DNA: The Molecule of Heredity How did scientists discover that genes are made of DNA?

Similar documents
Chapter 16. The Molecular Basis of Inheritance. Biology Kevin Dees

Chapter 9: DNA: The Molecule of Heredity

The Genetic Material. The Genetic Material. The Genetic Material. DNA: The Genetic Material. Chapter 14

DNA: The Genetic Material. Chapter 14. Genetic Material

DNA: The Genetic Material. Chapter 14

The Molecular Basis of Inheritance

BIOLOGY 101. CHAPTER 16: The Molecular Basis of Inheritance: Life s Operating Instructions

DNA Structure. DNA: The Genetic Material. Chapter 14

DNA Replication. Packet #17 Chapter #16

Essential Questions. DNA: The Genetic Material. Copyright McGraw-Hill Education

DNA: The Primary Source of Heritable Information. Genetic information is transmitted from one generation to the next through DNA or RNA

Worksheet Structure of DNA and Replication

DNA. Deoxyribose Nucleic Acid

DNA and Replication 1

The Development of a Four-Letter Language DNA

Discovery of nucleic acid. What is the genetic material? DNA is made up of: Genetic material = DNA. Griffith s mice experiment.

Lesson Overview Identifying the Substance of Genes

Chapter 16 The Molecular Basis of Inheritance

Chapter 10. DNA: The Molecule of Heredity. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE

The Genetic Material. Unit 6: DNA & Protein Synthesis

DNA stands for deoxyribose nucleic acid

3.A.1 DNA and RNA: Structure and Replication

copyright cmassengale 2

Quiz 1. Bloe8 Chapter question online student quizzes

Opening Activity. DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions.

MOLECULAR BASIS OF INHERITANCE

PowerPoint Notes on Chapter 9 - DNA: The Genetic Material

Route to DNA discovery

DNA: Structure and Replication - 1

Name Class Date. Read the passage below. Then answer the questions that follow.

DNA. Discovery of the DNA double helix

Macromolecule Review

How do we know what the structure and function of DNA is? - Double helix, base pairs, sugar, and phosphate - Stores genetic information

Lesson 8. DNA: The Molecule of Heredity. Gene Expression and Regulation. Introduction to Life Processes - SCI 102 1

Unit 3 Part II: Modern Genetics p

The Molecul Chapter ar Basis 16: The M of olecular Inheritance Basis of Inheritance Fig. 16-1

AP Biology Chapter 16 Notes:

The Molecular Basis of Inheritance

DNA Structure and Replication

The Molecular Basis of Inheritance

DNA and Biotechnology

Test Prep Pretest. in the. the. whereas prokaryotic DNA contains only replication forks during replication. Skills Worksheet

Griffith and Transformation

DNA Structure and Replica2on

DNA: Structure and Replication - 1

Transformation: change in genotype & phenotype due to assimilation of external DNA by a cell.

Vocabulary. Nucleic Acid Nucleotide Base pairing Complementary Template Strand Semiconservative Replication Polymerase

Bacteriophage = Virus that attacks bacteria and replicates by invading a living cell and using the cell s molecular machinery.

of Inheritance BIOL 222

Chromosomes. Nucleosome. Chromosome. DNA double helix. Coils. Supercoils. Histones

DNA stands for deoxyribose nucleic acid.

Chapter 16 The Molecular Basis of Inheritance

Wednesday, April 9 th. DNA The Genetic Material Replication. Chapter 16

All This For Four Letters!?! DNA and Its Role in Heredity

DNA The Genetic Material

The Molecular Basis of Inheritance

DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA

Hershey & Chase Avery, MacLeod, & McCarty DNA: The Genetic Material

The Molecular Basis of Inheritance

Overview: Life s Operating Instructions Concept 16.1: DNA is the genetic material The Search for the Genetic Material: Scientific Inquiry

DNA: The Genetic Material. Chapter 14

Nucleic Acids. The book of you. Nucleic Acids DNA RNA PROTEINS. Function: genetic material stores information genes blueprint for building proteins

UNIT 3. Chapter 12 From DNA to Proteins

Unit 5 DNA, RNA, and Protein Synthesis

CH 4 - DNA. DNA = deoxyribonucleic acid. DNA is the hereditary substance that is found in the nucleus of cells

DNA Structure and Function. Chapter 13

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

what are proteins? what are the building blocks of proteins? what type of bond is in proteins? Molecular Biology Proteins - review Amino Acids

Chapter 16 Molecular Basis of. Chapter 16. Inheritance (DNA structure and Replication) Helicase Enzyme

Structure and Replication

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein

E - Horton AP Biology

Genetic material must be able to:

DNA Structure & Replication How is the genetic information stored and copied?

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology

DNA, RNA and Protein Synthesis

Chapter 6: Cell Growth and Reproduction Lesson 6.2 Chromosomes and DNA Replication

Name: - Bio A.P. DNA Replication & Protein Synthesis

Chapter 13 DNA The Genetic Material Replication

CHAPTER 11 LECTURE SLIDES

Chapter 13: DNA Structure & Function

1. DNA Structure. Genetic Material: Protein or DNA? 10/28/2015. Chapter 16: DNA Structure & Replication. 1. DNA Structure. 2.

C A T T A G C nitrogenous complimentary G T A A T C G to each other

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

March 26, 2012 NUCLEIC ACIDS AND PROTEIN SYNTHESIS

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm

Molecular Genetics DNA The Genetic Material. Outline: Molecular Genetics

DNA Chapter 12. DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B Griffith s Experiment

Lecture Series 8 DNA and Its Role in Heredity

DNA and Its Role in Heredity. DNA and Its Role in Heredity. A. DNA: The Genetic Material. A. DNA: The Genetic Material.

Chapter 10 - Molecular Biology of the Gene

Purines vs. Pyrimidines

Nucleic Acids. Biotechnology

Biology 30 DNA Review: Importance of Meiosis nucleus chromosomes Genes DNA

Resources. How to Use This Presentation. Chapter 10. Objectives. Table of Contents. Griffith s Discovery of Transformation. Griffith s Experiments

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination

Nucleic Acids: DNA and RNA

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall

Transcription:

DNA: The Molecule of Heredity How did scientists discover that genes are made of DNA? By the late 1800s, scientists knew that genetic information existed as distinct units called genes. hapter 11 By the early 1900s, studies suggested genes were part of chromosomes, protein and DNA complexes. How did scientists discover that genes are made of DNA? In 1928, a British medical officer, Frederick riffith, worked to create a vaccine against Streptococcus pneumoniae. The bacteria that causes pneumonia in mammals. Two strains of the same bacteria. Pathogenic Strain Heat Killed Mixed with Non-Pathogenic Strain riffith s Experiment Nonpathogenic strain (harmless) Pathogenic strain (disease causing) Some Harmless ells Became Pathogenic

Non-Pathogenic Non-Pathogenic Mouse Remains Healthy Pathogenic Injected into Mice Pathogenic Injected into Mice Mouse Dies of Pneumonia Heat Killed Pathogenic Heat Killed Pathogenic Mouse Remains Healthy Heat Killed Pathogenic and Non-Pathogenic Heat Killed Pathogenic and Non-Pathogenic Mouse Dies of Pneumonia Non-Pathogenic (N) Pathogenic (P) Heat Killed Pathogenic Injected into Mice Heat Killed Pathogenic and Non-Pathogenic Mouse Remains Healthy N does not cause pneumonia. Mouse Dies of Pneumonia P causes pneumonia. Mouse Remains Healthy Heat killed P cells do not cause disease. Mouse Dies of Pneumonia Dead P cells transformed N cells into pathogens. Bacterial Transformations onclusions from riffith s Experiment DNA was not destroyed in the heat-killed bacteria. The bacteria s information still made mice sick. Bacterial transformations are the incorporation of foreign genetic information into the cell s chromosome.

Bacterial Transformations onclusions from riffith s Experiment DNA was not destroyed in the heat-killed bacteria. The bacteria s information still made mice sick. Bacterial transformations are the incorporation of foreign genetic information into the cell s chromosome. It wasn t t until 1943 that researchers discovered the transformed material was DNA. What is DNA? Deoxyribose Nucleic Acid hain of nucleic acids that contain the genetic blueprint (molecular make-up) of all organisms. A set of DNA molecules make up a gene. A set of genes make up a chromosome. What is DNA? Deoxyribose Nucleic Acid There are 4 different nucleotides, nucleic acid bases. Adenine (A) uanine () Thymine (T) ytosine ()

What is DNA? Deoxyribose Nucleic Acid In the 1940s, Erwin hargaff observed the amounts of the nucleotides. hargaff s Rule: - Equal amounts of adenine and thymine. - Equal amounts of guanine and cytosine. thymine adenine DNA is a Double Helix Maurice Wilkins & Rosalind Franklin Used a technique called X-ray diffraction to study molecular structure. Rosalind Franklin Produced the first picture of the DNA molecule using this technique. guanine cytosine DNA is a Double Helix X-ray Diffraction bombards X-rays at a sample and analyzes the pattern of scattering. From the X-ray diffraction pattern, they concluded that DNA: Has a uniform diameter of 2nm. Is helical. onsists of repeating subunits. DNA is a Double Helix James Watson and Francis rick analyzed Wilkins and Franklin s data and determined: The DNA molecule consists of two separate DNA polymer strands. Within each strand, the phosphate of one nucleotide binds to the sugar of the next one, producing a sugarphosphate backbone. All nucleotides face the same direction in the DNA strand.

Nobel Prize for Medicine, 1962 Awarded to Watson, rick, and Wilkins for their discovery of the structure of DNA. Should have been awarded to Franklin as well. an be awarded no more than 3 individuals. annot be awarded to someone after their death. Rosalind Franklin died in 1958. DNA is a Double Helix Phosphate Sugar DNA is a Double Helix ovalent bonding creates a Sugar-Phosphate backbone. DNA is a Double Helix DNA consists of two separate strands facing the same direction, antiparallel. The two strands are held together by hydrogen bonds.

Numbering Nucleotides All carbons in the nucleotide are numbered. Numbering Nucleotides All carbons in the nucleotide are numbered. The carbon always bonds with the phosphate group of the next base. Numbering Nucleotides All carbons in the nucleotide are numbered. The carbon always bonds with the phosphate group of the next base. DNA strands are always read to end Numbering Nucleotides DNA strands are always read to. A free phosphate group marks the 5' end of a DNA sequence. A free sugar marks the 3' end.

DNA is a Double Helix Three Possible DNA Helices B-DNA A-DNA Z-DNA Three possible helices can be constructed from the four nucleotides. B-DNA is the form found in all cells. A- and Z-DNA have alternate spacing of the helices and are found in certain circumstances. A-DNA is found in RNA-RNA and RNA- DNA helices. Z-DNA is only found in certain sequences. DNA Replication When cells divide, the DNA must be copied so each daughter cell receives an exact copy. A cell must: Replicate its DNA exactly one time before division Divide after DNA replication Have energy to do both How does DNA Replication occur? A T T A Parent ell Daughter ells

How does DNA Replication occur? How does DNA Replication occur? A T Template strand T A A T T A A T T A omplimentary strand Parental Strand New Daughter Strand How does DNA Replication occur? 1. H-bonds separate between N-bases, forming two single helices. 2. Each helix makes a complementary strand using the parental strand as a template. 3. Two double helices are produced. How does DNA Replication occur? Semi-conservative replication: each new strand contains one conserved parent strand and one newly synthesized strand.

Enzymes of Replication DNA Topoisomerase Unwinds DNA supercoiled structures. The DNA helix is coiled upon itself for compact storage, called supercoiling. Enzymes of Replication DNA Helicase Separates the DNA double helix by removing H-bonds holding nucleotide bases together. Enzymes of Replication DNA Polymerase Moves along each separate parental DNA strand and matches bases with complementary free nucleotides. Synthesizes the new daughter strand from the to end. DNA Enzymes of Replication DNA ligase Ties daughter pieces together. onnects segments of discontinuous DNA synthesis.

After the topoisomerase unwinds the DNA, the DNA helicase creates replication bubbles throughout the strand to be copied. DNA polymerase binds at the replication fork and begins copying. DNA polymerase copies by either continuous or discontinuous synthesis. ontinuous synthesis: omplete synthesis of the leading daughter strand moving toward the helicase. Discontinuous synthesis: Synthesis of the lagging daughter strand in segments as the helicase closes the replication bubble. Requires the DNA ligase to join segments. Leading Strand Lagging Strand

ontinuous synthesis: omplete synthesis of the leading daughter strand moving toward the helicase. Discontinuous synthesis: Synthesis of the lagging daughter strand in segments as the helicase closes the replication bubble. Requires the DNA ligase to join segments. Leading Strand ontinuous synthesis: omplete synthesis of the leading daughter strand moving toward the helicase. Discontinuous synthesis: Synthesis of the lagging daughter strand in segments as the helicase closes the replication bubble. Requires the DNA ligase to join segments. Leading Strand Lagging Strand Lagging Strand ontinuous synthesis: omplete synthesis of the leading daughter strand moving toward the helicase. Discontinuous synthesis: Synthesis of the lagging daughter strand in segments as the helicase closes the replication bubble. Requires the DNA ligase to join segments. Leading Strand ontinuous synthesis: omplete synthesis of the leading daughter strand moving toward the helicase. Discontinuous synthesis: Synthesis of the lagging daughter strand in segments as the helicase closes the replication bubble. Requires the DNA ligase to join segments. Leading Strand Lagging Strand Lagging Strand

DNA ligase stitches daughter strands together, produced by discontinuous synthesis of the complimentary strand. Synthesis continues until the entire parental template strand is synthesized. Helicase = Blue Polymerase = reen http://www.wehi.edu.au/education/wehi-tv/dna/ Mistakes and Mutations in DNA Replication Mistakes and Mutations in DNA Replication Mutations are changes in the DNA sequence that lead to defective genes. DNA polymerase mismatches every 1/10,000 bases. Due to the speed of replication: 50 nt/sec in humans, 1000 nt/sec in some bacteria. DNA polymerase is capable of proofreading, increasing accuracy to 1 mistake per 1 billion base pairs.

Mistakes and Mutations in DNA Replication Mistakes and Mutations in DNA Replication Mistakes and Mutations in DNA Replication Most mistakes are deleterious, or harmful. - hanges to a protein s sequence almost always renders the protein useless and unable to fold properly. Sometimes mutations are neutral, or have no effect. Very rarely, mutations can have a beneficial effect. - These are favored by natural selection and are the basis for the evolution of life. Homework What types of mutations can occur during DNA replication that result in a newly-synthesized DNA strand of the same length as the template strand? Assume that in the process of creating a replication bubble during DNA replication, the helicase causes a substitution in the complimentary strand only. The mutation was not caught by proof-checking machinery and replication continued. After two rounds of DNA replication (this first replication bubble starts the first round), how many strands of DNA carry the mutation (each half of the DNA double helix counts as one strand)?