Synthesis and Characterization of Mesoporous Carbon Hybrids for Environmental Applications

Similar documents
Effect of reaction temperature on properties

University of Groningen

Ultra-large scale syntheses of monodisperse. nanocrystals via a simple and inexpensive route

Supporting Information for

MAGNETICALLY MODIFIED BENTONITE AS POSSIBLE CONTRAST AGENT IN MRI OF GASTROINTESTINAL TRACT

Candle Soot as Supercapacitor Electrode Material

CONTENTS INTRODUCTION EXPERIMENTAL

A new 3D mesoporous carbon replicated from commercial silica. as a catalyst support for direct conversion of cellulose into.

Prepared by Dual-mode Arc-plasma Process

High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles

Supporting Information. Enhanced Electrochemical Lithium-Ion Charge Storage of Iron Oxide. Nanosheets

CHAPTER 8 CONCLUSIONS AND SCOPE FOR FUTURE WORK

J. Am. Chem. Soc., 1998, 120(24), , DOI: /ja974025i

Supplementary information

SYNTHESIS AND CHARACTERIZATION OF TITANIUM METAL CARBON NANO TUBES

Effect of templates on catalytic activity of ordered mesoporous ceria for CO oxidation

Synthesize And Investigate The Austenitic Nanostructural Propertise

Zero-valent iron nanoparticles with tunable properties: synthesis, inclusive characterization and applications

Guowu Zhan and Hua Chun Zeng*

Supplementary Information

Supporting Information

Supplementary Information

Summary Chapter Chapter Chapter

Iron catalysts supported on carbon nanotubes for Fischer Tropsch synthesis: effect of pore size

Supplementary. Figure 1 TGA profile of materials under air flow (100 ml min -1 NTP,

Structural Characterization of Nano-porous Materials

Preparation and Photocatalytic Properties of TiO 2 -SiO 2 Mixed Oxides with Different TiO 2 /SiO 2 Ratio and Brownmillerite Type Calcium Ferrite

Ordered Mesoporous Alumina-Supported Metal Oxides

Preparation of Alumina-Iron Oxide Compounds by Coprecipitation Method and Its Characterization

MgAl 2 O 4 nanoparticles: A new low-density additive for accelerated thermal decomposition of ammonium perchlorate

Preparation and Characterization of Copper Oxide -Water Based Nanofluids by One Step Method for Heat Transfer Applications

Thermal Property and Structural Characteristics of Ni0.9Cu0.1Fe2O4 Ferrite Material

Selective Oxidation of H 2 S to Sulphur from Biogas on V 2 O 5 /CeO 2 Catalysts

Characterization. of solid catalysts. 5. Mössbauer Spectroscopy. Prof dr J W (Hans) Niemantsverdriet.

Supporting Information for

Facile synthesis of Fe 3 O 4 nanoparticles on metal organic framework MIL- 101(Cr): characterization and its catalytic activity

Reduced Magnetism in Core-Shell Composites

Nanostructure Design on Porous Carbon Powders under Chemical Process and Their Physical Properties

Supporting Online Material for

Preparation and Characterization of Co-mesocarbon Composite Microbeads

PRECIS AND CONCLUSIONS

Silica removal from natural waters on a New Organic-Inorganic Hybrid Ion Exchanger

Structural and Magnetic Studies of Nickel- Boron alloy

The acidity of the zeolites was investigated by ammonia temperature-programmed

Isolated Single-Atomic Ru Catalyst Bound on a Layered. Double Hydroxide for Hydrogenation of CO 2 to Formic Acid

Electronic Supplementary Information (ESI) For

University of Tabriz. From the SelectedWorks of Hosein Afshary. Hosein Afshary, University of Tabriz. Winter February, 2010

Au nanoparticles embedded into the inner wall of TiO 2 hollow spheres as nanoreactor with superb thermal stability

Electronic Supplementary Information. High Surface Area Sulfur-Doped Microporous Carbons from Inverse Vulcanized Polymers

Superparamagnetic properties of ɣ-fe 2 O 3 particles: Mössbauer spectroscopy and DC magnetic measurements

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries

Collagen based magnetic nanocomposites for oil removal applications

Supporting Information. Carbon Nanotubes Encapsulating Superconducting Single- Crystalline Tin Nanowires

Iron oxide(iii) nanoparticles fabricated by electron beam irradiation method

The effects of Fe/Al 2 O 3 preparation technique as a catalyst on synthesized CNTs in CVD method.

Tunable Photocatalytic Selectivity of Hollow TiO 2 Microspheres Composed of Anatase Polyhedra with Exposed {001} Facets

CHAPTER 3. CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY OF MESOPOROUS MIXED Fe 2 O 3 /TiO 2

Linlin Xin a and Xuefeng Liu b. School of Chemical and Material Engineering, Jiangnan University, Wuxi, , PR China.

Supramolecular Templates. Nanoporous Metal Oxides. Structure Replication: Porous Silica as "Hard Template" conventional synthesis:

Ceramic Processing Research

Supporting Information. Trapping the Catalyst Working State by Amber-Inspired Hybrid

Supplementary Materials for

Supplementary Figure 1. SEM and TEM images of CoO/CNF before and after galvanostatic cycles. (a) SEM image of CNF. (b) SEM image of CoO NPs uniformly

CHAPTER 4 SYNTHESIS, CHARACTERIZATION AND MICROENCAPSULATION PROCESS OF THE NANO SILICA

Supporting Information. Fabricating carbon catalysts via a thermal. method

Electrochemical Behaviors of PtRu/CNTs Catalysts Prepared by Pulse Potential Plating Methods

Relaxivity Control of Magnetic Nanoclusters for Efficient Magnetic. Relaxation Switching Assay

Matrix-free synthesis of spin crossover micro-rods showing large hysteresis loop. centered at room temperature

Ceramic Processing Research

Content 1.About Denka Black 2.Property 3.Main Application 4.Denka Black Special Type

Supplementary Figure S1 TEM images. TEM images of mesoporous polymer nanospheres (MPNs-n) synthesized with different ethanol amount.

Experimental Studies of Thermal Transport in Heat Transfer Fluids Using Infrared Thermography

X-ray Diffraction and Vibrational Spectroscopy of Catalysts for Exhaust Aftertreatment

BAND GAP SHIFT AND OPTICAL CHARACTERIZATION OF PVA-CAPPED PbO THIN FILMS: EFFECT OF THERMAL ANNEALING

Removal of Elemental Mercury from Flue Gas by V 2 O 5 /TiO 2 Catalysts Dispersed on Mesoporous Silica

Supplementary Information

Supporting Information

Supporting Information

Chapter 4 SYNTHESIS AND CHARACTERIZATION OF MAGNISIUM OXIDETRANSITION METAL OXIDE NANOCOMPOSITES

Microstructure and Magnetic Properties of Iron Oxide Nanoparticles Prepared by Wet Chemical Method

Supplementary Figure 1. The chemical structure of tannin acid (CAS: ) a typical form of tannins.

Magnetic Properties of. Nanoparticles by View of Mössbauer spectroscopy. Jiří Tuček

Effect of iron-carbide formation on the number of active sites in Fe-N-C catalysts for the oxygen reduction reaction (ORR) in acidic media

Dual Role of Borohydride Depending on Reaction Temperature: Synthesis of Iridium and Iridium Oxide

FESC FINAL PROJECT REPORT

Supporting information

Supplimentary Information. Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride. Nanosheets

Supporting Information. Toward Understanding Drug Incorporation and. Delivery from Biocompatible Metal-Organic

TEM and XRD investigation of Fe 2 O 3 -Al 2 O 3 system

One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anode for sodium-ion batteries

CHARACTERISTICS OF ELECTRIC-DOUBLE LAYER CAPACITOR OF THE METAL-POROUS CARBON COMPOSITE FROM ION EXCHANGE RESIN

X-ray Studies of Magnetic Nanoparticle Assemblies

EFFECT OF MANGANESE SUBSTITUTION ON Co Ga AND Co Tl FERRITE NANOPARTICLES PREPARED BY HYDROTHERMAL ROUTE

Development of Continuous, Directfeedback Control Systems for Sintering of Metallic Components

Preparation of Large-area, Crack-free Polysilazane-based Photonic. Crystals

Mössbauer Characterization of Rust Obtained in an Accelerated Corrosion Test

LIST OF ABBREVIATIONS

CHAPTER 8 SYNTHESIS AND CHARACTERIZATION OF COPPER DOPED NICKEL-MANGANESE MIXED FERRITE NANOPARTICLES BY CO-PRECIPITATION METHOD

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with

Australian Journal of Basic and Applied Sciences. Effect of PH on Cobalt Oxide Nano Particles Prepared by Co-Precipitation Method

Transcription:

Synthesis and Characterization of Mesoporous Carbon Hybrids for Environmental Applications M.A.Karakassides Department of Materials Science & Engineering University of Ioannina, Greece Olomouc March 2011

Environmental Remediation Why mesoporous carbon? Why hybrids? activated carbon mesoporous carbon High surface area (up to 1700 m 2 g -1 ) Uniform pore size Large pore volumes High Periodicity R. Ryoo, S. Hoon and S. Jun, J. Phys. Chem. B, 103 (1999) 7743 hybrids Various properties possible depending on precursors and processing Nanomaterial properties Magnetic properties Catalytic properties hybrids ( mesoporous carbon + magnetic nanoparticles )

OUTLINE Introduction to mesoporous carbons Synthesis of hybrids, type-a (/magnetic nanoparticles) Synthesis of hybrids type-b (/ZVi nanoparticles) Study of synthesis stages and characterization of hybrids Example of use of hybrids (sorption of hexavalent chromium) Conclusions

Pore geometry Pore dimensions Introduction to mesoporous carbons classification M41S zeolite microporous d<2 nm mesoporous d=2-50 nm foams macroporous d>50 nm MATERIALS 1D 3D CNTs 2D SBA-15 Graphite sheets LDH

CMK: Mesoporous carbon materials with ordered crystalline structure SBA-15 Mesoporous Carbon/silicon Mesoporous carbon MCM-48 R. Ryoo, S. Hoon and S. Jun, J. Phys. Chem. B, 103 (1999) 7743

P. Selvam, S. K. Bhatia and C. S. Sonwane, Ind. Eng. Chem. Res., 40 (2001) 3237

SBA-15 Synthesis of C 2 H 5 C 2 H 5 O O Si O C 2 H 5 O C 2 H 5 TEOS 38 o C 95 o C 500 o C 22 hours 24 hours 6 hours SBA-15 Template P123/HCl/H 2 O SBA-15 100 o C 160 o C 877 o C/N 2 6 hours 6 hours 6 hours Sugar/H 2 O/H 2 SO 4 1,25 / 5 / 0,14κ.β. Sugar /H 2 O/H 2 SO 4 0,8 / 5 / 0,07κ.β.

Hybrids based on type-a with nanoparticles Fe x O y -----@Fe x O y type-b with nanoparticles Fe 0 -----@ZVI

Preparation of carbon hybrids ( /Fe x O y ) H 2 O OCH 2 (CH)O OCH 2 (CH 3 )O OH 2 + HO Fe OCH 2 (CH 3 )O Fe OCH 2 (CH 2 )O Fe OH NO 3 - H 2 O OCH 2 (CH 3 )O OCH 2 (CH 3 )O OH 2 HOOC HOOC HOOC COOH COOH COOH Fe(NO 3 ) 3 9H 2 O 1:4 Vapor CH 3 COOH pyrolysis 400 ο C/Ar Fe x O y -O -O@Fe -O@ac -O@m4 vapor CH 3 COOH pyrolysis 400 ο C/Ar Fe x O y @Fe @ac @mx

(110) (200) Intensity (100) (110) (200) (100) Characterization of SBA-15 SBA-15 110 200 d 100 = 9.0 nm P6mm pore 10 1,5 2,0 2,5 3,0 3,5 4,0 d 100 = 10.5 nm 1 2 3 4 5 2θ( ο ) SBA-15 a o =2d 100 / 3 a o = 12.1 nm a o = 10.4 nm

Absorbance Characterization of @Fe x O y Hybrids FT-IR Spectroscopy -O@m4 1700 1580 1230 -COO - 1595 1382 1716 1445 Fe-O 567 O-C=O H 2 O OCH 2 (CH)O OCH 2 (CH 3 )O OH 2 HO Fe OCH 2 (CH 3 )O Fe OCH 2 (CH 2 )O Fe OH H 2 O OCH 2 (CH 3 )O OCH 2 (CH 3 )O OH 2 -O@m4 + NO 3 - NO 3 -COO - Fe + 661 613 -COOH, -COO - 823 670 -O@ac C=C 1580 1350 1165 C-H 661 -O@Fe -O 2000 1800 1600 1400 1200 1000 800 600 Wavenumbers (cm -1 )

Characterization of @Fe x O y Hybrids Raman spectra I D /I G =0.8-0.95 FWHF~110cm -1 @m10 -O@m4 @m2 @m1

Intensity Intensity (110) (200) (110) (200) (100) (100) Characterization of @Fe x O y Hybrids X-ray Diffraction (XRD) @m1 -O -O@m4 1.0 1.5 2.0 2.5 3.0 2θ( ο ) @m2 @m10 1.0 1.5 2.0 2.5 3.0 2θ( ο )

Intensity Characterization of @Fe x O y Hybrids X-ray Diffraction (XRD) Fe 3 O 4 (311) Scherrer: D 0,9* Cu B*cos Β (220) @m10 (400) Average size Fe x O y 20nm -O@m4 @m2 13nm 8nm @m1 γ-fe 2 O 3 28 32 36 40 44 2θ (degrees)

endo %TG Characterization of @Fe x O y Hybrids Thermal Analysis 100 DTA exo 356 400 90 80 70 60 50 iron oxide content (Fe 2 O 3 ) of hybrids 27.3 wt% 40 -O@m4 30 20 -O@m4 11.5 wt% 100 200 300 400 500 600 700 800 Temperature( o C) 10 0 12,6% 100 200 300 400 500 600 700 800 Temperature( o C)

Vads (cm 3 /g) V liq (cm 3 /g) dv/dr Characterization of @Fe x O y Hybrids SURFACE AREA MEASUREMENTS Isotherms V-t plots 2.0 1200 r~1.7nm 1000 1.6 800 1.2 1.5 1.8 2.1 2.4 2.7 3.0 r(nm) -O 1.2 2 -O 600 @m1 0.8 @m1 400 @m4 0.4 -O@m4 200 1 0.0 0.2 0.4 0.6 0.8 1.0 p/p 0 0.0 0.0 0.4 0.8 1.2 1.6 2.0 t/nm

Characterization of @Fe x O y Hybrids Mössbauer spectroscopy @m1 Μössbauer parameters resulting from least square fits of the spectra γ-fe 2 O 3

Characterization of @Fe x O y Hybrids Magnetic measurements @m1 T (K) M max+ (7 T) (emu/g) H C (Oe) M R (emu/g) @m1 5 2.1205 500 0,5811 300K

Characterization of @Fe x O y Hybrids Transmission Electron Microscopy (ΤΕΜ) -O@m4

Characterization of @Fe x O y Hybrids Transmission Electron Microscopy (ΤΕΜ) @m1 @m1 a o =9 nm d=3 nm

Synthesis of /Fe 0 Hybrids FeCl 3 6H 2 O NaBH 4 1:2 @ZVI

Intensity Characterization of /Fe 0 Hybrids @ZVI-12:1 44,9 o @ZVI-4:1 35,5 o <2,7nm ~2,7nm Scherrer: D 0,9* Cu B *cos Β ZVI Fe 0 25 30 35 40 45 50 55 60 2θ( ο ) ~11,2nm

Vads (cm 3 /g) Vads (cm 3 /g) Characterization of /Fe 0 Hybrids 1000 800 800 S BET (m 2 /g) 1284 708 700 600 S BET (m 2 /g) 993 696 600 500 @ZVI-4 400 @ZVI-12 400 300 200 V pore (cm 3 /g) 0,65 0,39 200 100 V pore (cm 3 /g) 0,54 0,41 0 0.0 0.2 0.4 0.6 0.8 1.0 p/p 0 0 0.0 0.2 0.4 0.6 0.8 1.0 p/p 0

Absorbance Absorbance Environmental remediation ( aqueous solution Cr 6+ ) Cr 6+ + 1,5-diphenylcarbohydrazide 1,00 542nm 0,90 0,75 1 mg/l 0,75 A=0,85186*C-0,00836 0,50 0,8 mg/l 0,6 mg/l 0,60 0,45 0,25 0,4 mg/l 0,2 mg/l 0,00 400 450 500 550 600 650 700 Wavelength (nm) 0,30 0,15 0,00 0,0 0,2 0,4 0,6 0,8 1,0 1,2 Συγκέντρωση Cr(VI) mg/l

Absorbance Absorbance Absorbance Absorbance Environmental remediation ( aqueous solution Cr 6+ ) @ZVI - Hybrid Cr 6+ =6ppm 0,6 0,5 0,4 0,3 542 0h 0,5h 1h 2h 6h 9h 0.6 0.5 0.4 0.3 0,4686 0,3774 @ZVI-12 542 0h 0.5h 1h 2h 3h 6h 9h 24h Cr 6+ =6ppm =180ppm 0,2 0.2 @ZVI=180ppm 0,1 ph=5,5 0,0 400 450 500 550 600 650 700 Wavelength (nm) 0,6 0,5 0,4 0,3 0,4702 542 0h 0,5h 1h 2h 3h 6h 9h 24h 0.1 0.0 400 450 500 550 600 650 700 0.6 0.5 0.4 0.3 Wavelength (nm) ph=5,5 @ZVI-12 0h 542 0.5h 1h 2h 3h 6h 9h 24h 0,2 0,1 0,0375 ph=3 0,0 400 450 500 550 600 650 700 Wavelength (nm) 0.2 0.1 ph=3 0.0 400 450 500 550 600 650 700 Wavelength (nm)

r (mg*l -1 *h -1 ) Evaluation of hybrids 1,0 (ph=5,5) [Cr 6+ ] t / [Cr 6+ ] 0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 @ZVI-12:1 (ph=5,5) (ph=3) 0,1 @ZVI-12:1 (ph=3) 0,0 0 2 4 6 8 10 12 14 16 18 20 22 24 time (hours) 18 16 14 12 10 8 6 @ZVI-12:1 14,4 ph=3 1/[Cr(VI)] t @ZVI - Hybrid 5 4 3 2 1 0 @ZVI-12:1 1 [ Cr( VI )] 0 2 4 6 8 10 12 14 16 18 20 22 24 26 time (hours) t second order 1 k2t [ Cr( VI )] Second order equation K 2 (L mg -1 h -1 ) R 2 t 1/2 (h) 0,066 0,989 2,7 @ZVI-12:1 0,417 0,986 0,4 0 4 2 0 2,1 6 5 4 3 2 1 0 [Cr(VI)] (mg*l-1 ) r k 2 2 ([ Cr( VI )] t )

r (mg*l -1 *h -1 ) Evaluation of hybrids 1,0 0,8 (ph=5,5) @Fe x O y - Hybrid 5 [Cr 6+ ] t / [Cr 6+ ] 0 0,6 0,4 0,2 0,0 16 14 12 0 2 4 6 8 10 12 14 16 18 20 22 24 time (hours) 14,5 @m2 (ph=5,5) (ph=3) @m2 (ph=3) @m2 ph=3 1/[Cr(VI)] t 4 3 2 1 0 @m2 1 [ Cr( VI )] t 1 k2t [ Cr( VI )] 0 2 4 6 8 10 12 14 16 18 20 22 24 time (hours) second order 0 10 8 6 4 2 0 2,7 6 5 4 3 2 1 0 [Cr(VI)] (mg*l-1 ) r k Second order reaction k 2 (L mg -1 h -1 ) R 2 t 1/2 (h) @m2 0,434 0,983 0,4 0,082 0,989 2,1 2 2 ([ Cr( VI )] t )

Conclusions Hybrids for environmental applications were prepared: a) via interaction of acetic acid vapors with iron cations dispersed on the surface of a mesoporous carbon. (@Fe x O y ) b) using a carbon as a matrix for wet impregnation of FeCl 3, followed by reduction of iron species by means of NaBH 4 and drying of the sample in vacuum. (@Fe 0 ) The XRD, FT-IR, TEM, DTA/TG and surface area measurements revealed the well defined carbon mesoporous structure and the successfully preparation of hybrids. Magnetic experiments suggested the ultrafine character of the iron oxide nanoparticles which exhibit a superparamagnetic behaviour. Mössbauer measurements showed: a) γ-fe 2 O 3 as the major magnetic iron oxide phase in @Fe x O y hybrids b) the well known iron core-shell structure for the ZVI nanoparticles in @Fe 0 c) almost zero recoil-free nanoparticles at temperatures above 77K in hybrids. @Fe 0 and @Fe x O y hybrids showed very rapid uptake kinetics in the removal of aqueous Cr 6+ ions and total remediation of aqueous solution of Cr 6+ at conditions- ph: 3, concentration: 6ppm, treatment time: 24hours. Both type of hybrids showed significant improvement of sorption and/or reduction capability of Cr 6+ ions/g of specific sorbent in comparison with pristine or unsupported ZVI nanoparticles.

Acknowledgements Dr. M.Baikousi Dr. D.Dimos Mrs. E.Petala, M.Sc. Department of Materials Science &Engineering University of Ioannina Greece Assist. Prof. A.Bourlinos Assist. Prof. A.Douvalis Professor T.Bakas Department of Physics University of Ioannina Greece Professor R.Zboril Dr. Jiří Tuček Dr.Klára Šafářová Dr. Jan Filip

Thank you