «Ú Fig.9 Decomposition of Cu 2p peak in XPS of Cu coated Mo powders 10 Mo µ Ô Cu È Å Fig.10 Schematic of the reaction mechanism for electroless plating Cu on Mo particle (a) sensitization (c) electroless plating Cu (b) activation (d) oxidation, Mo Ë ÈÎ 3 4 nm Pd. Ý SnCl 4 ÑÎĐ ½ Mo. Î½Ö Đ ½, à Mo Ö Ô, ϲ SnCl 4 ÉÙ Ô, Ì ± Pd Æ PdO(Æ 10b). ± Mo Õ, Cu 2+ HCHO Cu Ó Ë Pd ÎÆ Ã Ú Mo. Ë Cu Å Æ Ã, Cu Ù Mo Ë. Cu Ù Ë, Ä Mo, ß Cu º (Æ 10c). ¹ Æ Cu Õ, Đ Ã Ò, Đ Æ. Â, º Cu Æ Ä (Æ 10d). 3 (1) Sn Pd Æ, Mo Õ Cu, Cu/Mo Ä, Cu 2 O, Cu 2 O Ç ²É Cu Æ Ù½. (2) XPS Û Õ Cu ÖØ, ½ Mo Õ Cu Рɱ. (3) Õ Cu Ì Pd È Pd Ù Å, ± Ë Mo Pd È Î 3 4 nm, À Pd ÑÎ Õ Cu Æ Õ Cu ĐÐ. Ú ² [1] Lu D M. Powder Metall Ind, 2002; 10(6): 30 ( ÊÂ. Å ß, 2002; 10(6): 30) [2] Maneshian M H, Simchi A, Razavi H Z. Mater Sci Eng, 2007; A445 446: 86 [3] Hwang K S, Huang H S. Mater Chem Phys, 2001; 67: 92 [4] Gusmano G, Bianco A, Polini R, Magistris P, Marcheselli G. J Mater Sci, 2001; 30: 901 [5] Raghu T, Sundaresan R, Ramakrishnan P, Ramamohan T R. Mater Sci Eng, 2001; A304 306: 438 [6] Peng X L. Mater Sci Eng, 1999; A262: 1 [7] Wang H Q, Li X H, Guo H J, Zhang B, Guo Y X. J Cent South Univ(Sci Technol), 2003; 34: 615 (Ë Ñ, ²Ù, ¼ Æ,, ¼²Ü. ËÊ «( Ü ), 2003; 34: 615) [8] Sharma R, Agarwala R C, Agarwala V. Appl Surf Sci, 2006; 252: 8487 [9] Lee W, Yang H J, Reucroft P J, Soh H S, Kim J H, Woo S L, Lee J. Thin Solid Films, 2001; 392: 122 [10] Shukla S, Seal S, Akesson J, Oder R, Carter R, Rahman Z. Appl Surf Sci, 2001; 181: 35 [11] Meenan B J, Brown N M D, Wilson J W. Appl Surf Sci, 1994; 74: 221 [12] Huang H Z. The Surface Chemical Analysis. Shanghai: East China University of Science and Technology Press, 2001: 21 (ÀÁ.. Å : Ð Ê, 2001: 21)