Study on Effect of Waste Tyres in Flexible Pavement System

Similar documents
STUDY ON EFFECT OF WASTE TYRES IN FLEXIBLE PAVEMENT SYSTEM

INVESTIGATION ON BEHAVIOUR OF SOILS REINFORCED WITH SHREDDED WASTE TYRES

Stabilization of Subgrade soil of Highway Pavement using Waste Tyre Pieces

SHEAR STRENGTH CHARACTERISTICS AND STATIC RESPONSE OF SAND-TIRE CRUMB MIXTURES FOR SEISMIC ISOLATION

A Comparative Study on Utilization of Waste Materials in GSB Layer

Performance of Reinforced Gravel Sub Base Laid on Expansive Soil Sub Grade

SOIL IMPROVEMENT USING WASTE TIRE CHIPS

Study on Strength Characteristics of River Sand in Combination with Cement and Waste Tire Rubber Chips

A LABORATORY STUDY ON THE INFLUENCE OF RUBBER STRIPS ON THE IMPROVEMENT OF CBR VALUES OF EXPANSIVE SOIL

Performance of Randomly Oriented Plastic Waste in Flexible Pavement

Strength Improvement of Sub-grade Soil by mixing Shredded Rubber Tyres

Laboratory Performance of Randomly Oriented Plastic Waste in Subgrade of Flexible Pavement

Experimental Determination of Waste Tire Chip-Sand-Geogrid Interface Parameters Using Large Direct Shear Tests

Mouli Kola Chandra, Naidu Chappa Damodar; International Journal of Advance Research, Ideas and Innovations in Technology

Utilisation of Waste Materials in the Construction Of Roads

Spectrum of Axles Approach

Study on Geotechnical Properties of Stabilized Expansive Soil- Quarry Dust Mixes

Utilization of Crusher Dust Stabilized Gravels as Sub-Base Materials

Crumb Rubber Modified Crushed Stone Crusher Dust Gradation Mixes as Base Course Material

TRIAXIAL COMPRESSION BEHAVIOUR OF COHESIVE SOIL MIXED WITH FLY ASH AND WASTE TYRE FIBRES

Experimental Study on Improving the CBR value of Expansive Soil in Vemulawada using Geo synthetics

BEARING RATIO OF CLAYEY SUBGRADE UNDERLYING COMPACTED FLYASH LAYER AND GEOTEXTILE AT INTERFACE

Pavement materials: Soil

Experimental Analysis of Stabilization of Soil by using Plastic Waste

Effects of Geosynthetic reinforcement on the mechanical behaviour of composite materials for vibration isolation

Field & Laboratory Characterization of Tire Derived Aggregate in Alberta

Strength Behaviour of Cohesive Soils Reinforced with Fibers

Shear Strength of Tire Derived Aggregate (TDA) California State University, Chico

Characterizing Engineering Properties of Foundry Sands

Effect of Static and Cyclic Loading on Behavior of Fiber Reinforced Sand

Effect of Pond Ash and RBI Grade 81 on Properties of Subgrade Soil and Base Course of Flexible Pavement B. M. Patil, K. A. Patil

A STUDY ON IMPACT OF INDUSTRIAL WASTES UTILIZATION

VARIATION OF STRENGTH OF COHESIVE SOIL WITH MOISTURE CONTENT AND TIME

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE BEHAVIOUR OF GEOTEXTILE ENCASED QUARRY WASTE COLUMN SUBJECTED TO SHEAR LOADING IN SOFT CLAY

MODEL STUDY ON CYCLIC LOADING RESPONSES OF FLEXIBLE PAVEMENT SYSTEM LAID ON EXPANSIVE SUBGRADE

Key Words: Black cotton soil, Fish net fibers (Grid type).

EFFICACY OF CEMENT ON STABILIZATION OF GRAVEL SOILS AS ROAD CONSTRUCTION MATERIAL

Feasibility of Soil Stabilization using Rice Husk Ash and Coir Fibre

INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET)

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES STABILIZATION OF FLYASH WITH RED MUD & CEMENT Nukaraju Bharathi *1 & Amulya Gundla 2

Laboratory Investigation of Compaction Characteristics of Flyash-Granular Soil

Performance evaluation of stabilized GSB mix- A quantitative study

Code No: RR Set No. 1

Effects of Curing Conditions on Strength of Lime Stabilized Flyash

Typical set up for Plate Load test assembly

PROPERTIES OF DIFFERENT SIZE SCRAP TIRE SHREDS: IMPLICATIONS ON USING AS DRAINAGE MATERIAL IN LANDFILL COVER SYSTEMS *

GEOTECHNICAL CHARACTERISTICS OF BAUXITE RESIDUE SAND MIXED WITH CRUMBED RUBBER FROM RECYCLED CAR TIRES

A Study on Stabilization of Expansive Soil using Tile Waste and Recron-3S Fibres

Clay Soil Stabilization Using Rubber Tyre Waste As Admixture

Effect of Stabilization Using Flyash and GGBS in Soil Characteristics

THE EFFECT OF SOAKING IN WATER ON CBR OF LIMESTONE

CBR Behaviour of Waste Plastic Strip-Reinforced Stone Dust/Fly Ash Overlying Saturated Clay

Improvement Of Plasticity And Cbr Characteristics Of Gravelly Soils Using Rice Husk Ash-An Agricultural Industrial Waste

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.1, pp , 2015

IMPROVEMENT OF WEAK SUBGRADE SOIL STRENGTH USING WASTE TILES Basil Jaimon 1, Haritha H 2, Muhammed Shefin K 2,Althaf Hussain A H 2, Shaniba O 2

UTILIZATION OF JUTE FIBRE AS SOIL REINFORCEMENT

Use of Waste Plastics for the Enhancement of Soil Properties : A Recent Advancement in Geotechnical Engineering

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

IGC. 50 th. 50 th INDIAN GEOTECHNICAL CONFERENCE INVESTIGATION AND STABILITY ANALYSIS OF EMBANKMENT BUND

Laboratory Assessment To Correlate DCP And Optimum Moisture Content With Strength Characteristic Of Subgrade

STUDIES ON MARSHALL AND MODIFIED MARSHALL SPECIMENS BY USING CRMB

Laboratory Performance of RBI 81 Stabilized Soil for Pavements

GEOSYNTHETIC-REINFORCED PAVEMENT SYSTEM : TESTING & DESIGN

PRACTICAL COURSE III CLASSIFICATION & COMPACTION. Res. Assist. İREM KALIPCILAR

Study on Developing Engineering Properties of Marine Clay by Using Tile Waste and Polyster Fibre

New Technique for Ground Improvement for Road and Building Construction

REPORT STATUS: DATE: Report n :

CBR of Soaked Clay Drained by Sandy Layer

COMPARATIVE STUDY ON STABILIZATION OF SOIL WITH GROUND GRANULATED BLAST FURNACE SLAG (GGBS)

CHARACTERISTICS OF LIME - STABILIZED DEPOK RESIDUAL SOIL

(DEPARTMENT OF CIVIL ENGINEERING)

Improvement in CBR value of Black Cotton Soil by Stabilizing it with Vitrified Polish Waste

Soil Stabilization by using Industrial Waste Material as a Stabilizer

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

EFFECT OF L/B RATIO OF STONE COLUMN ON BEARING CAPACITY AND RELATIVE SETTLEMENT OF SANDY SOIL (AN EXPERIMENTAL STUDY)

Foundry Byproducts as Sustainable Geotechnical Construction Materials

An Experimental Study on Interfacial Properties of Rock Flour and Design of Reinforced Soil Bed

TABLE OF CONTENTS DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

Geotechnical characteristics of recycled asphalt

Strength Behaviour of Expansive Soil Treated with Tile Waste

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE

COMBINED EFFECT OF QUARRY DUST & CERAMIC DUST ON STABILISATION OF CLAY : Review

STABILIZATION OF SANDY SOIL USING RECYCLE WASTE TIRE CHIPS

Effect of Stone Slurry And Crumb Rubber on Phosphogypsum Treated Clay

STUDIES ON SOIL STABILIZATION BY USING BAGASSE ASH

PROJECT REFERENCE NO.: 38S0482

Study of Load-Settlement and Consolidation Behavior of Pond Ash and Stone Dust Column Installed In Soft Clayey-Silt Soil

GEO-ENGINEERING CHARACTERISTICS OF LIME TREATED DREDGED SEDIMENTS FROM DAL LAKE SRINAGAR

Investigation of Engineering Behavior of Soil, Polypropylene Fibers and Fly Ash -Mixtures for Road Construction

Gravel Road Building Myth versus Science

LARGE TRIAXIAL TESTS ON FABRIC REINFORCED AND CEMENT MODIFIED MARGINAL SOIL

STUDIES ON STABILIZATION OF EXAPANSIVE SOIL USING CEMENT AND FLYASH

Comparison of Red Mud with Flyash for Its Utilization as a Geotechnical Material

Enhance the Performance of Permeability of Fine Sand Using Ceramic Tiles Waste and Plastic Waste as Admixture

EFFECT OF SAND ADDITIVES ON THE ENGINEERING PROPERTIES OF FINE GRAINED SOILS

BEHAVIOUR OF GEOTEXTILE REINFORCED STONE COLUMNS MANITA DAS, A.K.DEY ABSTRACT

DESIGN OF STONE DUST STABILIZED ROAD

Response of Circular Footing by Varying the Vertical Spacing of Reinforcement Resting on Structural Fill

Effect of Curing on Soil Stabilized with Egg Shell

Improvement of Geotechnical Properties of Red Soil using Waste Plastic

Transcription:

INDIAN GEOTECHNICAL SOCIETY CHENNAI CHAPTER Study on Effect of Waste Tyres in Flexible Pavement System R. M. Subramanian 1 and S. P. Jeyapriya 2 ABSTRACT: Today most tyres, especially those fitted to motor vehicles, are manufactured from synthetic rubber. As the number of vehicles is increasing so are the heaps of discarded rubber tyres. One of the main issues associated with the management of scrap tyres has been their proper disposal. In this project work, an effort has been made to make use of these waste tyres in subgrade and subbase layers of the flexible pavement. Soil and aggregates used in the study were collected from nearby locations. Tyre pieces of approximately square and rectangular shapes cut from tractor tyres passing IS 25mm sieve and retained in IS 20mm sieve and crumb tyres scrapped from light motor vehicle tyres passing IS 2.36mm sieve are used in the study. Crumb tyre was mixed with soil in various proportions and tested for compressive strength and California bearing ratio showed marginal improvement in its value. Tyre pieces mixed with soil and aggregates separately in various proportions and tested for California bearing ratio vto determine its optimum content. Aggregate crushing value, impact value and abrasion value decreased with increase in waste tyre content in the aggregates. Finally a pavement model study was performed in a tank of size 30 x 30 x 30 cm with and without optimum percentage of waste tyre pieces in subbase layer and pressure versus deflection curves were plotted and compared. KEYWORDS: Waste tyres, subbase, Flexible pavement, CBR Introduction In civil engineering applications, usually tyres are used in a shred form referred to as tyre chips. These chips are between 12 and 50 mm in size and with steel belting removed in processing. Approximately 12 million scrap tyres in 1995 and 15 million in 1996 have been used for civil engineering applications including leachate collection systems, landfill cover, artificial reefs, clean fill for road embankment, road bed support and similar projects (Liu et al., 2000). Using tyre shreds for civil engineering application has several advantages due to their unique characteristics. One of most important properties is that tyre shreds are a lightweight material. It is relatively inexpensive compared to other light fill materials. Tyre shreds induce low horizontal stresses since they are lightweight and have relatively high shear strength. However tyre shreds have not been tried extensively for using it in subgrade and subbase layers of the pavement. In this project an attempt has been made to discover its possible use in these layers. Literature Review Tatlisoz, Benson, Edil, (1997) decrypted soil-tyre chip mixtures are unique fill materials with high compressibility and ductility. Soil-tyre chip mixtures also have unique mechanical properties that are primarily governed by the tyre chip content, not by soil type. Zornberg, Costa, Vollenweider, (2000) conducted a field investigation to assess the mechanical behavior of an experimental embankment fill built with tyre shreds and cohesive soil. Immediately after construction, the embankment was submitted to heavy truck traffic and settlements were monitored for over two years. The results indicate that the embankment sections built with tyre shreds and cohesive soil showed satisfactory longterm performances during traffic exposure. Tatlisoz, Edil, Benson, (2001) assessed the shear strength and geosynthetic interaction of tyre chip and soil-tyre chip backfills that may be used for geosynthetic reinforced walls and embankments and concluded that Soil-tyre chip mixtures have significantly higher shear strength than the soil used in the mixture. Hassona, Hassan, Marei, Hashem, (2005) based on their tests involving triaxial test and CBR test on shred tyre reinforced soil, concluded that The presence of shredded waste tyres in sand improves the stress-strain properties for all different sizes and contents of shreds waste tyre over that pure sand. The maximum deviator stress of randomly reinforced sand occurs at a higher axial strain compared to sand alone. CBR values increases with the increase of shreds tyre content up to 3 % content. After this content the increasing of CBR value decreases with the increase of shreds tyre content in both soaked and unsoaked specimens. Prasad, Prasada Raju, Ramana Murthy, (2008) carried out CBR and direct shear tests for finding the optimum percentages of waste plastics and waste tyre rubber in gravel subbase material. Based on these results, laboratory model pavement studies were conducted with optimum percentage of waste plastics and waste tyre rubber in gravel subbase, laid on expansive soil subgrade in the flexible pavement system. The load carrying capacity of the model flexible pavement system significantly increased when the gravel subbase was reinforced with waste plastics as well as waste tyre rubber when compared to unreinforced subbase. Materials Soil used in the test was collected from a pit near the soil mechanics laboratory of Government College of Technology Coimbatore. Soil was found to be inorganic clay of medium plasticity. Aggregates used in the tests were bought from a nearby shop. Aggregates size varied between 10mm to 40mm. Crumb tyre are small pieces of waste tyre scrapped from light motor vehicles. In this study the scrapped tyre pieces passing IS 2.36mm sieve 1 M.E Student, Department of Civil Engineering, Government College of Technology, Coimbatore, subbu_geotechengg@yahoo.co.in 2 Lecturer, Department of Civil Engineering, Government College of Technology, Coimbatore

20 STUDENTS PAPER COMPETITION 2009 were considered as crumb tyre rubber. Waste tyre pieces are small pieces of waste tyres of tractors that are approximately cut into square and rectangular shapes passing IS 25mm sieve and retained on IS 20mm sieve. Laboratory Investigation Laboratory tests were divided into four phases with the inclusion of waste tyre. In order the four phases include tests on soil-crumb tyre mix, tests on soil reinforced with waste tyre pieces, tests on aggregates reinforced with waste tyre pieces and test on model pavement. First the initial tests were performed on soil and aggregates to ascertain their engineering properties. In the first phase of the test on soil, crumb tyre was considered as a additive material that can be added to the soil like lime and flyash. The composite material can be called as crumb tyre replaced soil or soil-crumb tyre mix. Crumb tyre was added to the soil in proportions of 2.5, 5, 7.5 and 10 in terms of percentage by weight of the soil and compaction tests tests were carried out to determine their optimum moisture contents at the respective tyre contents. Unconfined compressive strength tests were performed on soil-crumb tyre mix at the water contents corresponding to the tyre contents to obtain the optimum percentage of crumb tyre that can be included in the soil-crumb tyre mix based on unconfined compressive strength. CBR tests were also performed on soil-crumb tyre mix with given percentages of crumb tyre in soaked and unsoaked condition. Standard proctor compaction was adopted in the preparation of specimens for CBR tests. In the second phase of the test on soil, waste tyre pieces were considered as a reinforcing material like geosynthetics. CBR tests were performed on the sample which contained partially replaced waste tyre pieces in proportions of 2.5, 5, 7.5, 10 and 12.5 by weight of the soil to determine the optimum waste tyre content in soaked and unsoaked condition. Since the tyre was considered as a reinforcing material, all the samples were compacted at optimum moisture content of the soil. Waste tyre pieces were randomly placed during compaction. Standard proctor compaction was adopted in the preparation of specimens for CBR tests. In the third phase of the test on aggregates, CBR tests were performed on the sample which contained partially replaced waste tyre pieces in proportions of 2.5, 5, 7.5, 10 and 12.5 by weight of the aggregates to determine the optimum waste tyre content in unsoaked condition. Modified proctor compaction was adopted in the preparation of sample for CBR test. For the same percentages of waste tyre pieces, aggregate crushing value test, abrasion test and impact test were also performed. In the final phase, based on the laboratory test results on soil and aggregates a model pavement study was performed. A model tank made of mild steel of dimension 30x30x30 cm with thickness 20mm was used in the study. Load tests were performed in the tank with and without the addition of optimum waste tyre pieces in the subbase layer alone. A sand bed of 3 cm was provided at the bottom of the tank to ensure the flexibility in the pavement system as in the case of natural Fig. 1 Crumb Tyre Fig. 2 Waste Tyre Pieces pavement and also to have a change of soil strata. The soil used in the various laboratory experiments was used as a subgrade material. It was allowed to dry and then pulverized and sieved through IS 4.75 mm sieve. The subgrade thickness was calculated to be 15 cm and the volume of the soil required was 13500 g/cc. Soil mixed at optimum water content was laid in the tank in three layers and was compacted to its maximum dry density with each layer given 338 blows with 2.6kg rammer. The aggregates used in the various laboratory experiments were used as a subbase material. The subbase thickness was calculated to be 5 cm and the volume of the aggregate-tyre mix required was 4500 g/cc including 7.5% waste tyre pieces. Aggregate was mixed with fines having a liquid limit value of 20% and plasticity index value of 4. In the first test, on the prepared subgrade, crushed stone subbase was laid in two layers and compacted to a total thickness of 5 cm. In the second test, on the prepared subgrade, crushed stone subbase mixed with optimum percentage of waste tyre pieces (obtained from laboratory CBR test) was laid in two layers and compacted to a total thickness of 5 cm. The loading was done through a circular metal plate of 10 cm diameter placed at the centre of the model flexible pavement system. Dial gauges having a least count of 0.01mm was mounted on the tank as shown in Figure 3. Loading machine with 5 t capacity was used in the test. 1 division of the dial gauge of the proving ring used was found to be 34.44N. Deflection of the plate was recorded at pressures of 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, and 550 kn/m 2.

EFFECT OF WASTE TYRES IN FLEXIBLE PAVEMENT SYSTEM 21 Fig. 3 Sketch Diagram of Model Pavement Results and As the tests were performed in four phases separate results are given for each phase and are discussed. Test results on soil and aggregates are summarized first, Tests on Soil-Crumb Tyre Mix specific gravity of crumb rubber = 0.88 Compaction Test Results at Various Crumb Tyre Percent Table 1 Summary of Test Results - Soil Specific gravity Percentage of sand Percentage of clay Percentage of silt Liquid limit Plastic limit Plasticity index Activity Indian soil classification Symbol Optimum water content Maximum dry density Unconfined Compressive Strength Cohesion Angle of internal friction California bearing ratio (Unsoaked) California bearing ratio (Soaked) 2.6 40.14 53.08 6.78 43.5% 26.78% 16.72 0.315 Inorganic clay CI 21.6% 15.83 kn/m 3 117 kn/m 2 16.38 kn/m 2 7º7 30 4.29 3.27 Fig. 4 Comparison of Optimum Moisture Content and Maximum Dry Density with varying percentage of CrumbTyre (CT Table 2 Summary of Test Results - Aggregates Determination of Optimum Crumb Tyre Content from Unconfined Compressive Strength Test CBR Values at Various Crumb Tyre Contents Specific Gravity Water Absorption Aggregate Crushing value Aggregate Impact test value Deval Abrasion test value CBR 2.5 0.5% 23.94% 20.95% 25% 20.5% > From figure 4 it is found that optimum moisture content increases and maximum dry density decreases with increase in percentage of crumb tyre. > Optimum value of crumb tyre that can be replaced

22 STUDENTS PAPER COMPETITION 2009 to the soil as obtained from figure 5 shows only marginal improvement in the compressive strength value of the soil-tyre mix. > From figure 6 it can be observed that there is a gradual decrease in CBR value of the soil-crumb tyre mix with increase in percentage of crumb tyre. > In these tests on soil-crumb tyre mix in which the soil is classified as CI did not show positive results, it will not be wise to conclude the results without testing the effect of crumb tyre on wide range of soils. > However, the obtained results can be concluded for this particular type of soil. Fig. 5 UCC Vs % Crumb Tyre Curve Tests on Soil Reinforced with Waste Tyre Pieces Specific gravity of waste tyre pieces = 1.11 Determination of Optimum Waste Tyre Content from CBR Tests > Optimum value of waste tyre content was found to be 7.5% from CBR tests in Unsoaked condition and no improvement in CBR value was observed tests in soaked condition. > From figure 7 it can be observed that there is a 2% improvement in the CBR value with the addition of 7.5% waste tyre pieces. > Tests in soaked condition was stopped at 7.5% replacement of waste tyre pieces as the prior successive percentage replacement waste tyre pieces showed decrement in the CBR value. > Again in these tests involving waste tyre pieces, final conclusion can made after testing in different types of soil. > However, the obtained results can be concluded for this particular type of soil. Tests on Aggregates Reinforced with Waste Tyre Pieces Fig. 6 CBR Vs % Crumb Tyre Curve Fig. 7 CBR Vs % Waste Tyre Pieces Curve Comparison of Results of Abrasion, Crushing and Impact Values Determination of Optimum Waste Tyre Content from CBR Tests Fig. 8 CBR Vs % Waste Tyre Pieces Curve Fig. 9 Comparison of Abrasion Value, Crushing Value, Impact Value with Various Percentages of Waste Tyre Pieces

EFFECT OF WASTE TYRES IN FLEXIBLE PAVEMENT SYSTEM 23 where WTP = Waste tyre pieces > Optimum value of waste tyre content was found to be 7.5% from CBR tests in Unsoaked condition. > Since there is no much difference in CBR value with 5% and 7.5%, the actual optimum content may lie between these two values for this particular type of aggregates. > From figure 8, it can be observed that there is approximately 6% improvement in the CBR value with the addition of 7.5% waste tyre pieces. > From figure 9, it can be seen that there is a decrease in abrasion value, crushing value, impact value with increasing percentage of waste tyre pieces. > At optimum waste tyre content there is a considerable decrease in abrasion value, crushing value, impact value which proves them to be a better composite material to be used in subbase layer than aggregate alone. be effectively used in subgrade to improve its CBR value in areas where the rainfall is less and the ground water table is at a great depth below. > An increase in CBR value of 2% can significantly reduce the total thickness of the pavement and hence the total cost involved in the project. > Aggregates in subbase layer when partially replaced by waste tyre pieces showed considerable increase in CBR value with increase in tyre content upto 7.5% and there onwards decreased with further increase in tyre content. > Aggregates when partially replaced by waste tyre pieces showed considerable decrease in abrasion value, crushing value and impact value which proves them to be better composite material in the subbase layer of the pavement system. > With the help of model study it is understood that total deflections in a particular point of the pavement are reduced with reinforcing the waste tyre pieces in subbase layer alone. Test on Model Pavement > Waste tyre was reinforced in subbase layer alone to determine its effect on the entyre pavement system. > From figure 10 it can be observed, that with increase in pressure there is an increasing gap in deflection between the aggregate subbase model and waste tyre reinforced subbase model for the same pressure. > These results can be considered for further study on the field. Conclusions Based on the experimental investigations and the results obtained the following conclusions are made > Crumb tyre mixed with soil does showed marginal improvement in UCC value and gradual decrement in CBR value. Giving importance to the CBR value in design of the pavement the mixing of crumb tyre in the soil is found to be ineffective. > Waste tyre pieces reinforced with soil showed improvement in CBR vaule with its addition upto 7.5% and there onwards decreased with further increase in tyre content in unsoaked condition. > However, waste tyre pieces reinforced with soil does not show any improvement in the CBR value in soaked condition. > Its failure in soaked condition may be attributed to the loose of grip of rubber surface with the soil in submerged condition and due to the properties of the soil (CI). > But the waste tyre pieces in this particular soil can > This model study can be considered in doing field study on the pavement with waste tyre as reinforcing material in subbase or base layer > End of use tyres are waste materials that can be cost effective when used in pavement. References Fig. 8 Pressure Vs Deflection Curve Akram,M., Ahmad M.F. and Kmaruzzaman M (2004), Chemical analysis and shear strength of shredded scrap tyre for lightweight embankment fill over soft ground, 5 th international conference on Ground Improvement Techniques, Malaysia, pp 219-228. Bosscher, P. J., Edil, T. B. and Eldin, N. (1993) Construction and performance of shredded waste tyre test embankment, Transportation Research Record No. 1345, Transportation Research Board, Washington, D.C., pp. 44 52. Foose, G.J, Benson, C.H., and Bosscher, P.J. (1996) Sand reinforced with shredded waste tyres, Journal of Geotechnical Engineering, Vol. 122, No. 9, 760-767. Hoppe, E. J. (1994), Field study of shredded-tyre

24 STUDENTS PAPER COMPETITION 2009 embankment, Report No. FHWA/VA-94- IRI, Virginia Department of Transportation, Richmond, VA. Humphrey, D.N. and Eaton, R.A. (1993) Tyre chips as subgrade insulation - field trial, Proceedings of Symposium on Recovery and Effective Reuse of Discarded Materials and By-Products for Construction of Highway Facilities, Denver, CO. I Ahmed. 'Laboratory Study on Properties of Rubber Soils'. Report no. fhwa/in/jhrp-93/4, Purdue University, West Lafayette, Indianapolis, 1993. IRC 37-2001: Guidelines for Design of Flexible Pavements. I S: 1498-1970. Classification of Soils for General Engineering Purposes. MORTH-2001: Specifications for Roads and Bridge Works, Ministry of Road Transportation and Highways, Govt. of India. Prasad, Prasada Raju, Ramana Murthy (2008) Use of Waste Plastic and Tyre in Pavement Systems, IE(I) Journal-CV, Vol.89, pp 31-35. Rao, G. V. and Dutta, R. K. (2001) Utilization of shredded tyres in highway engineering, in Proceedings of the International Seminar on Sustainable Development in Road Transport, New Delhi, pp. I-257 I-268. Stalin, V.K and Jeyapriya, S.P. (2001) A Study on the Performance of Geosynthetics in Expansive Soils. Proc. Of Indian Geotechnical Conference, Indore, Vol. 1, pp 393-395.