Heat Integration of an Oxy-Combustion Process for Coal- Fired Power Plants with CO 2 Capture by Pinch Analysis

Similar documents
Innovative Air Separation Processes for Oxy-Combustion Power Plants

Assessment of the Flue Gas Recycle Strategies on Oxy- Coal Power Plants using an Exergy-based Methodology

The Novel Design of an IGCC System with Zero Carbon Emissions

CONTROL STRTEGIES FOR FLEXIBLE OPERATION OF POWER PLANT INTEGRATED WITH CO2 CAPTURE PLANT

MIT Carbon Sequestration Forum VII Pathways to Lower Capture Costs

CO 2 capture processes: Novel approach to benchmarking and evaluation of improvement potentials

Optimal Design Technologies for Integration of Combined Cycle Gas Turbine Power Plant with CO 2 Capture

A novel CO 2 -capturing natural gas combined cycle with LNG cold energy utilization

Air Separation Unit for Oxy-Coal Combustion Systems

Available online at ScienceDirect. Energy Procedia 63 (2014 )

Thermodynamic analysis on post combustion CO 2 capture of natural gas fired power plant

Benchmarking of power cycles with CO 2 capture The impact of the chosen framework

Description and evaluation of flowsheet modifications and their interaction for an efficient monoethanolamine based post-combustion CO 2 capture

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

THE ASSESSMENT OF A WATER-CYCLE FOR CAPTURE OF CO2

Energy Conversion and Management

Conception of a Pulverized Coal Fired Power Plant with Carbon Capture around a Supercritical Carbon Dioxide Brayton Cycle

Purification of Oxyfuel Derived CO 2 for Sequestration or EOR

Available online at GHGT-9

Oxy-fuel combustion integrated with a CO 2 processing unit

Integration of carbon capture unit with power generation: technology advances in oxy-combustion plants

Techno-Economic Assessment of Oxy-Combustion Turbine Power Plants with CO 2 Capture

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture

Investigation of Heat Exchanger Network Flexibility of Distillation Unit for Processing Different Types of Crude Oil

*Revised Manuscript with Changes Marked

Optimization of an Existing Coal-fired Power Plant with CO 2 Capture

Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant

Potential of Allam cycle with natural gas to reduce carbon dioxide emission in India

Callide Oxyfuel Project Development and Progress

Thermodynamic performance of IGCC with oxycombustion

Advanced Hydrogen and CO 2 Capture Technology for Sour Syngas

Chilled Ammonia Technology for CO 2 Capture. October, 2006

CO 2 recovery from CPU vent of CFB oxyfuel plants by Ca-looping process

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland

CO 2 Capture. John Davison IEA Greenhouse Gas R&D Programme.

Commercial Viability of Near-Zero Emissions Oxy-Combustion Technology for Pulverized Coal Power Plants

Post Combustion CO 2 Capture Scale Up Study

Available online at Energy Procedia 1 (2009) (2008) GHGT-9. Sandra Heimel a *, Cliff Lowe a

Development of Integrated Flexi-Burn Dual Oxidant CFB Power Plant

Development in the Air Separation Unit Addressing the Need of Increased Oxygen Demand from the Oxy-Blast Furnace

OPTIMISATION OF COAL FIRED POWER PLANT PERFORMANCE WHEN USING FLUE GAS SCRUBBERS FOR CO 2 CAPTURE

Scott Hume. Electric Power Research Institute, 1300 West WT Harris Blvd, Charlotte NC 28262

An advanced oxy-fuel process with CO2 capture based on elevated pressure combustion

Analysis of the applicability of adsorption oxygen generators in the field of industry and power engineering

Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

F. Vega*, M. Rodríguez-Galán, B. Alonso-Fariñas, B. Navarrete, V. Cortés

Assessment of Carbon Capture Options for Super-Critical Coal-based Power Plants

MODERN COAL-FIRED OXYFUEL POWER PLANTS WITH CO 2 CAPTURE ENERGETIC AND ECONOMIC EVALUATION

Zero Emission Oxyfuel Power Generation for CO 2 Capture

Evaluation of Integration of Flue Gas Scrubbing Configurations with MEA for CO 2 Separation in a Coal-Fired Power Plant

BLUE OPTION White space is filled with one or more photos

Direct Conversion Process from Syngas to Light Olefins A Process Design Study

Cryogenic Carbon Capture

ASU and CO 2 Processing Units for Oxyfuel CO 2 Capture Plants Vince White, Air Products, UK

sco 2 Cycle as an Efficiency Improvement Opportunity for Air-Fired Coal Combustion

Integrated CO 2 capture study for a coal fired station. Philippe Delage (ALSTOM) & Paul Broutin (IFP)

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

A Novel Synergistic 4-column Methanol Distillation Process

Advanced CO 2 Capture process using MEA scrubbing: Configuration of a Split Flow and Phase Separation Heat Exchanger

Available online at ScienceDirect. Energy Procedia 114 (2017 )

Status and Outlook for CO 2 Capture Systems

Toshibaʼs Activities in Carbon Capture

Performance and Costs of CO 2 Capture at Gas Fired Power Plants

EXERGY ANALYSIS OF GAS-TURBINE COMBINED CYCLE WITH CO 2 CAPTURE USING PRE-COMBUSTION DECARBONIZATION OF NATURAL GAS

Roman Hackl*, Simon Harvey VOL. 29, Introduction

The Air Products Vattenfall Oxyfuel CO 2 Compression and Purification Pilot Plant at Schwarze Pumpe

Saturday 20 May C 180 C C 130 C C 60 C kw 50 C 30 C C 20 C

IECM Technical Documentation: CO2 Purification Unit (CPU) Models

Process Systems Engineering

REPORT. I hereby declare that the work is performed in compliance with the exam regulations of NTNU.

Performance Improvements for Oxy-Coal Combustion Technology

Purification of oxy-combustion flue gas for SOx/NOx removal and high CO 2 recovery

Integration and Onsite System Aspects of Industrial Post-Combustion CCS

Modelling and Simulation of a Coal-fired Supercritical Power Plant Integrated to a CO 2 Capture Plant

CCS system modelling: enabling technology to help accelerate commercialisation and manage technology risk

Process Integration for Power-dominated Cryogenic Energy Systems 1. Introduction 2. Multi-period Synthesis of Power Systems

A Study on Re-liquefaction Process of Boil-off Gas of LCO 2 Transfer Ship

Chapter 2 Overview of CO 2 Capture Technology

CO 2 capture using lime as sorbent in a carbonation/calcination cycle

CO 2 Capture and Storage: Options and Challenges for the Cement Industry

Technical and economic aspects of oxygen separation for oxy-fuel purposes

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010)

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Carbon Capture Options for LNG Liquefaction

ENERGY SAVING IN CRYOGENIC AIR SEPARATION PROCESS APPLYING SELF HEAT RECUPERATION TECHNOLOGY

Reducing CO 2 Emissions from Coal-Fired Power Plants

Advanced Coal Power Plant Water Usage

Thermodynamic Performance of IGCC with Oxy-Combustion CO 2 Capture

A Staged, Pressurized Oxy-Combustion System for Carbon Capture. Ben Kumfer

Operating pressure dependence of the pressurized oxyfuel combustion power cycle

Exhaust gas treatment technologies for pollutant emission abatement from fossil fuel power plants

MOLECULAR GATE TECHNOLOGY FOR (SMALLER SCALE) LNG PRETREATMENT

POST COMBUSTION CO 2 CAPTURE SCALE UP STUDY

The Effects of Membrane-based CO 2 Capture System on Pulverized Coal Power Plant Performance and Cost

International Conference CO 2 Summit: Technology and Opportunity Vail, Colorado - June 6-10, 2010

Sandhya Eswaran, Song Wu, Robert Nicolo Hitachi Power Systems America, Ltd. 645 Martinsville Road, Basking Ridge, NJ 07920

Water usage and loss of power in power plants with CO2 capture

The Cost of CO 2 Capture and Storage

Air Products Pressure Swing Adsorption at the National Carbon Capture Center

An advanced oxy-fuel power cycle with high efficiency

Transcription:

CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021031 181 Heat Integration of an Oxy-Combustion Process for Coal- Fired Power Plants with CO 2 Capture by Pinch Analysis Chao Fu*, Truls Gundersen Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjoern Hejes vei 1.A, 7491 Trondheim, Norway chao.fu@ntnu.no This paper presents a detailed exergy analysis of an oxy-combustion process for a supercritical pulverized coal power plant with CO 2 capture. The results from the exergy analysis show that the power efficiency penalty related to CO 2 capture is 10.2% points and is caused by two units: the air separation unit (ASU) and the CO 2 purification & compression unit (CPU). The composite curves are applied to study the sub-ambient heat exchangers in the ASU & CPU. The power efficiency can be improved by heat integration between the ASU & CPU. The CO 2 recovery rate is also an important factor for the net power efficiency. 1. Introduction Carbon capture and storage (CCS) is an important way to mitigate the man-made CO 2 emissions into the atmosphere. Oxy-combustion is a promising option for CO 2 capture especially for coal-fired power plants, since the reduction in efficiency and the increment of investment cost according to IEA (2007) and Kanniche et al. (2010) are less than for natural gas based power plants. In addition, a considerable technical challenge for oxy-combustion capture in natural gas based power plants is the design of oxy-combustion gas turbines. Oxy-combustion processes have been widely studied recently, with a focus on the modification of individual units and process configurations (Hong et al., 2009, Wilkinson et al., 2001). It is commonly realized that the power efficiency reduction related to CO 2 capture in coal-based power plants is mainly caused by two units: the air separation unit (ASU) and the CO 2 purification & compression unit (CPU). However, only a few studies have focused on the integration of such complex processes. Harkin et al. (2009) use Pinch Analysis to integrate the steam cycle and the steam extraction process for flue gas purification and solvent regeneration in a coal based power plant with post-combustion CO 2 capture. The pre-drying process of coal is also included in their integration study. Romeo et al. (2008) present an integration study of the CO 2 compression process, the amine regeneration and the steam cycle. The study is also based on a supercritical pulverized coal-fired plant with CO 2 capture by postcombustion. There is apparently no literature available on integration studies for the sub-ambient temperature level in oxy-combustion power plants. Please cite this article as: Fu C. and Gundersen T., (2010), Heat integration of an oxy-combustion process for coal-fired power plants with CO2 capture by pinch analysis, Chemical Engineering Transactions, 21, 181-186 DOI: 10.3303/CET1021031

182 This paper first performs an exergy study on a supercritical pulverized coal-fired power plant with CO 2 capture. The coal to power process is based on an NETL report (DOE/NETL, 2008), while the ASU and CPU are based on other common cases from literature. The distribution of exergy losses in the entire process is presented. The composite curves are applied to integrate the ASU and CPU at sub-ambient temperature levels. The relationship between the power penalty and the CO 2 recovery rate (kg of CO 2 in the product per kg of CO 2 in the flue gas) is also presented. The simulator Aspen Plus has been used to simulate the entire process in this work. The software tool PRO_PI1 is used to perform Pinch Analysis. 2. Process Description Figure 1 shows the flowsheet of a 571 MW (net) supercritical pulverized coal power plant with CO 2 capture (base case). The steam cycle and the system of flue gas desulfurization (FGD) are simplified in the figure. The high pressure (HP) steam is heated to 242 bar/ 599 o C with single reheat of the medium pressure (MP) steam to 49 bar/ 621 o C. The conventional cryogenic double-column air separation process is applied in this work to produce O 2 (1.5 bar) with a mole fraction of 95%. Ambient air is compressed to 5.6 bar and enters a front-end temperature swing adsorption-type (TSA) pre-purification unit (PPU) to remove H 2 O and CO 2. The dry compressed air is cooled down to near dew point temperature in the main heat exchanger. The air is separated into O 2 and N 2 in the double distillation column. The reboiler in the low pressure (LP) column is integrated with the condenser in the high pressure (HP) column. The temperature difference of the condenser/reboiler match is maintained at 1.5-2 o C. A minimum temperature difference of 2 o C is chosen for the sub-ambient heat exchangers in this study. The waste N 2 first enters the PPU to cool down the process air and is then vented to the atmosphere. The O 2 product with molar composition: O 2-95%, Ar-3.2 %, N 2-1.8 %, is split into two streams. A minor part of the O 2 (2.3 %) enters the FGD and is used as oxidant, while the major part reacts with coal in the combustor. To ensure complete combustion, the excess O 2 in the combustor is around 19 wt%. The combustion process takes place at 1.1 bar. To avoid a too high temperature in the combustor, a major part of the flue gas (72 %) is recycled to the combustor after desulfurization. The molar composition of the flue gas is: CO 2-70.7 %, H 2 O-15.3 %, N 2-8.5 %, O 2-2.5 %, Ar-3.0 %. The rest of the flue gas is compressed to 32 bar after water removal in a direct contact cooler and dried in a molecular sieve twin bed drier to avoid ice formation in the sub-ambient heat exchangers. The inert gases are removed in two flash drums and vented to atmosphere after power recovery (Pipitone and Bolland, 2009). The operation temperatures of the two flash drums are -26 o C and -54 o C. The purified CO 2 from the bottoms of the two flash drums is expanded to 9 bar and 18 bar respectively. After exchanging heat with other streams, the CO 2 is further compressed to 78 bar in the second compressor and pumped to 150 bar for transportation and saline formation storage. The molar composition of the captured CO 2 is: CO 2-96.2 %, N 2-1.9 %, O 2-0.7 %, Ar-1.2 %. The recovery rate of CO 2 is 95.1%.

183 Figure 1: Flowsheet of the studied power plant. 3. Exergy Analysis This work uses the reference environment model defined by Kotas (1995). The reference state (marked as 0 ) is T 0 = 25 o C, p 0 = 1.01325 bar (i.e. 1 atm). A detailed route to perform exergy analysis has been described by Hinderink et al. (1996) and implemented by JACOBS Consultancy (2009). Figure 2 shows the distribution of exergy losses in the entire process. The exergy input of the feed coal (feed rate: 69.232 kg/s) is 2,169,964 kw. The combustor has the largest exergy loss (692,196 kw). Other large exergy losses are the steam generation & reheat process and the steam turbines. The net power output is 571,115 kw and the power efficiency is 30.4 % (HHV: 27,135 kj/kg). The power input to the ASU is 132,012 kw and the power recovered from the

184 waste N 2 is 8,727 kw. The net power consumed in the ASU is then 123,285 kw. The theoretical minimum work consumption for the ASU is calculated to be 26,906 kw. The main air compressor (42,399 kw) and the distillation process (29,103 kw) are responsible for the two largest exergy losses. The exergy loss in the main heat exchanger is small (5,648 kw) due to low temperature differences. The power input to the CPU is 74,153 kw and the power recovered from the tail inert gases turbine is 5,770 kw. The net power consumed in this unit is then 68,383 kw and the theoretical minimum work consumption has been calculated to be 37,041 kw. Again the main exergy losses take place in the CO 2 compressors. If the power consumed in the ASU & CPU is added to the net power output, the power efficiency without CO 2 capture is calculated to be 40.6% (HHV). The power efficiency penalty is thus 10.2% points, where the ASU contributes 6.6% points and the CPU contributes 3.6% points. The theoretical power efficiency penalty related to CO 2 capture is calculated to be 3.4% points (ASU and CPU together). Exergy of the feed coal Loss in the combustion process Losses in the steam generation & reheat processes Other losses in flue gas processing & steam cycle 2169964 692196 375553 231024 Exergy of the flue gas 71748 Loss in the main air compressor 42399 Losses in the pre_purification unit and others 13124 Loss in the main heat exchanger 5648 Loss in the distillation process 29103 Exergy of waste gases 11283 Exergy of O2 21728 Recovered work from waste N2 8727 Loss in 1 st CO2 compressor 22488 Loss in the inerts separation 3298 Loss in 2 nd CO2 compressor 7244 Other losses in CPU 2384 Increased exergy of CO2 32969 Recovered work from inerts 5770 Other auxiliaries 36660 Main power output 556618 Net power 571115 Figure 2: Exergy distribution [kw] in the entire process. 4. Integration Study The results of the exergy analysis show that the compression processes in the ASU & CPU are responsible for the largest exergy losses related to CO 2 capture. The losses can be reduced by improving the performance of the compressors. Although the exergy losses in the sub-ambient heat exchangers are small, they can be further reduced by heat integration between the ASU and CPU. Figures 3 and 4 present the composite curves for the ASU and CPU in the base case. It can be found that the temperature difference in the temperature range above -56 o C in the ASU is considerably larger than 2 o C. The additional temperature driving forces can be utilized in the CPU, so that the purified CO 2 from the bottoms of the two flash drums can be expanded to higher pressures (both are 22 bar, instead of 9 bar and 18 bar in the Base Case) and less work will be consumed in the second CO 2 compressor. The composite curves for this integration case

T ( C) T ( C) T ( C) 185 are shown in Figure 5. The pinch temperature is -19/-21 o C. Compared with the base case, the net power consumed in the CPU in this case is 65,298 kw. The power output increases 3,085 kw and the net power efficiency increases to 30.6 %. 50 0-50 -100-150 -200-250 0 20000 40000 60000 80000 100000 120000 140000 Q (kw) 40 30 20 10 0-10 -20-30 -40-50 -60-70 0 10000 20000 30000 40000 50000 60000 Q (kw) Figure 3: Composite curves for the ASU. Figure 4: Composite curves for the CPU. 50 0-50 -100-150 -200 0 40000 80000 120000 160000 200000 Q (kw) Figure 5: Composite curves for the integrated case. The power efficiency penalty is also depending on the CO 2 recovery rate. The operating pressure of the two flash drums should be high enough to obtain a high CO 2 recovery rate. However, this causes considerable work to be consumed in the first CO 2 compressor. Table 1 summarizes the effects of CO 2 recovery rate on the power output and net power efficiency. Note that in Cases 3 & 4 only one flash drum is used since the CO 2 cannot be liquefied at -26 o C and the corresponding operating pressure. The CO 2 liquid from the bottom of the flash drum in Case 3 is expanded to lower pressure than in Case 2 in order to exchange heat with other streams with a minimum temperature difference of 2 o C. As a result, more power is consumed in Case 3 than Case 2. Table 1: Effects of CO 2 recovery rate. Base Case Case 1 Case 2 Case 3 Case 4 Operating pressure [bar] 32 25 20 18 15 CO 2 recovery rate [%] 95.1 93.3 91.5 90.2 86.9 Purity of captured CO 2 [mol%] 96.2 97.2 97.0 97.4 98.0 Power used in the CPU [kw] 68,383 66,901.5 63,469.5 63,766.7 60,699.2 Net power output [kw] 571,115 572,596.5 576,028.5 575,731.3 578,798.8 Net power efficiency [%] 30.4 30.5 30.7 30.6 30.8

186 5. Conclusions Exergy analysis has been applied to investigate an oxy-combustion coal-fired power plant with CO 2 capture. The power efficiency penalty related CO 2 capture is 10.2 % points, where the ASU contributes 6.6 % points and the CPU contributes 3.6 % points. The theoretical power efficiency penalty is 3.4 % points. The main exergy losses related to CO 2 capture take place in the compressors in the ASU & CPU. The composite curves have been used to study the sub-ambient heat exchangers in this study. If the CO 2 recovery rate decreases from 95.1 % to 91.5 %, the power efficiency can be increased 0.3 % points. The net power efficiency can be increased 0.2 % points by heat integration between the ASU & CPU. The power efficiency can be further improved by an optimal design of the sub-ambient heat exchanger network. References DOE/NETL, 2008, Pulverized Coal Oxycombustion Power Plants <www.netl.doe.gov/energy-analyses/pubs/pc%20oxyfuel%20combustion%20 Revised%20Report%202008.pdf> (last accessed 25.06.2010) Harkin, T., Hoadley, A. and Hooper, B., 2009, Reducing the Energy Penalty of CO 2 Capture and Storage Using Pinch Analysis. Chemical Engineering Transactions 18, 255-260. Hinderink, A. P., Kerkhof, F. P. J. M., Lie, A. B. K., De Swaan Arons, J. and Van Der KooI, H. J., 1996, Exergy analysis with a flowsheeting simulator-i. Theory; calculating exergies of material streams, Chemical Engineering Science 51, 4693-4700. Hong, J., Chaudhry, G., Brisson, J. G., Field, R., Gazzino, M. and Ghoniem, A. F., 2009, Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor, Energy 34, 1332-1340. IEA Greenhouse Gas R&D Programme, 2007, <www.ieagreen.org.uk/glossies/ co2capture.pdf > (last accessed 11.11.2008) JACOBS Consultancy, 2009, ExerCom v2.2 manual for AspenPlus version 2006 & 2006.5 (local PC version). Kanniche, M., Gros-Bonnivard, R., Jaud P., Valle-Marcos J., Amann J.-M. and Bouallou C., 2010, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO 2 capture, Applied Thermal Engineering 30, 53-62. Kotas, T. J., 1995, The exergy method of thermal plant analysis, 2 nd edition, Malabar- Florida: Krieger Publishing Company, USA. Pipitone, G. and Bolland, O., 2009, Power generation with CO 2 capture: Technology for CO 2 purification, International Journal of Greenhouse Gas Control 3, 528-534. Romeo, L. M., Espatolero, S. and Bolea, I., 2008, Designing a supercritical steam cycle to integrate the energy requirements of CO 2 amine scrubbing, International Journal of Greenhouse Gas Control 2, 563-570. Wilkinson, M. B., Boden, J. C., Panesar, R. S. and Allam, R. J., 2001, CO 2 Capture via Oxyfuel Firing: Optimisation of a Retrofit Design Concept for a Refinery Power Station Boiler, First National Conference on Carbon Sequestration, Washington DC, USA.

187