Systematic Errors and Sample Preparation for X-Ray Powder Diffraction. Jim Connolly EPS , Spring 2010

Similar documents
This lecture is part of the Basic XRD Course.

Lesson 3 Sample Preparation

Lesson 1 Good Diffraction Data

Instrument Configuration for Powder Diffraction

Introduction to Powder Diffraction/Practical Data Collection

X-Ray Diffraction. Nicola Pinna

The object of this experiment is to test the de Broglie relationship for matter waves,

Thermo Scientific ARL EQUINOX X-ray Diffractometers

Fundamentals of X-ray diffraction and scattering

Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems

X-Ray Analytical Methods

LECTURE 7. Dr. Teresa D. Golden University of North Texas Department of Chemistry

Strain. Two types of stresses: Usually:

Thermo Scientific ARL EQUINOX 100. X-ray Diffractometers

X-RAY DIFFRACTION IN SEMICONDUCTOR INDUSTRY AND RESEARCH

X-ray diffraction

Diffraction Basics. The qualitative basics:

OPTIMIZING XRD DATA. By: Matthew Rayner

A - Transformation of anatase into rutile

Diffraction: Powder Method

Technical articles Micro-area X-ray diffraction measurement by SmartLab μ

Single crystal X-ray diffraction. Zsolt Kovács

Travaux Pratiques de Matériaux de Construction. Etude de Matériaux Cimentaires par Diffraction des Rayons X sur Poudre

Identification of Crystal Structure and Lattice Parameter. for Metal Powders Using X-ray Diffraction. Eman Mousa Alhajji

LECTURE 8. Dr. Teresa D. Golden University of North Texas Department of Chemistry

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p.

CHARACTERISATION OF CRYSTALLINE AND PARTIALLY CRYSTALLINE SOLIDS BY X-RAY POWDER DIFFRACTION (XRPD)

Atomic Densities. Linear Density. Planar Density. Linear Density. Outline: Planar Density

Background Statement for SEMI Draft Document 5945 New Standard: Test Method for Determining Orientation of A Sapphire Single Crystal

Certificate. Standard Reference Material Standard Sapphire Single Crystal Wafer for Crystalline Orientation

CURVATURE MEASUREMENTS OF STRESSED SURFACE-ACOUSTIC- WAVE FILTERS USING BRAGG ANGLE CONTOUR MAPPING

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. Chapter 3 CHEM Fall, L. Ma

What if your diffractometer aligned itself?

High Resolution X-ray Diffraction

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

Materials Lab 1(MT344) X-ray Diffractometer Operation and Data Analysis. Instructor: Dr. Xueyan Wu ( 吴雪艳 )

ATTACHMENTES FOR EXPLORER DIFFRACTOMETER. Monochromators

Spreadsheet Applications for Materials Science

Crystallographic Textures Measurement

Workshop RIETVELD REFINEMENT OF DIFFRACTION PATTERNS Program Monday June 1st, Introduction to Rietveld refinement S.

Europe. Benchtop X-Ray Diffractometer.

X-RAY DIFFRACTION. X- Ray Sources Diffraction: Bragg s Law Crystal Structure Determination

X-Ray Diffraction Analysis

Influence of Bulk Graphite Thickness on the Accuracy of X-Ray Diffraction Measurement. I. Introduction

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

Physics 6180: Graduate Physics Laboratory. Experiment CM5: X-ray diffraction and crystal structures

Atomic Densities. Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction.

Thin Film Scattering: Epitaxial Layers

HIGH-RESOLUTION PARALLEL-BEAM POWDER DIFFRACTION MEASUREMENT OF SUB-SURFACE DAMAGE IN ALUMINA-SILICON CARBIDE NANOCOMPOSITE

Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p.

MiniFlex. Analysis of materials by X-ray diffraction. Benchtop XRD diffractometer

Benchtop XRD diffractometer. MiniFlex. Analysis of materials by X-ray diffraction

Travaux Pratiques de Matériaux de Construction

Electron Probe Micro-Analysis (EPMA)

Towards the Epitaxial Growth of Silver on Germanium by Galvanic Displacement

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Philips Analytical, Lelyweg 1, 7602 EA Almelo, The Netherlands

Basics of X-Ray Diffraction

Physical structure of matter. Monochromatization of molybdenum X-rays X-ray Physics. What you need:

X-ray Diffraction (XRD)

ATTACHMENTES FOR APD 2000 PRO POWDER X-RAY DIFFRACTOMETER. Monochromators

Neutron diffraction residual stress mapping in same gauge and differential gauge tailor-welded blanks

Stress Mitigation of X-ray Beamline Monochromators using a Topography Test Unit

Thin Film Scattering: Epitaxial Layers

RECONSTRUCTION OF ORIGINAL INTENSITY FROM COVERED SAMPLES

Grazing Incidence X-Ray Diffraction of Longitudinal and Perpendicular Magnetic Recording Media for HDD

11.3 The analysis of electron diffraction patterns

Condensed Matter II: Particle Size Broadening

Carbon nanostructures. (

AN INNOVATED LABORATORY XAFS APPARATUS

Lesson 1 X-rays & Diffraction

TEM imaging and diffraction examples

Characterization of Materials Using X-Ray Diffraction Powder Diffraction

Basics of XRD part IV

The first measurement will be performed with a sample temperature of 35 by executing the following steps:

Di rect beam J' / o 20, " - l To tally reftected. 20, X Scan / "-

In Situ X-ray Fluorescence Measurements During Atomic Layer Deposition: Nucleation and

Precision Without Compromise

MICROSTRUCTURAL CHARACTERIZATION OF NANOCRYSTALLINE POWDERS AND THIN FILMS BY X-RAY POWDER DIFFRACTION

Seminar: Structural characterization of photonic crystals based on synthetic and natural opals. Olga Kavtreva. July 19, 2005

Lesson 3 How-To Session

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

ITO. Crystal structure: Cubic, space group Ia3 No. 206, ci80, a = nm, Z = 16

Practical X-Ray Diffraction

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

Lab 1 The Defect Structure of cubic Bi 2 O 3 Nb 2 O 5 Solid Solutions

Bragg diffraction using a 100ps 17.5 kev x-ray backlighter and the Bragg Diffraction Imager

X-Ray Diffraction by Macromolecules

Nanomechanical Function from Self-Organizable Dendronized Helical Polyphenylacetylenes

It is instructive however for you to do a simple structure by hand. Rocksalt Structure. Quite common in nature. KCl, NaCl, MgO

VOLUME FRACTION ANALYSIS

Thermo Scientific X-ray product range. For chemical and phase analysis of solids, liquids and powders

Thermo Scientific X-ray product range. For chemical and phase analysis of solids, liquids and powders

Supplementary Figure 1. Cutaway view of in-situ environmental gas cell. Gas flows

Basic X-ray Powder Diffraction (XRPD)

TEM imaging and diffraction examples

A NEWLY DEVELOPED HIGH-TEMPERATURE CHAMBER FOR IN SITU X-RAY DIFFRACTION: SETUP AND CALIBRATION PROCEDURES

Orientation / Texture Polyethylene films

Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume

Transcription:

Systematic Errors and Sample Preparation for X-Ray Powder Diffraction Jim Connolly EPS400-001, Spring 2010

Introduction Most systematic errors in diffraction experiments are related to the characteristics, preparation and placement of the specimen. Today we will: Differentiate and define those errors Present preparation techniques to minimize those errors Discuss different types of sample mounting strategies and trade-offs of various methods Always remember the distinction between sample and specimen Footnote question: What is the difference between a random and systematic error?

Goals of Specimen Preparation Overall Rule: The time and effort put into specimen preparation should not be more than is required by the experiment objective Basic information in the diffraction pattern: The position of the diffraction peaks The peak intensities, and shape of peaks The intensity distribution as a function of diffraction angle The utility of this information depends on both the experiment parameters and the sample preparation Communicate with your client about the objectives of your experiment Design your experiment to achieve those objectives

Specimens and Experimental Errors Axial Divergence: The X-ray beam diverges out of the plane of the focusing circle Flat Specimen Error: The specimen is flat, and does not follow the curvature of the focusing circle. Compositional Variations between Sample and Specimen Specimen Displacement: Position of the sample mount causes deviation of the focusing circle Specimen Transparency: Beam penetration into a thick specimen changes diffraction geometry Specimen Thickness: Trade-offs between accuracy of peak positions and intensities Particle Inhomogeneity: Can significantly alter diffraction intensities Preferred Orientation: Can produce large variations in intensity and limit the peaks seen.

Beam Path from Source to Detector Path from X- ray source to detector is shown at right Beam path: From horizontal source F to vertical soller slits SS1 to Divergence slit D5 Specimen S (A=center of diffractometer circle) to Receiving Scatter slit RS to Receiving soller slits SS2 to scatter slit SS to Monochromator and Detector (not in picture)

Detector sees the arc of the Debye ring not just the diffractions along the 2D diffractometer circle Leads to a notable peak asymmetry, particularly pronounced at low 2θ Axial Divergence error for Silver Behenate is shown at right Can be minimized by closely spaced soller slits (at the cost of reduced intensity) Axial Divergence

Flat Specimen Error The extreme edges of the specimen lie on another focusing circle (r f ) which results in the overall diffracted intensity being skewed to a lower value of 2. This is related to the divergence of the incident beam by the equation below where is the angular aperture of divergence slit in degrees 2 cot 2 Div Slit 2 min MoK CuK CrK 343.8 0.25 4.6 8.86 19.24 28.58 The table at right shows specimen irradiation lengths (in mm) for a diffractometer of a particular radius (not ours) 0.50 9.2 4.45 5.61 14.35 1.00 18.4 2.22 4.83 7.18 2.00 37.2 1.11 2.42 3.59 4.00 78.0 0.56 1.22 1.81

Differences between Sample and Specimen Grinding Effects Problem: Excessive percussive grinding produces extremely small particle size peak broadening Remedy: Be careful (or use non-percussive grinding techniques) Irradiation Effects Interaction with beam changes specimen Rare in inorganics; significant issue in organics and phases with poorly-bound H 2 O Environmental Effects Strain effects in materials at elevated temperature Chemical reactivity of specimen Sensitivity to water, air or other solvents Usually reversible, sometimes not Systematically used as a tool in clay analysis

Specimen Displacement Cause: Specimen is higher or lower than it should be (i.e., not at center of diffractometer circle or tangent to focusing circle) Effect: 2θ error defined by the following equation: 114.59s cos 2 R (R is the radius of the diffractometer circle; s is the deviation from the correct position on the focusing circle measured as the difference between r and r ) Can be a significant cause of errors in 2θ More pronounced at low θ values (cosine function) Can produce asymmetric peak broadening at low angles (resembling axial divergence) 2θ can be as much as 0.01º for each 15 m of displacement at low angles Can be caused by poor diffractometer alignment

Specimen Transparency Caused by diffraction occurring at depth within a thick specimen Results in 2θ related to effective penetration depth of the specimen The error is defined: t 0.5 1 2 sin 2 2 R where is the linear attenuation (a.k.a. linear absorption) coefficient for the x-ray wavelength, R is the radius of the diffractometer circle and 2 is in radians Defines the working depth is dependent on mass and the x-ray wavelength For SiO2 and CuK, = 97.6/cm, or approx. 100/cm. Thus t 0.5 thus is about 0.01 cm or 100 m. For high-density, high / materials (metals, alloys), t 0.5 will be on the order of 10 m For low-density organics, t 0.5 will be on the order of 1,000 m, and a thick sample will induce very significant displacement errors Loose packing of powders can add reduce density and thus increase t 0.5

Specimen Thickness Bottom line for specimens is: Thin specimens Yield the best angular measurements (i.e. most accurate peak positions) Do not yield accurate intensity measurements (because of bad particle statistics) Tend to be more susceptible to preferred orientation effects Thick specimens Can yield good intensity measurements (better particle statistics, less susceptible to preferred orientation) Susceptible to angular measurement errors

Sample Inhomogeneity Multi-phase samples may be inhomogeneous In example at right chalcopyrite CuFeS 2 (A) partially oxidized to cuprospinel CuFe 2 O 4 (C) A and C have different mass attenuation coefficients (143.2 and116.1, respectively) The result will be diffraction intensities from the two phases that are not directly proportional to the amounts of the phases present This effect is called the absorption effect or the particle inhomogeneity effect.

Preferred Orientation Preferred Orientation (lack of random orientation in the powder) is usually the dominant cause of intensity variations in a diffraction pattern. Effect is most pronounced for crystals with anisotropic shapes (or habits) This significantly affects the diffracted intensities from the specimen.

Preferred Orientation Occurs as a consequence of the spotty nature of diffraction in a non-random specimen The effect is that the Debye ring is uneven in intensity

Preferred Orientation How the preferred orientation is manifest in the diffraction pattern varies with the material Clay minerals have a platy habit and will orient perpendicular to (00l). Equant cubes (NaCl) orient parallel to their cubic crystal faces Bladed (most pyroxenes and amphiboles) or fibrous (most asbestos minerals and some zeolites) materials orient parallel to their elongation direction Some engineered polymers use preferred orientation for specialized qualities Severe preferred orientation in a specimen will result in invisible diffraction peaks In most specimens, all of the diffraction peaks will be seen but their relative intensities will differ from the ideal pattern. Careful specimen preparation can minimize the effect Whole-pattern refinements can use preferred orientation as another parameter to be fit to the data

Particle Statistics Quantitative (and semi-quantitative) X-ray powder diffraction is based on the principle that quantities are proportional to intensity. Accurate intensities require: Random orientation of crystallites in the specimen Sufficient number of particles for good crystallite statistics Note: Particle size is frequently (erroneously) equated with crystallite size At right is a schematic pole plot of diffractions from two powder specimens on a sphere A random pattern indicates a random orientation

A particle statistics exercise It is instructive to understand how crystallite statistics will quantitatively affect intensity, i.e., what size particles are required to achieve a repeatability in intensity measurements? Assume a powdered quartz (SiO 2 ) specimen: Volume = (area of beam) x (2x half-depth of penetration) Assume area = 1cm x 1cm = 100mm 2 t ½ = 1/, where = linear absorption coefficient SiO2 = 97.6 /cm or ~100 /cm = 10 /mm V = (100) (2) / 10 mm 3 Thus Volume = 20 mm 3 Estimate number of particles at different particle sizes: Particle Diameter 40 m 10 m 1 m V/particle 3.35 x 10-5 mm 3 5.24 x 10-7 5.24 x 10-10 Particles/mm 3 2.98 x 10 4 1.91 x 10 6 1.91 x 10 9 Particles in 20 mm 3 5.97 x 10 5 3.82 x 10 7 3.82 x 10 10

Particle Statistics Exercise (cont.) Equal distribution on a unit sphere (area = 4 steradians) yields a radiating sheaf of pole vectors Calculating angular distribution on the sphere: Particle Diameter 40 m 10 m 1 m Area/pole, A P = 4 / # particles Angle between poles, = 2.11 x 10-5 3.27 x 10-7 6.58 x 10-10 0.297 0.037 0.005

Particle Statistics Exercise (cont.) Geometry of diffraction of a single particle: R is the diffractometer radius (a range is shown), F the focal length of the anode (a characteristic of the x-ray tube), and the angular divergence as shown. In the above example, L (= 0.5 mm) is the length of source visible to the target. N P (number of diffracting particles) = (area on unit sphere corresponding to divergence) / (area on unit sphere per particle) = A D /A P

Particle Statistics Exercise (cont.) To determine A D requires relating effective source area, FxL, to area on a unit sphere: = 2.5 x 10-4 Calculating A D /A P yields the number of particles diffracting in any given unit area for our three particle sizes: Particle Diameter 40 m 10 m 1 m N P 12 760 38,000 Conclusion: The standard uncertainty in Poisson statistics is proportional to n ½, where n is the number of particles. To achieve a relative error of < 1%, we need 2.3 = 2.3 n ½ / n < 1%. This requires n > 52, 900 particles! Thus not even 1 m particles will succeed in achieving 1% accuracy in intensity. The Bottom Line: Easily achievable particle sizes will not routinely yield high-precision, repeatable intensity measurements.

Enough of this Particle Statistics Stuff Other Factors can degrade or improve intensity accuracy: Concentration: mixed phase specimens reduce particles of a given phase in a unit area, increasing error Reflection multiplicity: Multiplicity in higher symmetry crystal structures give more diffraction per unit cell, improving statistics Specimen thickness: may improve diffraction volume, limited by maximum penetration depth Peak width (crystallite size): polycrystalline particles with random orientation can greatly improve statistics, but extremely small size will result in peak broadening. Specimen rotation/rocking: helps to get more particles in the beam. Rocking combined with rotation is best. Ultimately, quantitative analysis based on peak intensities cannot reliably achieve 1% accuracy even under the most favorable specimen conditions of randomly oriented 1 m particles

From Sample to Specimen From rock to powder Bico Jaw Crusher * (Loc. 1) Plattner Steel Mortar & Pestle (Loc. 2) Spex Shatterbox * (Loc. 2) Mortar & Pestle (Loc. 2 & 3) Retch-Brinkman Grinder * (Loc. 3) Sieves for sizing (Loc. 2) * Manual for use available on class web page Equipment Locations: 1 Northrop Hall Rm 110 2 Geochem Lab, Northrop Hall Rm 213 (see Dr. Mehdi-Ali) 3 XRD Lab, Northrop Hall Rm B-25

Bico Chipmunk Jaw Crusher

Marvelous Mehdi

Plattner Mortar and Pestle

Spex Shatterbox

Various Mortars and Pestles Diamonite synthetic alumina Natural Agate

Retch Brinkman Grinder Pestle Motor Pestle Pestle Up- Down Mortar Speed Adjustments

Retch Brinkman Grinder

To sieve or not to sieve... Mesh size of sieve screen Maximum diameter of particle passed 200 74 m 325 45 m 400 38 m 600 25 m 1000 10 m Sieves can be metal, teflon or other synthetic Theoretically 10 m particles may be passed (practically, it doesn t work) Because of static forces, 325 mesh is smallest for routine use though 400 and 600 may be used with a lot of effort

Specimen Mounts How your specimen is mounted should be determined by the requirements of your experiment i.e., don t do more or less than is necessary Know the characteristics of your holder always run your mount without any specimen to know your baseline background conditions Mount Types: Thin Mounts (best for accurate angular measurements) Slurry mounts (on any flat substrate) Double-stick tape Petroleum jelly emulsion Volume or Bulk Mounts (best for accurate intensity measurements) Side-drift mounts Top-load mounts Thin-film mounts Back-pack mounts Zero-background (off-axis quartz plate) mounts

Special techniques to reduce preferred orientation Aerosol Spray Drying using Clear Acrylic Lacquer (procedure outlined in class notes) Aqueous Spray Drying in a Heated Chamber (details at http://www.macaulay.ac.uk/spraydrykit/index.html)

Coming Attractions: After Spring Break on Mar 24: In-Class Exam: Open-book Start Promptly at 3:00 PM; do not be late Must complete exam in 1 hour Written short-answer format All reference materials okay Texts will be available for reference Includes everything through last week (Weeks 1 thru 6) Emphasis on demonstrating your understanding of material Followed by: Tour of the XRD Lab Layout, location of all equipment and computers Introduction to MDI DataScan program and scheduling of hands-on lab training Radiation safety exam should be completed before class