Advanced Transportation Management System (ATMS)

Similar documents
Ramp Metering District

King County Intelligent Transportation Systems

Transit Signal Priority in the Denver Metro. Bart Przybyl, P.E., PTOE

FREEWAY RESPONSIVE SYSTEM IH 10 TxDOT Houston. Steve Chiu, TxDOT Roma Stevens, P.E., PTOE, TTI

I-90 Smart Road: Operational Features. October 18th, 2017 Scott Lee, P.E., TIMS Project Manager, Parsons Amarpal Matharu, P.E.

AVL DMS Automation & BlueTooth for Arterial Travel Time March 27, 2013

Active Traffic Management in Michigan. Patrick Johnson, P.E. HNTB Michigan Inc.

ITS Projects. Page 1 of 5. Project Name Project Status Timeframe Project Description

Calibration of a Micro-Simulation Model in a Large Urban Network

Congestion Management Plan Update. Public Works and Infrastructure Committee. General Manager, Transportation Services

Advanced Traveller Information and Traffic Management Systems for Highway 2. Stakeholder Workshop October 9, 2003

Public Information Centre #1. March 2010

Smarter Work Zones Webinar Series

Hartford Area ITS Architecture. Stakeholder Meetings March 2004

SR 99 Incident Response After- Action Plan

Multi-Modal Intelligent Traffic Signal System System Development, Deployment and Field Test

Managing Congestion in a Growing City

Performance you can see

APPENDIX A: SHORT-TERM PROJECT DEPLOYMENTS

The Week at a Glance Week Ending February 23, 2007

Variable Speed Advisory/Limit and Coordinated Ramp Metering for Freeway Traffic Control

Adaptive Signal Control Technology (ASCT) for Rural Applications Lessons Learned from the Bell Rd ASCT Pilot Project

City of Dubuque: Smart Traffic Routing with Efficient & Effective Traffic System (STREETS) Final Report version 1.1

Denver Traffic Management Center - Using Technology to Increase Operational Capabilities

Pottstown Pike Congestion Mitigation Feasibility Study

Traffic Management System: ITIS

Estimating Work Zone Performance Measures on Signalized Arterial Arterials

Peel Goods Movement Task Force Meeting Action Items & Subcommittee Updates March 28, 2014

TRANSFORM66: OUTSIDE THE BELTWAY

South Bay Corridor Study and Evaluation for Dynamic Corridor Congestion Management (DCCM) Metro Streets and Freeways Subcommittee Meeting

CONGESTION MANAGEMENT PLAN

AGGREGATE ANALYSIS OF TRAVELLER ADAPTATION TO TRANSPORTATION NETWORK CHANGES - A STUDY OF THE IMPACT OF THE OPENING OF HIGHWAY

Analytical Tools and Decision Support Systems SANDAG I-15 ICM. ITS PA January 30 th, 2014

National Capital Region Congestion Report

Multi-Resolution Traffic Modeling for Transform 66 Inside the Beltway Projects. Prepared by George Lu, Shankar Natarajan

INTELLIGENT TRANSPORTATION SYSTEMS APPENDIX

Project Prioritization for Urban and Rural Projects TEAM CONFERENCE March 7, 2018

U.S. 101 / San Mateo County Smart Corridor Project

EVALUATION OF INCIDENT MANAGEMENT BENEFITS USING TRAFFIC SIMULATION

Joint Meeting- Stakeholder Committee & Technical Committee

TRAFFIC SIGNAL CONTROL SYSTEMS AT CONNECTED VEHICLE CORRIDORS: THEORIES AND IMPLEMENTATION

Session 2A (11:45-12:30) Topic Covered Overview Of National Urban Transport Helpline (NUTH) NUTH Applications And Concepts Planning And Design

Navigator Update. Mark Demidovich, P.E. Asst State Traffic Engineer Georgia DOT

ITS Multimodal Initiatives in Virginia HRTO Subcommittee Meeting Hampton, VA, June 11, 2013

Transit Signal Priority Fine-tuning How to get more from your system

Concept of Operations: Mitchell Hammock Road. Adaptive Traffic Signal Control System. Prepared by: City of Oviedo. Draft 1: June 2015

Automating Variable Speeds and Traveler Information with Real-Time Traffic and Weather

SIEMENS CONCERT: City of Seattle

I-95 Corridor Coalition Vehicle Probe Project Scope and Methodology

TMC of the Future. Dr. Bob Edelstein, PE, PTOE Senior Vice President

Congestion Management Plan (CMP)

Origin-Destination Trips and Skims Matrices

ITS and Air Quality A Critical Look

Maximize Transportation System Capacity

Chattanooga Regional ITS Architecture Update Workshop. September 24, 2013

29 Solutions Neighborhood Impact Mitigation Plan

MIST Version 5. Transportation Management for the Smart City. Make the most of your energy SM

The Secrets to HCM Consistency Using Simulation Models

Advanced Traffic Management Systems ATMS

EXHIBIT A SCOPE OF SERVICES CONSULTANT SERVICES DISTRICTWIDE TRAFFIC SIGNAL RETIMING FINANCIAL PROJECT ID:

Chapter 3 FREEWAY CORRIDOR TRAFFIC MANAGEMENT

Vehicle Detector Concept of Operations

MACOMB COUNTY DEPARTMENT OF ROADS TRAFFIC OPERATIONS CENTER PERFORMANCE MEASURES NOVEMBER 2016

Traffic Signal Timing: What s Your Priority? Transportation Education Series May 8, 2012

CHAPTER 3 - FREEWAY CORRIDOR TRAFFIC MANAGEMENT

Dallas ICM & 511 System. 87 th Annual Transportation Short Course

11. Contract or Grant No. Austin, TX

GOOD ONYA, AUSTRALIA!

Approach to Measure of Effectiveness. Shahram Malek, PhD, PE Regional Traffic Operations Project Manager

Nashville Area. Regional ITS Architecture. Regional ITS Deployment Plan. June Prepared by:

7.0 TRANSPORTATION MANAGEMENT

Toledo Freeway Management System

Variable Speed Warnings on DMS

San Francisco Freeway Corridor Management Study (SF FCMS)

California Connected Corridors: Vehicles, Information, and People Pilot

Dynamic Corridor Congestion Management (DCCM) Project Streets and Freeways Subcommittee Meeting

Adaptive Traffic Control OCTEC Meeting

Los Angeles Region s Connected/Automated Vehicle Efforts

Chapter 10. Intelligent Transportation Systems. Ohio Kentucky Indiana Regional Council of Governments Regional Transportation Plan

Transportation Services

Appendix A: Equipment Packages for St. Louis Regional ITS Architecture

Moscow Transport in the Smart City: Current Status and Development Plans

OPTIMIZING RAMP METERING STRATEGIES

Traffic Engineering Projects. Ashley Golden, Development Services Director Jason Samonte, Traffic Engineer

ALBION FLATS DEVELOPMENT EXISTING TRAFFIC CONDITIONS AND POTENTIAL IMPACTS

Stakeholder Workshop

Woodburn Interchange Project Transportation Technical Report

Comparison of I-210 and I-710 as Potential ICM Corridors

NCTCOG Existing and Planned Systems/Deployments NATALIE BETTGER NOVEMBER 27, 2018

I-80 Integrated Corridor Mobility (ICM) Project Corridor System Management Plan (CSMP)

National Capital Region Congestion Report

CITY of DALLAS: On-Street Parking Implementing New Parking Tools

Transportation Pooled Fund Study TPF-5 (231)

US 75 Integrated Corridor Management System Using Technology and Partnership to Maximize Transportation System Capacity

CMNAA. Central Manatee Network Alternatives Analysis Alternatives Public Meeting CMNAA STUDY PROCESS. STUDY AREA 17th St. W

Preparing our Roadways for Connected and Automated Vehicles. 70th Annual Ohio Transportation Engineering Conference Bob Edelstein

ENTERPRISE Transportation Pooled Fund Study TPF-5 (231)

I-85 Traffic Study: A State-of-the-Practice Modeling of Freeway Traffic Operation

TSM/TDM (Transit and Roadway Efficiency) Concept - Analysis and Results

Johnson City Regional ITS Architecture Update Kick-off Workshop. October 21, 2014

Transcription:

Advanced Transportation Management System (ATMS) Presentation to the ITS Technology Workshop for Municipalities February 15, 2017

ATMS Project Background Increasing traffic volumes Roadway network is near capacity, and in some areas, at capacity during am/pm peak periods. Increased urbanization Other transportation agencies Need to integrate our efforts with Region of Peel/MTO who are also stakeholders in the transportation network.

ATMS Project Background Public expectations The public expects the City to provide an efficient transportation network, to be able to respond to issues, and to provide timely/accurate information.

ATMS Project Background Operational needs The existing Traffic Control System is at the end of its life cycle and needs replacement. There is a need to upgrade to a more robust traffic signal communication. A Traffic Management Centre is needed to provide staff with the workspace/resources to pro-actively manage traffic.

ATMS Project Background The Advanced Transportation Management System (ATMS) Project provides a means to meet our operational needs and the expectations of the public.

ATMS Project Vision To move from passive to active management.

ATMS Project Goals Maximize the available capacity of the roadway network Minimize the impact of roadway incidents to users Pro-actively manage traffic Assist in the provision of emergency services Create and maintain public confidence in traffic management

A well designed ATMS will make it possible to: Monitor travel conditions Influence the operation of traffic signals Disseminate information Interact with other transportation modes and agencies

ATMS Project Components The following components are in various stages: 1. Build a Traffic Management Centre (TMC) 2. Upgrade traffic signal communications 3. Replace the traffic control system 4. Implement Intelligent Transportation Systems (ITS) 5. Explore future ATMS initiatives

1. Traffic Management Centre (TMC) The design and construction of a physical central space where traffic staff can monitor and respond to traffic. This component of the project is substantially complete.

1. Traffic Management Centre Before After

2. Traffic Signal Communications Leverage the City s Ethernet IP Network Hybrid of wired fibre, Wi-Fi and cellular 120 traffic signals have migrated to the new communication network Remaining signals to be completed by the end of 2018

Public Sector Network (PSN)

What s at an intersection? Intersection of Burnhamthorpe Rd & Central Parkway

Typical Fibre & Wireless Communication Scenario at an intersection 19

The IT Cabinet connects the devices at the intersection to the City s fibre network Network switch Power Fibre

What s up on the pole? Traffic Cameras & Wireless Access Points

It starts with fibre nodes

Then we add WIFI access points

Finally, we spread the coverage (which enables the Internet of Things (IoT) Any network-connected device can be added in the

3. Traffic Control System Replacement Replace Traffic Control System Replace Traffic Signal Controllers in the field

3. Traffic Control System Replacement Objectives: Accommodate future modules and technology advancements (ex. traveler information) Ability to share information with the Region of Peel, MTO and neighbouring municipalities Ability to integrate with Transit and Fire (ex. traffic signal priority) Use the City s network to communicate to Traffic Signal Controllers and other devices (ex. traffic cameras) Pro-actively manage traffic signals

3. Traffic Control System Replacement Step 1: Install new system Parsons inet System Selected Installed on City Servers Tested against an approved Acceptance Plan Tested on 10 bench controllers ( 3 ATC CU s ) Documentation and training

3. Traffic Control System Replacement Step 2: Proof of Concept Deploy to 30 Intersections in the field Operate the System as Normal Document Performance Report Anomalies Establish / Re-create Processes Select the System Controller Unit (Timer)

3. Traffic Control System Replacement Step 3: Full Deployment Establish the process ( 760 intersections to deploy) Flowchart ( story board ) Group together tasks from the flowchart Establish Realistic Timelines for Each Task Divide Related Tasks into Realistic Time Blocks Established a 6 Week Deployment Cycle Capable of Deploying 10 Intersections per Week

3. Traffic Control System Replacement Step 3: Full Deployment Establish the process ( 760 intersections to deploy) flowchart ( story board ) Group together tasks from the flowchart establish realistic timelines for each task divide related tasks into realistic time blocks Established a 6 Week deployment cycle Capable of deploying 10 Intersections per week

3. Traffic Control System Replacement Step 3: Full Deployment Establish the process ( 760 intersections to deploy) flowchart ( story board ) Group together tasks from the flowchart establish realistic timelines for each task divide related tasks into realistic time blocks Established a 6 Week deployment cycle Capable of deploying 10 Intersections per week

CU Delivery Date Deployment Feb. 9, 2017 Batch 1 Complete 14-Nov wk1 5 CU's arr 21-Nov wk2 1) Cawthra Rd. @ South Service Rd. 2) Cawthra Rd. @ QEW E/B Off Ramp (South Terminal) 28-Nov wk3 3) Cawthra Rd. @ QEW W/B Off Ramp (North Terminal) 4) Cawthra Rd. @ North Service Rd. 05-Dec wk4 Batch 2 Complete 12-Dec wk5 wk1 Batch 3 Complete 5) South Service Rd. @ Ogden Ave. 6) South Service Rd. @ Haig Blvd. / Dixie Mall Access 70 CU's arr 19-Dec wk6 wk2 wk1 7) South Service Rd. @ Dixie Plaza Access 8) North Service Rd. @ Stanfield Rd. 26-Dec 5 Christmas Week 02-Jan wk3 wk2 Batch 4 9) Dixie Rd. @ Rometown Dr. / Mall Access 10) Dixie Rd. @ South Service Rd. 09-Jan wk4 wk3 wk1 Batch 5 16-Jan wk5 wk4 wk2 wk1 Batch 6 23-Jan wk6 wk5 wk3 wk2 wk1 Batch 7 30-Jan 10 wk6 wk4 wk3 wk2 wk1 Batch 8 75 CU's arr 06-Feb 10 wk5 wk4 wk3 wk2 wk1 Batch 9 13-Feb wk6 wk5 wk4 wk3 wk2 wk1 Batch 10 20-Feb 10 wk6 wk5 wk4 wk3 wk2 wk1 Batch11 27-Feb 11 wk6 wk5 wk4 wk3 wk2 wk1 Batch 12 75 CU's arr 06-Mar 10 wk6 wk5 wk4 wk3 wk2 wk1 Batch 13 13-Mar 10 wk6 wk5 wk4 wk3 wk2 wk1 Batch 14 20-Mar Batch 15 10 wk6 wk5 wk4 wk3 wk2 wk1 27-Mar wk1 Batch 16 10 wk6 wk5 wk4 wk3 wk2 75 CU's arr 03-Apr wk2 wk1 Batch 17 10 wk6 wk5 wk4 wk3 10-Apr wk3 wk2 wk1 Batch 18 10 wk6 wk5 wk4 17-Apr wk4 wk3 wk2 wk1 Batch 19 10 wk6 wk5 24-Apr wk5 wk4 wk3 wk2 wk1 Batch 20 10 wk6 75 CU's arr 01-May wk6 wk5 wk4 wk3 wk2 wk1 Batch 21 10 08-May 10 wk6 wk5 wk4 wk3 wk2 wk1 Batch 22 15-May 10 wk6 wk5 wk4 wk3 wk2 wk1 Batch 23 22-May 10 wk6 wk5 wk4 wk3 wk2 wk1 Batch 24 29-May 10 wk6 wk5 wk4 wk3 wk2 wk1 Batch 25 75 CU's arr 05-Jun 10 wk6 wk5 wk4 wk3 wk2 wk1 Batch 26 12-Jun 10 wk6 wk5 wk4 wk3 wk2 wk1 Batch 27 19-Jun 10 wk6 wk5 wk4 wk3 wk2 wk1 Batch 28 26-Jun 10 wk6 wk5 wk4 wk3 wk2 wk1 75 CU's arr 03-Jul 10 wk6 wk5 wk4 wk3 wk2 10-Jul 10 wk6 wk5 wk4 wk3 17-Jul 10 wk6 wk5 wk4 24-Jul 10 wk6 wk5 31-Jul 10 wk6 07-Aug 10

Weekly Activities Publish Send notification e-mail Week One Collect Intersection Data Send Intersection Data to Parsons Detail Communication Requirements to IT Week Two Parsons builds Database Prepare CU Field Installation Checklist Week Three Receive DB from Parsons Receive Cell Modems CU Burn in Week Four Bench Test CU Collect Required Field Equipment Week Five Complete Pre CU Installation Define Intersection on inet Week Six Complete CU Field Installation Complete Central Confirmation

CU Delivery Date Deployment Batch 1 Complete 14-Nov wk1 5 CU's arr 21-Nov wk2 28-Nov wk3 05-Dec wk4 Batch 2 Complete 12-Dec wk5 wk1 Batch 3 Complete 70 CU's arr 19-Dec wk6 wk2 wk1 26-Dec 5 Christmas Week 02-Jan wk3 wk2 Batch 4 09-Jan wk4 wk3 wk1 Batch 5 16-Jan wk5 wk4 wk2 wk1 Batch 6 23-Jan wk6 wk5 wk3 wk2 wk1 Batch 7 30-Jan 10 wk6 wk4 wk3 wk2 wk1 75 CU's arr 06-Feb 10 wk5 wk4 wk3 wk2 13-Feb wk6 wk5 wk4 wk3 20-Feb 10 wk6 wk5 wk4 27-Feb 11 wk6 wk5 75 CU's arr 06-Mar 10 wk6 1) Cawthr 2) Cawthr 3) Cawthr 4) Cawthr 5) South 6) South 7) South 8) North S 9) Dixie Rd 10) Dixie R

4. Intelligent Transportation Systems (ITS) ITS involves the use of smart technologies. Currently, 38 traffic monitoring cameras setup along high profile corridors. Target: 150 cameras throughout the City in the long term Piloting new detection technology (i.e. Radar) to detect vehicles, bicycles and pedestrians.

4. Intelligent Transportation Systems ATMS Demonstration to take place along Dundas Street (Ninth Line to Mississauga Road) Test and evaluate different traffic management technologies (ex. adaptive traffic control, incident management, traveller information) Targeted to start in 2017

WP#4 OVERVIEW Intelligent Traffic Responsive Control of 13 Intersections Adaptive Signal Control of 13 Intersections VISSIM Micro-simulation Model of Corridor (3 Time Periods) Travel Time: Travel Time Detection with Bluetooth Readers Display of Travel Times on Trail Blazer Signs City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 40

WP#4 OVERVIEW Arterial VMS (Optional) inet Incident Management Module Enter and Track Events Provide Selection of Timing Plan Patterns Integration with 5 City CCTV Traffic Cameras Integration with MTO COMPASS Video Feed and Event Feed City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 41

Intelligent Traffic Responsive Control (irc) Monitors Historical and Current Traffic Flow Characteristics, and Identifies Unusual Traffic Congestion During Normal Recurrent Traffic Conditions: Implements Scheduled Time Based Operations (TBC) During Non-recurrent Traffic Congestion Conditions: Implements Suitable Timing Plan Timing Plans Selections include: No Plan (TBC) Inbound Plan (AM Peak) Outbound Plan (PM Peak) Balanced Congestion Plan Event Plan Polls Detector Data on Periodic Intervals, Processes, and Compares to Historical Data (e.g., every 5 min) City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 42

irc Detector Requirements Required Data: Volume and Occupancy Data used to Identify Historical and Current Traffic Flow Characteristics e.g., Inbound, Outbound, Balanced Locations: Mid-block or Link Entry Located Upstream of where Recurrent Queues Typically Extend Corridor Entry Locations Downstream of Major Traffic Sources / Major Intersections City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 43

irc Detector Requirements City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 44

Adaptive Signal Control (ASC) Cycle-by-cycle Traffic Measurements & Signal Timing Updates Designed Based on Predicting Traffic Trend Modifies Current Timing Plan CSO Values Controllers Still Operate with Existing Local VA Once per Cycle, inet/asc: Uploads Traffic Volumes per Movement per Phase for Past Cycle City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 45

Adaptive Signal Control (ASC) In Current Cycle, Central Algorithms: Calculate Sat. Flows per Lane for Past Cycle (Stop Line Detectors) Predict Traffic Volumes for Next Cycle Optimize & Download Cycle, Splits and Offsets for Next Cycle Download Small Increment Changes to CSOs Controller Implements Updated CSOs at Top of Next Cycle City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 46

ASC Detector Requirements Locations: Stop Line Data primarily used to Optimize Cycle Lengths & Green Splits Major Multi-phase Intersections Measure Left and Thru Movements Locations: Link Entry Data primarily used to Improve Downstream Traffic Predictions Corridor Entry Locations Upstream of Major Intersections Measure Demand to Major Intersection No Detectors at Very Minor Intersections City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 47

ASC Detector Requirements City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 48

Available Detector Technologies MS Sedco Radar Detectors Tracking Radar (Range of 150 m) 4 Detector Inputs per Unit Reno S1201 4-Channel Detector Cards Works with Existing Presence Detection Loops to Provide: Vehicle Presence Vehicle Stop Line Counts Existing System Detectors (Pulse Loops) City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 49

Proposed Detector Technology Strategy MS Sedco Radar Detectors All Mainline Stop Line Locations All Mainline Link Entry Locations Reno S1201 4-Channel Detector Cards All Sidestreet Stop Line Locations Won t be using Existing System Detectors for Control Dundas @ Ridgeway/Winston Park EBL & WBL (MS Sedco) Dundas @ Mississauga EB & WB, East of Intersection (Too Close) Dundas @ Hampshire Gate EBL, WBL and NB (MS Sedco & Reno) City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 50

Travel Time Subsystem Provides Motorists with Current Travel Times along Dundas Street West Corridor TPANA Travel Time Service Collects and Processes Measured Travel Times Provides Travel Time Estimates every 1 Minute City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 51

Travel Time Subsystem inet ATMS Integrated with TPANA Displays Current Travel Times on Dynamic Signs Field Equipment Bluetooth Readers Trail Blazer Signs Arterial VMS (Optional) City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 52

Travel Time Subsystem City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 53

Travel Time Equipment Locations Locate BT Readers at Major Signalized Intersections Provides Precise Travel Time(s) to Destination(s) Pick up Traffic Entering Corridor Easier Access to Power and Communications (at Controller) Locate Trail Blazer Signs in Advance of Alternate Route (Decision Point) so that Drivers have Option take Alternate Route At Signalized Intersection Upstream of Major Arterial Street Easier Access to Power and Communications (at Controller) Traffic Signal Pole (Downstream Side of Intersection) City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 54

Travel Time Equipment Locations City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 55

Arterial VMS (Optional) Full Matrix Dynamic Message Sign On Dundas St Upstream of Ninth Line & Hwy 403 Provides adequate reaction time for drivers to read the message and react before they reach the downstream diversion decision point Typical Messages: Travel Time Eastbound on Dundas St W Incident on Dundas St W or Hwy 403 City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 56

Arterial VMS Sample Messages EVENT MESSAGE CAPTION Travel Time TRAVEL TIME TO MISSISSAUGA RD 6 MIN Incident along Dundas St 1 LEFT LANE BLOCKED AT WCB Traffic Congestion on Hwy 403 HWY 403 NB SLOW TO HWY 407 Min 8 Character Height for Typical Approach Speed City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 57

Proposed Arterial VMS Location Proposed PVMS Distance from Downstream Intersection: 330 m Posted Road Speed: 60 km/h VMS Legibility Distance: 80 m City of Mississauga ATMS Solution: Work Package #4 ATMS Demonstration 58

5. Future ATMS Initiatives Awareness of future smart technologies to ensure that our Traffic Control System has the ability to incorporate these and other advancements. Subject to the business planning process.

Year ATMS Project 2014 2015 2016 2017 2018 2019 2020 Traffic Signal Control Replacement Traffic Signal Communication Upgrade Traffic Management Centre (TMC) Intelligent Transportation Systems (ITS) Future ATMS Initiatives 2014 2015 2016 2017 2018 2019 2020

??? Questions???