13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas

Similar documents
Comparison of lead concentration in surface soil by induced coupled plasma/optical emission spectrometry and X-ray fluorescence

Size distribution and number concentration of the 10nm-20um aerosol at an urban background site, Gennevilliers, Paris area

Impact of cutting fluids on surface topography and integrity in flat grinding

ATOM PROBE ANALYSIS OF β PRECIPITATION IN A MODEL IRON-BASED Fe-Ni-Al-Mo SUPERALLOY

Optimization of operating conditions of a mini fuel cell for the detection of low or high levels of CO in the reformate gas

Can combining web and mobile communication channels reveal concealed customer value?

Aeration control in a full-scale activated sludge wastewater treatment plant: impact on performances, energy consumption and N2O emission

Collusion through price ceilings? In search of a focal-point effect

NANOINDENTATION-INDUCED PHASE TRANSFORMATION IN SILICON

A simple gas-liquid mass transfer jet system,

Estimating traffic flows and environmental effects of urban commercial supply in global city logistics decision support

Occupational accidents in Belgian industry in restructuring contexts

Dynamic price competition in air transport market, An analysis on long-haul routes

How Resilient Is Your Organisation? An Introduction to the Resilience Analysis Grid (RAG)

Finite Element Model of Gear Induction Hardening

A Malthusian model for all seasons?

DISLOCATION RELAXATION IN HIGH PURITY POLYCRYSTALLINE ALUMINUM AT MEGAHERTZ FREQUENCIES

Can an organic market garden without motorization be viable through holistic thinking? The case of a permaculture farm

Prediction of the energy efficiency of an Ar-H2-O2 plasma torch with Ansys Fluent

Heat line formation during roll-casting of aluminium alloys at thin gauges

Pressure effects on the solubility and crystal growth of α-quartz

Economic analysis of maize/soyabean intercrop systems by partial budget in the Guinea savannah of Nigeria

Structure/property relationships in HSLA steel with low carbon and manganese and increased silicon content

Conceptual Design of an Intelligent Welding Cell Using SysML and Holonic Paradigm

Development of Colorimetric Analysis for Determination the Concentration of Oil in Produce Water

The influence of acid mist upon transpiration, shoot water potential and pressure volume curves of red spruce seedlings

Progress of China Agricultural Information Technology Research and Applications Based on Registered Agricultural Software Packages

Simulation of Dislocation Dynamics in FCC Metals

A new emerging rural world. An overview of rural change in Africa, Atlas for the Nepad Rural Futures programme,

Distribution Grid Planning Enhancement Using Profiling Estimation Technic

A framework to improve performance measurement in engineering projects

Interaction between mechanosorptive and viscoelastic response of wood at high humidity level

Densification superficielle de matériaux poreux par choc laser

Monitoring and sampling methodology of source control systems for environmental assessment in Lyon, Nantes and Paris

Structural, Optical, Morphological and Elemental Analysis on Sol-gel Synthesis of Ni Doped TiO2 Nanocrystallites

Effect of the Hydrogen Induced Degradation of Steel on the Internal Friction Spectra

Antibodies specific for channel catfish virus cross-react with Pacific oyster, Crassostrea gigas, herpes-like virus

THERMAL PULSE ANNEALING OF TITANIUM AND TANTALUM SILICIDES

A Material Flow Analysis of Paris and its Region

Selecting the components of composites

Recycling Technology of Fiber-Reinforced Plastics Using Sodium Hydroxide

Environmental Impact of PV Systems: Effects of Energy Sources Used in Production of Solar Panels

Balanced Scorecard leading indicators to monitor performance variability in OHS management systems.

New experimental method for measuring the energy efficiency of tyres in real condition on tractors

High Purity Chromium Metal Oxygen Distribution (Determined by XPS and EPMA)

Physical properties of epoxy and free volume evaluated by positron annihilation spectroscopy

Models of Tet-On System with Epigenetic Effects

An Outlook for the Non-Compliance Mechanism of the Kyoto Protocol on Climate Change

Precipitation mechanisms and subsequent hardening kinetics in the β-cez alloy

Energy savings potential using the thermal inertia of a low temperature storage

Grain growth and Ostwald ripening in chromia-doped uranium dioxide

The microstructure evolution of Fe-Si alloys solidified in a high static magnetic field

Powder metallurgical processing of a SiC particle reinforced Al-6wt.%Fe alloy

Conception of a new engineering curriculum in smart buildings

Decentralized Control Architecture for UAV-UGV Cooperation

The Effect of Magnetic Field on Metal Anodizing Behaviour

Optimal Storage Assignment for an Automated Warehouse System with Mixed Loading

KPY 12 - A PRESSURE TRANSDUCER SUITABLE FOR LOW TEMPERATURE USE

Facade sound isolation: a few questions

Characterising the impact of surface integrity on the fatigue behaviour of a shot-peened connecting rod

Production Cost Analysis and Production Planning for Plant Factories Considering Markets

Comparative and Targeted Advertising in Competitive Markets

Location of distribution centers in a multi-period collaborative distribution network

Continuous melting and pouring of an aluminum oxide based melt with cold crucible

Anne Peretz. To cite this version: HAL Id: halshs

Electronic Agriculture Resources and Agriculture Industrialization Support Information Service Platform Structure and Implementation

An Info*Engine based architecture to support interoperability with Windchill system

Transferability of fish habitat models: the new 5m7 approach applied to the mediterranean barbel (Barbus Meridionalis)

Assessing the effects of sub-lethal doses of pesticides on bee populations

Induction hardening of small gear wheels made of steel 50CrMo4

Progress of some techniques on electromagnetic metallurgy

Synergic effects of activation routes of ground granulated blast-furnace slag (GGBS) used in the precast industry

Plasticity criterion for hot forming of Aluminum-Lithium alloy

On the dynamic technician routing and scheduling problem

Acoustic measurement of suspended sediments in rivers: potential impact of air micro-bubbles?

Agricultural biodiversity, knowledge systems and policy decisions

Health, safety and environment management system : a method for ranking impacts in small and medium entreprises

PHOTOCONDUCTIVITY IN a-si : H AND a-sixc1-x : H, CORRELATION WITH PHOTOLUMINESCENCE RESULTS

Performance evaluation of centralized maintenance workshop by using Queuing Networks

Continuous Casting of Aluminum and Copper Clad Ingots under Electromagnetic Fields

A Design Method for Product Upgradability with Different Customer Demands

The Effect of Nitrogen on Martensite Formation in a Cr-Mn-Ni Stainless Steel

Development of Plasma Heating and Electromagnetic Stirring in Tundish

MECHANICAL AND ELECTRICAL PROPERTIES OF A NiTi SHAPE MEMORY ALLOY

STRAIN RATE DEPENDENCE ON MECHANICAL PROPERTIES IN SOME COMMERCIAL ALUMINUM ALLOYS

Drum- and -Disc-Engine with Shape Memory Wires

An update on acoustics designs for HVAC (Engineering)

Effects of temperature on monotonic and fatigue properties of carbon fibre epoxy cross ply laminates

THE INTERPRETATION OF ELECTRON DIFFRACTION PATTERNS FROM Ni-Al MARTENSITE

Simulation for Sustainable Manufacturing System Considering Productivity and Energy Consumption

An evaluation of ground thermal properties measure accuracy by thermal response test of horizontal ground heat exchangers

CHEMICAL VAPOR DEPOSITION OF IR-TRANSMITTING ZINC SULPHIDE

Computerized simulation of thermal behaviour during forging sequences

Assessment of soil contamination and ecotoxicity by the use of an ascending flow percolation - bioassay approach

SOAQE - Service Oriented Architecture Quality Evaluation

Overall Layout Design of Iron and Steel Plants Based on SLP Theory

Effect of grain orientation on the development of dislocation substructures during colddeformation

Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach

Facility Layout Planning of Central Kitchen in Food Service Industry: Application to the Real-Scale Problem

Fatigue of High Purity Copper Wire

Transcription:

13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas Eric Lichtfouse, Michel Lichtfouse, Anne Jaffrézic To cite this version: Eric Lichtfouse, Michel Lichtfouse, Anne Jaffrézic. 13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas. Environmental Science & Technology, American Chemical Society, 2003, 37, pp.87-89. <10.1021/es025979y>. <hal-00174857> HAL Id: hal-00174857 https://hal.archives-ouvertes.fr/hal-00174857 Submitted on 25 Sep 2007 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Revised version October 3, 2002 Manuscript submitted as a Current Research Paper to Environmental Science and Technology δ 13 C values of grasses as a novel indicator of pollution by fossil fuel derived, greenhouse gas CO 2 in urban areas. Eric Lichtfouse, 1 * Michel Lichtfouse 2, Anne Jaffrézic 3 1. Microbiologie et géochimie des sols, INRA-Université de Bourgogne, Centre des Sciences de la Terre, 6, Bd Gabriel, 21000 Dijon, France. *Author to whom all correspondence should be addressed. E-mail: Eric.Lichtfouse@u-bourgogne.fr. Phone/Fax: (33) 3 80 39 63 72. 2. Géomêtre-Expert, Rue Lesdiguières, 38440 St Jean de Bournay, France. 3. Sol-Agronomie-Spatialisation, Ecole Nationale Supérieure Agronomique de Rennes, 65, rue de Saint-Brieuc, 35042 Rennes, France. ABSTRACT A novel fossil-fuel pollution indicator based on the 13 C/ 12 C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil-fuel CO 2 into urban vegetation. Theoretically, plants growing in fossil-fuel CO 2 contaminated areas such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO 2 of δ 13 C value of - 8.02 and of fossil-fuel CO 2 of average δ 13 C value of - 27.28. This isotopic difference should thus be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have a strikingly depleted δ 13 C values averaging at -35.08, versus rural grasses that show an average δ 13 C value of - 30.59. A simple mixing model was used to calculate the contributions of fossil-fuel derived CO 2 to the plant tissue. Calculation based on contaminated and non-contaminated isotopic end-members shows that urban grasses assimilate up to 29.1% of fossil-fuel CO 2 derived carbon in their tissues. The 13 C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO 2 in major cities.

2 INTRODUCTION Since the start of the industrial revolution after 1750 AD, there has been a steady increase of the combustion of fossil fuels and forest, leading to the emission of considerable amounts of the greenhouse gas CO 2 into the atmosphere. In particular, for the period from 1980 to 1989, CO 2 emissions from fossil-fuel burning and tropical deforestation amounted to about 7.0 ± 1.1 10 15 g C per year (1). Fossil-fuel CO 2 emissions are partly responsible of the rapid rise of atmospheric CO 2 concentration from 280 ppm in 1750 AD to 370 ppm in 2000 AD (2). During approximately the same time period (1750-1990), data from ice cores and plant records indeed show that the δ 13 C of atmospheric CO 2 has decreased from about - 6.3 to about - 8, thus confirming the input of 13 C-depleted fossil fuel CO 2 (- 27.28 ) (3). These investigations (1-3) have therefore clearly shown the impact of fossil fuel CO 2 on the global earth scale. Nonetheless, on the more local scale, our understanding of the fate of fossil-fuel CO 2 emissions near point-sources such as highways and major cities is still poorly known. This dearth of knowledge stems partly from the lack of suitable pollution indicators, which specifically record the impact of fossil-fuel CO 2. On the local scale, recent investigations of urban pollution in the city of Phoenix, Arizona, USA, have revealed the occurrence of an urban CO 2 dome with a peak CO 2 concentration at the center of the city of 650 ppm that was 75% greater than that of the surrounding rural area (370 ppm) (4). Major cities thus provide effective "natural laboratories" for global change impact studies (4). Further, since plants assimilate CO 2 by photosynthesis, and since fossilfuel CO 2 of mean δ 13 C of - 27.28 (3) is isotopically distinct from the mean atmospheric CO 2 (- 8.02 ) (3), we hypothesized that plants growing in highly polluted areas should record the impact of fossil-fuel CO 2 in their carbon tissues. Plant δ 13 C could thus represent a new means to assess fossil-fuel CO 2 impact in major cities. Here, we report an isotopic comparison of grasses growing near a major highway in Paris, France, with grasses growing in rural, noncontaminated areas. Reviews on the use of 13 C/ 12 C ratios to study carbon sources are reported elsewhere (5-8).

3 EXPERIMENTAL SECTION Samples of aerial parts of grasses were collected in may 1996 in rural and urban areas in France. 16 contaminated grass samples were collected in Paris at increasing distances (1.20-43.25 m) from a high traffic highway with about 8 millions vehicles per day. 8 noncontaminated samples of grasses were collected in remote, well-winded, rural areas (away from fossil-fuel CO 2 sources) in meadows on top of hills, at 30-50 Kms from the cities of Rennes in Northeastern France (2 locations), Altkirch in Northwestern France (1 location), and Vienne in Southeastern France (5 locations). Noteworthy, for future investigations, noncontaminated grasses should not be sampled in non-winded areas such as dense woods because the atmosphere of those areas may contain 13 C-depleted CO 2 from respiration and from decomposition of soil organic matter (6). No particular species of grasses were selected because our aim was to test a pollution parameter that could be easily applied anywhere in future mapping investigations. Nonetheless, all grasses collected belong to the C 3 photosynthetic pathway (6), which is common for all trees and most plants growing in temperate climates. The main species identified were Lolium perenne, Hordeum murinum, Dactylis glomerata and Poa compressa. Each sample consisted of 5 sub-samples of about 50 g of green grass aerial parts (leaves, about 8 cm) collected over a 1 m 2 circle with a distilled CH 2 Cl 2 -prewashed scissors, then mixed and wrapped into decontaminated aluminum foil (pre-heated 4 h at 450 C). Grasses were dried at 20 C, finely ground using a CH 2 Cl 2 -prewashed steel-ball mortar, then analyzed for δ 13 C by isotope-ratio monitoring mass spectrometry using previously described procedures (9). δ 13 C values are expressed in per mille relative to the Pee Dee Belemnite standard: δ 13 C = [( 13 C\ 12 Csample/ 13 C/ 12 Cstd) - 1] x 10 3, where 13 C/ 12 C std = 0.0112372 (7).

4 RESULTS AND DISCUSSION Rural versus urban grasses The δ 13 C values of grasses collected in urban and rural areas are reported on Table 1 and Figure 1. The urban grasses were sampled in Paris in may 1996 near a major highway with about 8 millions vehicles per day (Figure 2). The rural grasses were collected in 8 remote, well-winded, rural areas located in Northwestern, Northeastern, and Southeastern France. δ 13 C values of urban and rural grasses range from - 36.2 to - 29.5, which are typical values for plants using the C 3 photosynthetic pathway (6, 8). Further, urban grasses show δ 13 C values averaging at - 35.08 that are strikingly 13 C-depleted of - 4.49 relative to δ 13 C values of rural grasses averaging at - 30.59. This difference is due to the assimilation of notable amounts of fossil fuel CO 2 by urban plants as explained below. Calculation of the fossil fuel contribution The δ 13 C value of C 3 plants is a function of the δ 13 C of atmospheric CO 2, and of fractionation effects occurring during the assimilation of CO 2 (3,7,8,10). Farquhar et al. (10) developed a simple expression relating the δ 13 C value for carbon fixed by a C 3 plant to δ 13 C of the external environment: δ p = δ a - a - (b - a)p i /p a where δ p defines the isotopic value of the plant, δ a denotes the isotopic value of atmospheric CO 2 used by the plant during photosynthesis, a is the change in δ 13 C due to CO 2 diffusion (4.4 ), b is the change introduced by the action of the RuP 2 enzyme (27 ) and p i and p a denote the partial pressures of CO 2 in the atmosphere and in the intercellular leaf space. In this study, we assumed that the ratio of external CO 2 pressure versus internal CO 2 pressure (p i /p a ) stays constant at increasing CO 2 concentration on the following grounds. In a study of 17 C 3 grass and herb species grown for 5 weeks, Beerling and Woodward showed that p i /p a ratios derived from δ p measurements were not modified by variations of atmospheric CO 2 concentration (11). Furthermore, an investigation of the oak Quercus robur grown under 350 ppm versus 700 ppm of CO 2 failed to yield a significant effect of concentration CO 2 on isotope fractionation (12). This absence of an effect of CO 2 concentration on isotope fractionation is also strengthened by a report of wheat grown under

5 370 ppm versus 558 ppm of CO 2 (13). Therefore, in this study it is assumed that the δ 13 C value of grasses is solely controlled by the δ 13 C value of atmospheric CO 2. The percentage of fossil fuel carbon assimilated by the plant can thus be calculated using the following equation: P = 100.(δ u - δ r )/(δ f - δ a ) where δ u refer to the δ 13 C of urban grasses, δ r denotes the average δ 13 C of rural grasses (- 30.59 ), δ f defines the δ 13 C of fossil-fuel CO 2 (- 27.28 ) (3), and δ a refer to the δ 13 C of global atmospheric CO 2 (- 8.02 ) (3). The calculated percentage P of fossil fuel carbon in urban grasses is reported on Table 1. P values ranges from 20.8 % to 29.1 % with an average of 23.3%. These results thus confirm that a large part of urban grass carbon is derived from fossil fuels. Moreover, the δ 13 C value of grasses represents a novel pollution parameter, which could be useful to study the impact of fossil fuel CO 2 in major cities. Effect of distance from the road Urban grasses were collected in Paris, France, at increasing distance from a major highway with an average daily traffic of 8 million vehicles (Figure 2). The aim of this sampling was to test a possible influence of distance from and height above the road. δ 13 C values versus grass distance from the highway are shown on Figure 3. Linear regressions of δ 13 C grass values versus horizontal distance and height yielded equations with poor to medium correlation coefficients r of 0.55 and 0.56, respectively. Therefore, although there is a trend toward 13 C-depleted values at closer distances from the road, the windy conditions generated by the heavy traffic probably dilute rapidly fossil-fuel CO 2 in the urban CO 2 dome.

6 LITERATURE CITED 1. Siegenthaler, U.; Sarmiento, J. L. Nature 1993, 365, 119. 2. Houghton, J. T. et al. Eds. Climate Change 2001, the Scientific Basis. International Panel on Climate Change. Cambridge University Press. 3. Marino, B. D.; McElroy, M. B. Nature 1991, 349, 127. Freyer, H. D.; Wiesberg, L. Naturwissensch. 1973, 60, 517. 4. Idso, S. B.; Idso, C. D.; Balling Jr., R. C. Atmosph. Environ. 2001, 35, 995. Idso, S. B.; Idso, C. D.; Balling Jr., R. C. Atmosph. Environ. 2002, 36, 1655. 5. Lichtfouse, E. Rapid Commun. Mass Spectrom. 2000, 14, 1337. 6. Tieszen, L. L. J. Archaeolog. Sci. 1991, 18, 227. 7. Craig, H. Geochim. Cosmochim. Acta 1953, 3, 53. 8. O'Leary, M. H. Phytochem. 1981, 20, 553. 9. Cayet, C.; Lichtfouse, E. Org. Geochem. 2001, 32, 253. Lichtfouse, E.; Dou, S.; Girardin, C.; Grably, M.; Balesdent, J.; Behar, F.; Vandenbroucke, M. Org. Geochem. 1995, 23, 865. 10. Farquhar, G. D.; O'Leary, M. H.; Berry, J. A. Aust. J. Plant Physiol. 1982, 9, 121. 11. Beerling, D. J., Woodward, F. I. Functional Ecol. 1995, 9, 394. 12. Picon, C.; Ferhi, A.; Guehl, J.-M. J. Exper. Bot. 1997, 48, 1547. 13. Leavitt, S. W., Pendall, E.; Paul, E. A.; Brooks, T.; Kimball, B. A.; Pinter Jr., P. J.; Johnson, H. B.; Matthias, A.; Wall, G. W.; LaMorte, R. L. New Physiol. 2001, 150, 305.

7 FIGURE CAPTIONS Table 1 δ 13 C values of urban and rural grasses sampled in may 1996. Percentage P of fossil fuel carbon assimilated by urban grasses (see calculation in text). Urban grasses were collected in Paris, France at increasing distance and height from a highly contaminated highway (N 1-16, see Figure 2 for precise location). "Distance" refer to horizontal distance. Rural grasses were collected in remote, well-winded, rural areas in Northwerstern France (N 17-18), Northeastern France (N 19), and Southeastern France (N 20-24). The δ 13 C analytical error is ± 0.03 (5 standard runs). The sample deviation is lower than 0.10 (3 replicates). Figure 1 δ 13 C values of grasses collected in urban and rural areas in France. The high 13 C-depletion of urban grasses is due to the assimilation of 13 C-depleted fossil fuel CO 2 by plants growing near vehicle exhaust emissions. Figure 2 Urban grass samples were collected in Paris, France, at increasing distance from a major highway. Numbers refer to sampling locations. Distances and heights from the road are reported in Table 1. Figure 3 δ 13 C values of urban grass samples collected in Paris, France, at increasing distance from a major highway. Note the trend toward 13 C-depleted values near the road. This trend can be explained by the assimilation by plants of 13 C-depleted CO 2 from vehicles. Distance refers to horizontal distance. Linear regression gives δ 13 C = (0.026 x distance) - 35.55 (r 0.55).

8 Table 1 δ 13 C values of urban and rural grasses sampled in may 1996. Percentage P of fossil fuel carbon assimilated by urban grasses (see calculation in text). Urban grasses were collected in Paris, France at increasing distance and height from a highly contaminated highway (N 1-16, see Figure 2 for precise location). "Distance" refer to horizontal distance. Rural grasses were collected in remote, well-winded, rural areas in Northwerstern France (N 17-18), Northeastern France (N 19), and Southeastern France (N 20-24). The δ 13 C analytical error is ± 0.03 (5 standard runs). The sample deviation is lower than 0.10 (3 replicates). N height distance δ 13 C P (m) (m) ( ) (%) Urban grasses 1 0.20 1.20-36.2 ± 0.1 29.1 2 0.74 3.68-35.0 ± 0.1 22.9 3 1.38 5.06-34.6 ± 0.1 20.8 4 2.15 6.94-35.8 ± 0.1 27.1 5 2.73 8.42-35.2 ± 0.1 23.9 6 3.57 10.57-35.3 ± 0.1 24.5 7 4.29 12.32-36.2 ± 0.1 29.1 8 5.97 16.81-34.7 ± 0.1 21.3 9 6.73 18.70-34.8 ± 0.1 21.9 10 7.45 20.90-35.3 ± 0.1 24.5 11 8.03 23.11-35.1 ± 0.1 23.4 12 8.46 25.19-34.2 ± 0.1 18.7 13 8.72 27.52-34.6 ± 0.1 20.8 14 8.81 29.42-34.7 ± 0.1 21.3 15 8.90 35.59-34.9 ± 0.1 22.4 16 8.84 43.25-34.6 ± 0.1 20.8 Average -35.08 ± 0.56 23.3 Rural grasses 17-31.1 ± 0.1 18-30.7 ± 0.1 19-30.6 ± 0.1 20-29.9 ± 0.1 21-30.6 ± 0.1 22-29.5 ± 0.1 23-31.5 ± 0.1 24-30.8 ± 0.1 Average -30.59±0.59

9 Figure 1 δ 13 C values of grasses collected in urban and rural areas in France. The high 13 C-depletion of urban grasses is due to the assimilation of 13 C-depleted fossil fuel CO 2 by plants growing near vehicle exhaust emissions. δ 13 C ( ) -28-30 Rural grasses -32-34 -36 Urban grasses -38

10 Figure 2 Urban grass samples were collected in Paris, France, at increasing distance from a major highway. Numbers refer to sampling locations. Distances and heights from the road are reported in Table 1.

11 Figure 3 δ 13 C values of urban grass samples collected in Paris, France, at increasing distance from a major highway. Note the trend toward 13 C-depleted values near the road. This trend can be explained by the assimilation by plants of 13 C-depleted CO 2 from vehicles. Distance refers to horizontal distance. Linear regression gives δ 13 C = (0.026 x distance) - 35.55 (r 0.55). δ 13 C of urban grasses ( ) -32-34 -36-38 0 10 20 30 40 50 Distance from the road (m)

Brief A novel indicator of atmospheric pollution by fossil-fuel CO 2 based on the 13 C/ 12 C composition of plants shows that urban grasses contain up to 29% of fossil fuel carbon. 12