SCHOOL OF MUSIC UNIVERSITY OF IOWA IOWA CITY, IOWA

Similar documents
Planning for Biomed Facility Puts Energy Efficiency Under Microscope

EnergyPro Building Energy Analysis. Nine-story Office Building

Grunenwald Science and Technology Building

Design Standard Sustainability

EnergyPro Building Energy Analysis. Single-story School Building

FACILITY DESIGN PLAN FOR HARDING HALL RENOVATION AND ADDITION SOUTH DAKOTA STATE UNIVERSITY DATE: March 29, 2017

Case Study: Golisano Institute for Sustainability

SOUTH DAKOTA BOARD OF REGENTS. Budget and Finance ******************************************************************************

FEDERATION TOWER MOSCOW DIFFERENT ROOM CLIMATES UNDER ONE ROOF

Energy Efficiency, GeoExchange Systems and Renewable Energy MiAPPA Winter 2010


CAMPUS FACILITIES PLANNING BOARD PRESENTATION April 7, KUYKENDALL RENOVATION CFPB PRESENTATION April 7, 2011 modified for RFSOQ, March 23,2012

SECTION DESIGN REQUIREMENTS BASIS OF DESIGN GENERAL INFORMATION

NAME OF PROJECT Design Development. General Objectives of Phase. Phase Task Checklist. Quality Management Phase

Georgetown University New Science Center

Benjamin Hagan Lighting/Electrical Option James J. Whalen Center for Music, Ithaca, NY Primary Faculty Consultant: Mistrick

HVAC SYSTEM DESIGN PROCESS

SOUTH DAKOTA BOARD OF REGENTS. Budget and Finance ******************************************************************************

Mechanical Systems Redesign Proposal. Thesis Proposal. Morton Hospital Expansion

W. EDWARD BALMER SCHOOL

optimize daylighting Opportunities

City High Middle School pre-design recommendations. March 29, 2017

Mechanical Systems Proposal

Chasing 2030 : M echanical Mechanical S trat S e trat gies for H ospitals Hospitals NOVEMBER 11, 2015 Ch i as 2030 ng : Hospit l a s

Chilled Beams. The new system of choice?

South Jefferson High School Huyett Road Charles Town, WV 25414

INTUITIVE AND OBJECTIVE APPROACHES TO DAYLIGHTING A NEW ENGLAND ELEMENTARY SCHOOL Michael Rosenfeld 1

Mechanical Systems Project Proposal

Laurel School Upper Campus Building Features

Monitoring of Advanced Facades and Environmental Systems

Next Connecticut Energy Code

center for the arts towson university Architectural Engineering Lighting/Electrical Benjamin Mitten Spring 2005

TO MEASURE NOT MODEL:

Olivet Nazarene University Student Life and Recreation Center Project By Elara Engineering

DISPLACEMENT VENTILATION

ENGINEERING UPDATE WHITE PAPER: BUILDING PERFORMANCE METRICS. price-hvac.com. May 2013 Vol. 10

Interdisciplinary Science and Engineering Building

BUILDING DESIGN FOR HOT AND HUMID CLIMATES IMPLICATIONS ON THERMAL COMFORT AND ENERGY EFFICIENCY. Dr Mirek Piechowski 1, Adrian Rowe 1

Blue Ridge Parkway Destination Center Earns a Rare 11 of 10 Points for Optimized Energy Performance

General Objectives of Phase. Phase Task Checklist Integral Consulting Page 1 Schematic Design Checklist. Action

Colorado Mountain College: Sustainable Design Standards

Sustainable Building Management System

The baseline building system for compliance with Senate Bill 668 is defined by Appendix G,

FACILITIES MANAGEMENT

Irvine CA MAE ROW ROW ROW. Office Lighting Plan. Page 93

Part 1 Review Questions on material covered in Midterms I & II

Pearl River Tower. Guangzhou, China. AEI Professional Project Awards January 2014 PHOTO CREDIT: TIM GRIFFITH

Evaluating the Building Performance of the Center for Promotion of Science in Block 39 in Belgrade, Serbia

Center for High Performance Buildings

Presenters: Dominick Balletta Managing Director Jacob Burns Film Center

GATES-HILLMAN CENTERS

You Can t Afford Discomfort. Dan Int-Hout Chief Engineer, Krueger Richardson, Texas

The Elithis Tower is an experimental and demonstration. Elithis Tower in Dijon, France. nzeb case studies

Getting to 50: 50% Advanced Energy Design Guide for Small and Medium Office Buildings. WSP Flack + Kurtz

IA Program Summary: The Project serves as an anchor to establish a public entrance to the campus on a previously undefined edge.

Hotels: Water and Energy

Federation of European Heating, Ventilation and Air-conditioning Associations

David H. Koch Institute for Integrative Cancer Research Senior Capstone Mechanical Option. Proposal

FRIDLEY SCHOOL DISTRICT West Moore Lake Drive Fridley, MN REVIEW AND COMMENT DOCUMENT

Karl Helmink, P.E., CEM Retrocommissioning Manager University of Illinois. Retrocommissioning Saving the Planet One Building at a Time

Evaluating Alternative Fume Hood System Technologies Using Advanced Building Simulation

2030 Challenge & Zero Energy Buildings Ashley McGraw Architects, P.C.

Energy Strategies That Work Case Studies

TDPs provide you with new technical training materials designed to help your contractors, engineers, and designers to effectively design, specify,

780 CMR: 9 th Edition Massachusetts State Building Code. Presented to: BSA Codes Committee. DATE: January 20, 2016

College of the Desert Athletics Facilities

Underf loor For Schools

CONSTRUCTION REQUIREMENTS

The ASHRAE GreenGuide: One Means of Establishing a Link between Sustainable Design Practitioners

P WER OF DESIGN. by SANDEEP SHIKRE, leed AP

WATER AS DESIGN INSPIRATION IN ARCHITECTURE AND ENGINEERING

Applying Geothermal Technology for Large Scale Projects

REQUEST FOR QUALIFICATIONS DESIGN PROFESSIONAL

What is Sustainable Design?

Project Proposal Proposal for Investigation of Alternative Systems

Air distribution and temperature control in classrooms

Air-Water Systems. Chilled Ceilings and Beams TROX USA. Principle of Operation. Radiant Effect on Occupants. Early 1980 s. Chilled Ceiling Panels

Category 7 - Best Building Project - Specialty Contractor (Over $10 Million) Contractor: Encore Electric Project Name: UCCS Visual and Performing Arts

Demonstration of modeling of radiant cooling system in design builder. Prashant Bhanware & Bharath Reddy

Oklahoma University Children s Medical Office Building

IESVE Compliance for ASHRAE IES Virtual Environment

Be Aggressive About the Passive Solutions

NASA Langley Research Center Administration Office Building One Hampton, VA. Project Proposal. Introduction to Proposed Design Alternatives Revision 1

Holistic Design Approach For Energy Efficiency ASHRAE TECHNOLOGY AWARD CASE STUDIES

Progressive Design Concepts for the Evolving Learning Environment

SHIYUN CHEN ADVISOR: DR. BAHNFLETH. 1 Executive Summary Building Summary 3. 3 Existing Mechanical System. 4

Collaborative Life Sciences Building & Skourtes Tower

2010 CA Higher Education Sustainability Conference

Thesis Proposal. Clemson University Advanced Material Research Laboratory Anderson, SC. David Anderson Mechanical Option. Photo by Fred Martin

STATE UNIVERSITY CONSTRUCTION FUND

DESIGN OF A GREEN DEMO BUILDING IN A HOT AND HUMID CITY IN CHINA. Ana Bacall Sebesta Blomberg & Associates Woburn, MA

Lighting/Electrical Thesis Proposal December 18, The Anne & Michael Armstrong Medical Education Building. Thesis Proposal

TOP 10 STRATEGIES FOR NEW AND EXISTING BUILDINGS

FACADE OPTIMIZATION. Architect Mike Matson Project Manager, Ratcliff. DE ANZA COLLEGE MEDIAL + LEARNING CENTER Photography David Wakely

Engineering Update JANUARY VOLUME 9 THIS PACKAGE INCLUDES A COLLECTION OF ARTICLES FROM VOLUME 9 OF THE JANUARY 2013 ENGINEERING UPDATE.

Interdisciplinary Science and Engineering Building

Building Energy Efficiency Analysis for a High School

University of Minnesota Duluth Civil Engineering Building

Piping system (steam, hot water, chilled water system) including pipe and duct insulation needs replacement.

Building Energy Efficiency Analysis for a High School

Transcription:

Project Data Total Project $150,000,000 Construction $115,000,000 MEP Const $28,000,000 Owner University of Iowa Rodney P. Lehnertz Director, Planning, Design & Const 319.353.3325 rodney-lehnertz@uiowa.edu User University of Iowa David Gier Director, School of Music 319.335.1601 david-gier@uiowa.edu Project Team Principal in Charge Dwight Schumm, PE, LEED AP Project Manager Dwight Schumm, PE, LEED AP Mechanical Engineer Jared Ramthun, PE LEEP AP Electrical Engineer Jonathan Gettler, PE Design Architect LMN Architects Seattle, Washington Sam Miller, AIA 206.682.3460 smiller@lmnarchitects.com Associate Architect Neumann Monson Architects Kevin Monson, AIA 319.338.7878 kmonson@neumannmonson.com Acoustical Consultant JaffeHolden Acoustics Norwalk, Connecticut Russell Cooper, Principal 203.838.4167 rcooper@jaffeholden.com Image compliments of LMN Architects Project History This project provides a new 188,000 square foot home for the University of Iowa School of Music after the previous building was destroyed by flood in 2008. The project includes a 700-seat concert hall, 200-seat recital hall, rehearsal rooms, organ rooms, classrooms, practice rooms, music library, and faculty studios. This project involved many specialized elements requiring close collaboration with a wide variety of specialty design professionals including the following: Acoustical: Jaffe Holden, Norwalk, CT Theater: Fischer Dachs Associates, New York, NY Audio / Visual: Jaffe Holden, Norwalk, CT Lighting Designer: Horton Lees Brogden, Los Angeles, CA Energy Analysis: The Weidt Group, Minnetonka, MN Code Consultant: T.A Kinsman consulting, Seattle, WA Vertical Transportation: Lerch Bates, Minneapolis, MN Organ Designer: Orgelbau Klais Bonn, Bonn, Germany CFD Modeling: Price Industries, Winnipeg, Manitoba Fire Protection Analysis: Summit Fire Consulting, Minneapolis, MN Commissioning: Sebesta Blomberg, Cedar Rapids, IA Construction Manager: Mortenson Construction, Minneapolis, MN Acoustic Design As a school of music encompassing both performance and rehearsal spaces, acoustic requirements drove much of the design across all disciplines. Special vibration isolation, sound attenuators and careful detailing for sealing penetrations of acoustically sensitive construction were incorporated into all aspects of mechanical and electrical systems design. Sensitive musical instruments including six pipe organs and 150 pianos (including 57 grand pianos) required design for precise temperature and humidity control. When coupled with the extreme winters and summers of the Iowa climate, this proved a challenge for both the HVAC and building envelope design.

The building envelope limits the maximum indoor humidity to 30%. Most humidity-sensitive spaces are in the interior of the building, designed for a minimum of 40% and maximum of 50% RH. The remaining spaces are designed for a minimum of 30% and maximum of 50% RH. The controls include a provision to limit the maximum rate of humidity change to 5% per day as rapid humidity change is damaging to instruments. Energy Design Goals Overall, the building is projected to use 73% less energy than a minimally code-compliant building. The building s six-story atrium winds throughout, and a large east-facing glass façade required special attention and coordination during the design process. Due to the complex geometry of the spaces and unique application of some of the systems, computational fluid dynamics (CFD) models were used to fine tune the air distribution design. Revit and Navisworks software programs were used extensively for modeling the complex building and for clash detection. HVAC Design One of the unique features of the project is its heating system. All the heat required for the building is provided by harvesting waste heat from the building s core and from other campus buildings. Heat recovery chillers are used to extract heat from the campus chilled water system. A byproduct of this process is chilled water which is returned to the campus chilled water loop which in turn allows it to be used in other buildings. The HVAC design includes multiple distribution systems, each tailored to the unique needs of the space. Single-zone displacement systems serve the 200-seat performance hall, rehearsal rooms, and organ rooms, and a multi-zone displacement system serves the 700-seat concert hall.

These rooms are all large volume spaces with high ceilings and critical acoustic requirements, the type of room ideally suited to displacement ventilation because this system supplies air at a low velocity which is very quiet and only conditions the occupied zone closest to the floor, reducing the amount to be conditioned as well as reducing the outdoor air required for ventilation. The multi-zone system takes this one step farther to only supply air to the part of the room that is being occupied, such as during a rehearsal on stage or a smaller performance. Perimeter heating, where required, was accomplished using radiant floors. Four-pipe active chilled beams were used for the faculty studios, libraries, practice rooms, and classrooms. Due to the ability to induce and condition air that is already in the room, these units require very little airflow from a central air handling unit, which results in very quiet air diffusion in the rooms. This system also allows for the individual control of each room. Variable Air Volume (VAV) boxes were used for the lobbies and circulation spaces throughout the building, supplemented with perimeter radiant floor heating in areas where people were likely to congregate. The radiant floor is also used for radiant cooling to absorb direct solar energy that enters the lobbies from the large eastern-facing curtain wall glazing system. Energy recovery units utilize enthalpy wheels to pretreat the required outdoor air for the building. Dual wheel energy recovery units were used to provide very dry air to control humidity and to help ensure that condensation doesn t occur at the chilled beam terminal cooling coils.

The thing I have appreciated the most about Design Engineers is their ability to integrate complex MEP systems into the larger architectural and programmatic goals of the building in a way that reinforces the underlying design concepts. DE s creative approach to problem solving has resulted in integrated, energy efficient solutions that are responsive to budget limitations and long-term maintenance needs. Sam Miller, AIA LMN Architects Fire System Design The building contains several specialty and custom ceiling systems to reflect and absorb sound which made sprinkler coverage a challenge. Working with the architects and specialty fire protection consultant, an alternate design was approved by the State of Iowa for several areas in the building. In addition, the project includes both a clean agent suppression system for the rare book room as well as a pre-action sprinkler system for the main organ in the concert hall to protect these high-value items. The fire alarm system provides voice notification throughout the facility and is integrated with a clean agent releasing panel and a dry sprinkler system. Several rooms in the building are equipped with an air sampling system for early smoke detection. Electrical System Design The electrical distribution was designed to mitigate arc-flash hazard ratings. SKM, a power systems modeling software, was used to conduct multiple studies. The system is a 3200A, 277/480V service with K-rated transformers for stepping down to 120/208V panel boards. Four separate special audio/video distribution systems with isolated grounds were designed for the sensitive audio video systems. Separate distribution branches were designed for the theatrical lighting systems to isolate those loads. The distribution system also includes a natural gas generator for emergency systems within the building. An extensive sub-metering system was provided to measure lighting, individual theatrical lighting, plug loads and HVAC loads. These meters have been designed to integrate with temperature controls for logging and trending energy usage. This allows the Owner to determine where energy savings can be captured as well as help identify if a system is not working as intended.

Awards 2017 AIA Washington Council Civic Design Honor Award 2013 Architizer Architecture + Sound, Finalist Architecture + Modeling, Jury Choice Architecture + Fab, Popular Choice Architecture + Modeling, Popular Choice Lighting Design The lighting design includes unique applications and distinctive installation details for standard products that provide a custom appearance. Lighting power densities were reduced to 30% below current energy standards and still met the minimum lighting requirements of IESNA. Many fixtures in the building utilize LED technology, for their reduced wattage capability and their long life. Special attention was given to fixture maintenance to assure fixtures are accessible in the future and repairable. As a design concept, there was a desire to light the main staircases through the building in an inviting way. Color-changing LED projection fixtures were installed to light the path of travel and lead occupants into the building. These fixtures also serve as a way to highlight the building for special events, such as they can be programmed to a pink hue for breast cancer awareness or could be adjusted to a blue for a special jazz performance. The theatrical spaces were designed with large capacity plug boxes for connection of theatrical light fixtures. This design is extremely flexible to accommodate traveling shows as well as serve the University for normal day-to-day events. The lighting control system is an addressable system with a graphical user interface. Much of the floor plan was designed to allow natural light to flow through the building, light fixtures that fall within these zones are controlled for automatically dimming to the natural light available. Not only does this system allow the Owner to reduce light levels during periods of high natural light, it also allows them to adjust the full output level of the fixtures to ensure that no space is over lit. For periods of load shedding, the lighting in the building can be incrementally dimmed without affecting the occupants to save energy.