Product Quality Control of a HME Co-Extrudate Using a Raman Imaging Microscope

Similar documents
The Benefits of SOLAμ Technology in Sample Preparation. Jon Bardsley and Ken Meadows Thermo Fisher Scientific, Runcorn, UK

Nitrogen Determination in Soils and Plants by Flash Combustion using Argon as Carrier Gas

EDS Phase Mapping of a Contact Metamorphosed Calc-Silicate Rock

A Fast and Robust Linear ph Gradient Separation Platform for Monoclonal Antibody (MAb) Charge Variant Analysis

Concentration of Human Hormones in Drinking Water Using Solid Phase Extraction and Analysis by High Performance Liquid Chromatography

A Novel Screening Method for Anthropogenic Sewage Pollutants in Waste Water, Ground Water and Drinking Water Samples by LC HRAM Analysis

Thermo Scientific icap 7000 Series ICP-OES. Low cost ICP-OES analysis high quality data

Thermo Scientific icap 7000 Series ICP-OES. Low cost ICP-OES analysis high quality data

Thermo Scientific icap 7000 Plus Series ICP-OES. Gain more power. experience more performance

Injection Moulding as a One-Stop-Production to Produce Pharmaceutical Dosage Forms

Lebedev A, 1 Damoc E, 2 Makarov A, 2 Samguina T 1 1. Moscow State University, Moscow, Russia; 2 ThermoFisher Scientific, Bremen, Germany

Automated Solid-Phase Extraction of Organochlorine Pesticides from Drinking Water

Improving Retention Time Precision and Chromatography of Early Eluting Peptides with Acetonitrile/Water Blends as Solvent B

Claudio De Nardi, 1 Marta Kozak, 2 David Kasper 3 1. Thermo Fisher Scientific, Dreieich, Germany; 2 Thermo Fisher Scientific, San Jose, CA (USA); 3

Automated Solid-Phase Extraction of Organochlorine Pesticides from Drinking Water. Pranathi R Perati Thermo Fisher Scientific, Sunnyvale, CA, USA

Analysis of Fracking Flowback Water From the Marcellus Shale Using In-line Conductivity, Automated Dilution, and Ion Chromatography

Jonathan R. Beck and Charles T. Yang; Thermo Fisher Scientific, San Jose, CA

Quantitative Analysis of Wheat Flour Using FT-NIR

Advances in Twin Screw Compounding Technology

ANALYTICAL STANDARDS AND REAGENTS

A Novel ph Gradient Separation Platform for Monoclonal Antibody (MAb) Charge-Variant Analysis

Thermo Scientific TSQ Endura Triple-Stage Quadrupole Mass Spectrometer. Extreme quantitative value. with unprecedented ease

Simple, fast and reliable analysis of lead in whole blood using the Thermo Scientific icap Q ICP-MS

Maximizing Roller Compaction Benefits with Proper Excipient Selection

Thermo Scientific TSQ Endura Triple-Stage Quadrupole Mass Spectrometer. Extreme quantitative value. with unprecedented ease

Highlighted Capillary IC Applications

Extraction of Phthalates from Solid and Liquid Matrices

Global Commerce Review. Americas, Q2 2018

Using HRAM Survey Analysis Combined with Rapid MS2 Data to Develop a Fragmentation Based Detection Workflow for Structure ID Acquisition

superior performance in virtually every application

MASTERBATCHES. Masterbatch Application and Selection Guide for Irrigation Pipes

TargetQuan 3 Software. Leading the way in regulatory. POPs quantification. Bullet Bullet Bullet

We make drugs smarter

DOW PuraGuard Propylene Glycol USP/EP. Your Security for Purity

Soluplus. Technical Information. October _090801e-01/Page 1 of 8. = Registered trademark of BASF group. Pharma Ingredients & Services

APPLICATION Additive in polypropylene-compatible systems. TYPICAL PROPERTIES DESCRIPTION

Preface... iii Contents...vii Contributors...xv. 1 Introduction to Hot-Melt Extrusion, Continuous Manufacturing: Scale-up via Hot-Melt Extrusion...

Evonik Birmingham Laboratories

Quantitative LC-MS Analysis of 14 Benzodiazepines in Urine Using TraceFinder 1.1 Software and High Resolution Accurate Mass

MAXIMIZE YOUR LABORATORY RESOURCES FOR INCREASED PRODUCTIVITY

High Temperature Mechanical Characterization of Tin (Sn) Using Nanoindentation

Development of Ultra-fast ph-gradient Ion Exchange Chromatography for the Separation of Monoclonal Antibody Charge Variants

Global Commerce Review EMEA, Q2 2018

Rotor-Gene Q quick-start guide

Implementation of a Walk-Up High- Pressure Capillary Ion Chromatograph for the Fast Separation of Pharmaceutical Relevant Inorganic Anions and Cations

Isotope Ratio MS. Continuous Flow. Consumables and Spare Parts for Thermo Scientific Elemental Analyzers

Thermo Scientific EASY-nLC 1200 System. Leading in simplicity. and performance

Analysis of Illegal Dyes in Food Matrices Using Automated Online Sample Preparation with Liquid Chromatography-Mass Spectrometry

Thermo Scientific Solutions for Intact-Protein Analysis. Better, Faster Decisions for. Biotherapeutic Development

NIRO Kieselguhr, Sheet and Combi Filter

GPCR induction followed by a fluorometric Ca 2+ assay in Thermo Scientific Varioskan LUX

Computation of Solubility parameters using Molecular. dynamics simulation

Solubility of Small-molecule Drugs into Polymer Excipients in Hot Melt Extruded Dosage Forms

3M Advanced Materials Division 3M TM. Boron Nitride Cooling Fillers Smart Coolness for Excellent Performance

Extrusion: Pharmaceutical Applications

University of Sulaimani College of Pharmacy Dept. of Pharmaceutics 5 th stage Second Semester

Thermo Scientific TSQ Endura Triple-Stage Quadrupole Mass Spectrometer. Extreme quantitative value. with unprecedented ease

Dissolution Enhancement of Active Pharmaceutical Ingredients in Eudragit E100 by Melt Extrusion Coupled with Supercritical Carbon Dioxide

Extending the Processing Window of Ca/Zn-stabilised PVC Window Profiles by the Use of Metallocene Waxes

Impact of MRCT after ICH E17 fully implement -Industry perspective-

High-speed, High-resolution Oligonucleotide Separations Using Small Particle Anion-Exchangers

for water and beverage analysis

Empowering innovation.

Introduction. Three different cases for different dosage forms and pharmacopeias, respectively, must be distinguished (Table 1).

Blown Film Lines with water cooling

safetyiq: THE NEW DIMENSIONS OF SAFETY DISCOVER INTELLIGENT PROTECTION FOR MORE PRODUCTIVITY Forward-thinking safety products, systems and services

Practical Guide to Hot-Melt Extrusion: Continuous Manufacturing and Scale-up

COMPOUNDING OF HIGHLY HAZARDOUS PRODUCTS

PHARMACEUTICAL EXTRUSION. Continuous extrusion process for pharmaceutical masses

EXTRUSION TECHNOLOGY. Extruders and extrusion lines

FRACTIONLYNX APPLICATION MANAGER

PRODUCT INFORMATION PLB PRECISE LOCALIZATION OF PARTS IN BINS. Robot guidance systems

Continuous Processing. MODCOS for Continuous Oral Solid Dosage Production Textmasterformat in Mastervorlage eingeben

P1: TIX/XYZ P2: ABC JWST166-fm JWST166-Douroumis March 6, :11 Printer: Yet to come Trim: 244mm 168mm. Contents. List of Contributors

greenprofile wpc Wood plastic composite (WPC) profile extrusion

For winding pipe technology

[ MS IMAGING ] FULL SPECTRUM MOLECULAR IMAGING COMPLETE VISUALIZATION OF MOLECULAR DISTRIBUTIONS

PHARMACEUTICAL TECHNOLOGY REPORT. Introduction. Experimental Methods

[ VION IMS QTOF ] BEYOND RESOLUTION

Determination of 1,4-Dioxane in Drinking Water by Gas Chromatography/Mass Spectrometry (GC/MS) with Selected Ion Monitoring (SIM)

Thermo Scientific EASY-Spray Technology. Plug-and-spray with. State-of-the-art performance

Multi-element determination in pharmaceutical preparations using the Thermo Scientific icap Q ICP-MS

CRYOGENIC. B a l l V a l v e s

SmartSpec Plus spectrophotometer

Simplifying Complex Multi-Residue Pesticide Methodology in GC-MS/MS

Pharma & Food Solutions. ETHOCEL One of the Few Water-Insoluble Polymers Approved for Global Pharmaceutical Applications

Innovative Solutions for the Print Media

Analysis of Glyphosate and AMPA in Environmental Water Samples by Ion Chromatography and On-Line Mass Spectrometry with Minimal Sample Preparation

Get Your Fill. A full line of empty chromatography columns and accessories. Protein Purification

single-use fermentors

Multidrop. The most precise and reliable reagent dispensing solution. Analyze Detect Measure Control TM

Bringing custom solutions and contract manufacturing to life

protein interaction analysis bulletin 6299

MERCER EXECUTIVE REMUNERATION GUIDE THE KEY TO DESIGNING COMPETITIVE EXECUTIVE REMUNERATION IN THE MIDDLE EAST

Thermo Scientific Heracell VIOS 160i CO 2. Incubator with Cell Locker System. Protected chambers for your most sensitive cells

Roller compactors for the pharmaceutical industry. BT 120 Pharma WP 120 Pharma WP 150 Pharma WP 200 Pharma

Discover the Importance of Third Party Quality Control

PRODUCT INFORMATION PLR 3D LOCALIZATION OF PARTS IN CARRIERS. Robot guidance systems

GRI Sustainability Reporting Statistics Publication year By Report Services

Application Note USD Microcarrier Mixing in PadReactor Mini Bioreactor

Transcription:

Product Quality Control of a HME Co-Extrudate Using a Raman Imaging Microscope Dirk Leister, 1 Katharina Paulsen, 1 Ines Ruff, 2 Karl C Schwan, 2 Simon Nunn, 3 Martin Long 3 Thermo Scientific, Karlsruhe 1 / Dreieich 2, Germany / Madison 3, WI United States

Overview Purpose: Introduction to hot melt co-extrusion for utilization as a drug delivery method. Influence of process parameters on final drug product quality. Application of Raman imaging microscopy as a analytical tool for quality control of the co-extrudate. Methods: Co-extrusion with a newly designed co-extrusion die and a pharmaceutical relevant polymer/active formulation. Chemical mapping with Raman microscopy to provide evidence on extrudate integrity and absence of drug migration. Results: The results presented in this poster show the successful utilization of Raman imaging microscopy as a tool for quality control of co-extrudates. Introduction During recent years hot melt extrusion (HME) has found its way into contemporary drug design as it is a technology that proofed to be potent to overcome some of the major hurdles formulation scientists facing today. The most widespread application of HME is the formulation of poorly soluble drugs so that high and reliable drug absorption can be guaranteed when being administered to patients. In order to achieve this goal a solid dispersion of an active pharmaceutical ingredient (API) into a thermoplastic polymeric carrier is being formed during the HME process. Often times the cooled down extrudate is grinded to a powder and together with other excipients used for a traditional tabletting process. More recently the direct shaping of extrudates as the final dosage form has come to the researcher s attention and drug delivery systems like implants, transdermal patches and co-extrudates gain more pharmaceutical relevance. A co-extrusion is a simultaneous HME of two materials through a single die. The different polymer melts form a multi-layer extrudate that can come in different shapes. Depending on their formulation (e.g., ph dependency of the polymer chosen for each layer) these coextrudates can be used for development of oral solid dosage forms with different release properties or combination therapy, if multiple APIs are used. When producing a co-extrudate different quality attributes have to be monitored and analyzed carefully to ensure the desired drug quality. Beside the pharmaceutical relevant parameter like the drug release profile, physical parameters like the integrity of the different layers within the co-extrudate the constant layer thickness and the possible migration of API from one layer into another are of high importance to the final drug quality. Utilizing a Raman imaging microscope for the analysis of the final co-extrudate comprise different advantages. The video image of the microscope gives a good overview of the obtained sample and helps to focus on regions of interested to be analyzed by Raman spectroscopy. The great amount of spectroscopic data generated by Raman imaging allows the determination of the spatial distribution of components and their physical properties throughout the sample. When these data are fed into a powerful imaging software to generate Raman images, this can help for a quick visual analysis of the co-extrudate. Within this poster we present different co-extrudates generated using a novel coextrusion die design analyzed with Raman imaging spectroscopy for the above mentioned physical properties. Materials and Methods Sample Preparation For this study a double layered strand co-extrudate was produced, consisting of a round shaped inner core covered by a concentric thin membrane layer. For the inner core the formulation is comprised of: 80% Kollidon VA 64 as the polymeric matrix 10% Itraconazol as the model API and 10% GranuLac lactose 2 Product Quality Control of a HME Co-Extrudate Using a Raman Imaging Microscope

This formulation was manually mixed for three minutes in a PE- bag and dosed into the feed port of the extruder using a FlexWall gravimetric single screw solids feeder. The outer membrane layer consists of 100% Eudragit E PO. For the HME of the core a Thermo Scientific Pharma 16 co-rotating twin-screw extruder was used. All processing parameters can be seen in table 1. The extrusion of the membrane layer was conducted using a Thermo Scientific Process 11 co-rotating Twin-Screw Extruder. The Eudragit was dosed into the feed port of this extruder using a MiniTwin gravimetric twin-screw solids feeder. Processing parameters of the Process 11 extruder are also listed in table 1. Table 1. Processing Parameters of HME The two extruders were placed in a 90 angle with their barrel outlets and each was mounted to the co-extrusion die, as shown in figure 1. Figure 1. Set-up of Extruders for Co-Extrusion Sample Analysis In the R&D state of drug formulation the set-up of a co-extrusion has to be flexible for a variety of different core to membrane ratios as well as for different absolute diameters of the final co-extrudate. At the same time the concentricity of the core and membrane has to be assured. Die designs were adjustments are regulated manually by using screws for the relative positioning of core to membrane, can be problematic when small absolute diameters should be achieved, as the manual adjustment can lead to none centric extrudates. The die design used in this study can change the absolute diameter of the co-extrudate by an exchangeable strand insert from 2 12mm absolute Thermo Scientifi c Poster Note PITTCON PN52687-EN 0315S 3

diameter. This insert is always positioned centric by its mechanical design and is not adjusted manually. The ratio of core diameter to membrane thickness is achieved by altering the relation of the melt throughput of the two extruders used. To evaluate the influence of the above described process parameters onto the membrane thickness two samples were produced. With sample A having a throughput of the core extruder of 500 g/h and the membrane extruder of 280 g/h. And sample B having a increased throughput of the core extruder to 1000 g/h whereas the membrane extruder throughput stays constant. The co-extrusion die insert provided a total diameter of 4mm. Samples were produced by cutting the completely cooled down strand into slices of approx. 1mm thickness. The samples were mounted on a glass slide and put into the Raman microscope. A Thermo Scientific DXR xi Raman imaging microscope and Thermo Scientific OMNIC xi software were used for acquiring and processing the Raman imaging data presented in this poster. Figure 2. DXRxi Raman imaging microscope All video images were made using a 10x magnification. The Raman spectra were collected using a 532nm laser with a 10µm step size. The image is the result of an MCR (multivariate curve resolution) analysis of the spectroscopic data. MCR differentiates the Raman spectra into components; the constituents are assigned different colors to produce a chemical image and identified using automatic library searching routines. From all single components of the two layers, as well as from the dissolved Itraconazol in Kollidon VA64, reference spectra were taken. Results One goal of this study was to develop an understanding of the influence of the HME process parameters on the final co-extrudate. The visible appearance of the different layers can be seen in figure 3, showing a video image of the product obtained for the parameter setting SAMPLE A. The picture was taken with a 10x magnification and appropriate lightning. As no plasticizer was used throughout the experiment the whole extrudate was quite brittle and thus hard to cut. Both polymers for the core and the membrane layer showed similar hardness and the adherence between the two layers was good. The membrane layer shows a uniform thickness and a good integrity with no defects to be detected. 4 Product Quality Control of a HME Co-Extrudate Using a Raman Imaging Microscope

Figure 3. Video Image Sample A The complete diameter of the co-extrudate is 3,6mm with the layer thickness varying between 280-300 µm. As described in the materials and methods part, the strand insert used in the Co-Ex die was of 4mm diameter in total. The chosen throughputs of the two extruders were set to achieve a 400µm membrane layer. The measured values are thus in good accordance if one takes into account, that the take-off of the coextrudate happened with a fixed speed conveyor belt, that did not compensate for any pulsation occurring in the extruder. Also the round shape of the extrudate and the concentricity looks good. The red rectangle drawn in the top left corner of figure 3 was analyzed by Raman imaging to get a chemical mapping and be able to determine the distribution of the API, as well as to judge possible API migration from the core into the membrane. Figure 4 shows the analytical result with the Eudragit membrane in red and the solid dispersion of Itraconazol in Kollidon VA64 being yellow/green. The blue color represents measuring artifacts caused by air bubbles created from water vapor during extrusion or an inclusion of a solid particle (curved line in the top middle section of the analysis window. What can be seen from the chemical mapping is the fact, that no significant migration from API into the membrane has happened and also no crystalline API is present anymore. Figure 4. Raman MCR Image of Sample A Thermo Scientifi c Poster Note PITTCON PN52687-EN 0315S 5

In figure 5 a sample of the co-extrudate of Sample B is shown. A similar quality of shape and API distribution compared to Sample A could be observed. As the throughput of the core extruder has been doubled a reduction of the membrane layer thickness was expected. This could be found when measuring the two layers of the coextrudate. With a total diameter of 4,1mm and a membrane thickness varying between 160-180 µm also these values are in good correspondence with the calculated values. Figure 5. Raman MCR Image of Sample B 6 Product Quality Control of a HME Co-Extrudate Using a Raman Imaging Microscope

Conclusion Hot Melt Extrusion is an innovative technology to establish new and novel drug delivery systems such as mulit layered co-extrudates. HME is offering a variety of advantages over traditional methods including more control over dosages and forms of the products. With a carefully chosen die design a relatively easy-to-use and versatile R&D set-up for co-extrusion can be realized. Different co-extrudates with varying ratios of core to membrane thicknesses can be achieved by simply adjusting the respective extruder throughputs. With new formulation tools also new challenges arise for the analytical requirements. It is necessary to understand how these new processing methods affect formulation components, and to verify the distribution of the components within the fin al drug product. Raman imaging microscopy is a smart ways of analysis to ensure product quality. It not only provides a way to identify and verify components but it also provides visual representations of spatial distributions. This visual analysis can be extended to include images based on differences is state such as, solvation or degree of crystallinity. In this case study Raman imaging microscopy proofed to be a good and reliable method to analyze the complex condition found in co-extrudates with a minimum effort. It was capable to make firm statements about the physical layer integrity as well as about the absence of significant API migration between the different layers. Also for the inexperienced user it is an easy to apply tool to get a good understanding of the final drug product quality. www.thermoscientific.com 2015 Thermo Fisher Scientifi c Inc. All rights reserved. ISO is a trademark of the International Standards Organization. Kollidon is a registered trademark of BASF Corporation; GranuLac is a registered trademark of MEGGLE Wasserburg GmbH; Eudragit is a registered trademark of Evonik Industries; FlexWall and MiniTrim are registerred trademarks of Brabender Technologie. All other trademarks are the property of Thermo Fisher Scientifi c and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientifi c products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifi cations, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. Thermo Fisher Scientifi c, San Jose, CA USA is ISO 9001 Certifi ed. Africa +43 1 333 50 34 0 Australia +61 3 9757 4300 Austria +43 810 282 206 Belgium +32 53 73 42 41 Brazil +55 11 3731 5140 Canada +1 800 530 8447 China 800 810 5118 (free call domestic) 400 650 5118 PN52687-EN 0315S Denmark +45 70 23 62 60 Europe-Other +43 1 333 50 34 0 Finland +358 9 3291 0200 France +33 1 60 92 48 00 Germany +49 6103 408 1014 India +91 22 6742 9494 Italy +39 02 950 591 Japan +81 6 6885 1213 Korea +82 2 3420 8600 Latin America +1 561 688 8700 Middle East +43 1 333 50 34 0 Netherlands +31 76 579 55 55 New Zealand +64 9 980 6700 Norway +46 8 556 468 00 Russia/CIS +43 1 333 50 34 0 Singapore +65 6289 1190 Sweden +46 8 556 468 00 Switzerland +41 61 716 77 00 Taiwan +886 2 8751 6655 UK/Ireland +44 1442 233555 USA +1 800 532 4752