Impact of Compaction State and Initial Moisture on Infiltration Characteristic of Soil

Similar documents
Laboratory Assignment #3

Laboratory Assignment #3

The Decline of Soil Infiltration Capacity Due To High Elevation Groundwater

Effects of Different Land Use on Soil Hydraulic Properties

Estimation of near-saturated hydraulic conductivity values using a mini disc infiltrometer

An Introduction into Applied Soil Hydrology

Modeling of Infiltration Characteristics by Modified Kostiakov Method

Rational Method for In-Situ Prediction of the Vertical Saturated Hydraulic Conductivity of Soils

Methods for Measuring Hydraulic Conductivity

Experimental Study on Infiltration in Guwahati Using Double Ring Infiltrometer

Chapter 3 THEORY OF INFILTRATION. 3.1 General

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire

Mini Disk Infiltrometer

Standard Test for Determination of Infiltration Rate of Soil Using Double Ring Infiltrometer

Correlation between infiltration capacity and permeability of soil

Comparison of permeability test methods to characterize on-site rainwater infiltration

INDIAN INSTITUTE OF TECHNOLOGY GANDHINAGAR Department of Civil Engineering Soil Mechanics Laboratory

Soil Water Relationship. Dr. M. R. Kabir

Evaluation of the Aardvark constant head soil permeameter to predict saturated hydraulic conductivity

Stormwater Retention Pond Recovery Analysis

ENGINEERING HYDROLOGY

Mini Disk Infiltrometer

Lecture 6: Soil Water

Stormwater Management Studies in Areas Undergoing Reconstruction Following the Tornado that Hit Tuscaloosa, AL

Research experiment on infiltration and runoff in Jujube land of northern Shaanxi Province

KINEMATIC WAVE MODELING IN WATER RESOURCES Environmental Hydrology

Agronomy 406 World Climates

Hydrology for Drainage Design. Design Considerations Use appropriate design tools for the job at hand:

PRACTICE NOTE 1: In Situ Measurement of Hydraulic Conductivity

Simplified Procedure for Unsaturated Flow Parameters

Water Related Soil Properties

Infiltration. ro ock and soil. Soil. Unsa aturated Zone. Hydraulic properties? Rock. soil. pores filled with air and water

Islamic University of Gaza Faculty of Engineering Civil Engineering Department Soil Mechanics Lab ECIV 3151 Final Exam 2016/2017

SOIL MOISTURE CHARACTERISTICS IN UPPER PART OF HINDON RIVER CATCHMENT

MODELS TO ESTIMATE SOIL MOISTURE RETENTION LIMITS AND SATURATED HYDRAULIC CONDUCTIVITY

Lecture 11: Water Flow; Soils and the Hydrologic Cycle

Comparison of Green-Ampt and Curve Number Infiltration Methods in a single-gauged Brazilian watershed

Lecture 20: Groundwater Introduction

Water Resources Engineering. Prof. R. Srivastava. Department of Water Resources Engineering. Indian Institute of Technology, Kanpur.

HOW WATER MOVES IN SOIL Beth Guertal Auburn University

Landfill design General principles

1403DTL CYLINDER SETS FOR 1400 TEMPE CELLS

What is the Vadose Zone? Why Do We Care? Tiffany Messer Assistant Professor Biological Systems Engineering School of Natural Resources University of

The Effects of Landuse on the Infiltration Capacity of Coastal Plain Soils of Calabar Nigeria

Water Budget IV: Soil Water Processes P = Q + ET + G + ΔS

DETERMINATION OF VARIOUS SOIL PARAMETERS AFFECTING THE INFILTRATION RATE

Effect of Land Surface on Runoff Generation

Lecture 5. Soil Water Characteristic Curves (SWCC)

General Groundwater Concepts

Florida State University Libraries

BENEFITS IN SITU HYDRAULIC CONDUCTIVITY TESTS P Hooghoudt test kits

INFLUENCE OF RAINFALL PATTERN ON THE INFILTRATION INTO LANDFILL EARTHEN FINAL COVER

Climate Simulation Irrigation Winter Processes Surface Hydrology Water Balance & Percolation Subsurface Hydrology Soil Component Plant Growth Residue

FLOW AND DISTRIBUTION OF WATER IN UNSATURATED, FRACTIONALLY-WET POROUS MEDIA SYSTEMS

Soil, Landscape, Hydrology Relationships

Infiltration Study for Urban Soil: Case Study of Sungai Kedah Ungauged Catchment

Agry 560 Exam November 7, 2002 (135 points) (10 pages)

Culverts and Flood Gates

BAEN 673 / February 18, 2016 Hydrologic Processes

LID PLANTER BOX MODELING

A Preliminary Experimental Analysis of Infiltration Capacity through Disturbed River Bank Soil Samples

APPENDICES SYMBOLS AND NOTATION GLOSSARY. Copyright 2003 David G Tarboton, Utah State University

APPENDIX E APPENDIX E ESTIMATING RUNOFF FOR SMALL WATERSHEDS

A Study on Seepage Through Earthen Dams By Using Analytical Methods 1 D.Ashok Kumar, 2 A. Mohan

July, International SWAT Conference & Workshops

Soil Compaction. Chapter (6) Instructor : Dr. Jehad Hamad

DRAINAGE OF IRRIGATED LANDS

Rainwater harvesting and greywater recovery - Part 1 -

POROSITY, SPECIFIC YIELD & SPECIFIC RETENTION. Physical properties of

My Notes. Ka Hana Imi Na auao A Science Careers Curriculum Resource Go to: 1

GROUNDWATER BASICS SUBJECTS: TIME: MATERIALS: OBJECTIVES Math (Advanced), Science (Physics) 1 class period

PRACTICAL COURSE III CLASSIFICATION & COMPACTION. Res. Assist. İREM KALIPCILAR

VADOSE/W 2D Tutorial

Testing, Analyses, and Performance Values for Slope Interruption and Perimeter Control BMPs

Report as of FY2008 for 2008NV134B: "Soil Heterogeneity and Moisture Distribution Due to Rainfall 1 Events

New techniques for stabilizing, amending and revegetating mine waste

J. Bio. & Env. Sci. 2014

Determination of Hydrophobicity Index: Standard and Mini Disk Infiltrometers

VADOSE/W 2D Tutorial

CHAPTER 6 POLYPROPYLENE FIBRE REINFORCED GEOPOLYMER CONCRETE COMPOSITES

Use of IDF Curves Design of a roof drainage system

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar

The soil is a very. The soil can. The manure. Soil Characteristics. effective manure treatment system if manures are applied at the proper rate.

UPDATE OF ARC TP108 RUN-OFF CALCULATION GUIDELINE

Basic Types of Irrigation Systems. Surface irrigation Subsurface irrigation Sprinkler irrigation Drip/trickle irrigation

Stormwater Non-potable Beneficial Uses: Modeling Groundwater Recharge at a Stormwater Drywell Installation. Leila Talebi 1 and Robert Pitt 2

Remediation of Brine Spills- What Goes Wrong Kerry Sublette

Introduction. Keywords: Oil Palm, hydrology, HEC-HMS, HEC-RAS. a * b*

APPENDIX E ESTIMATING RUNOFF FROM SMALL WATERSHEDS

MULTI-LAYER MESH APPROXIMATION OF INTEGRATED HYDROLOGICAL MODELING FOR WATERSHEDS: THE CASE OF THE YASU RIVER BASIN

An Accurate Evaluation of Water Balance to Predict Surface Runoff and Percolation

ENGINEERING HYDROLOGY

C. L. Jejurkar Dr. M. P. Rajurkar Research Scholar, S.G.G.S. I.E & T, Nanded., India (M.S.)

HYDROLOGIC AND HYDRAULIC TABLES AND CURVES

What is runoff? Runoff. Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream

Hydrologic cycle, runoff process

Micro-Minor Methods of Rainwater Conservation and Groundwater Recharge

SOIL ENGINEERING (EENV 4300)

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

No-till Oklahoma. Soil Compaction. Jason Warren Oklahoma State University Dept. Plant and Soil Sciences

Transcription:

American Journal of Water Science and Engineering 2015; 1(1): 1-6 Published online September 15, 2015 (http://www.sciencepublishinggroup.com/j/ajwse) doi: 10.11648/j.ajwse.20150101.11 Impact of Compaction State and Initial Moisture on Infiltration Characteristic of Soil Bhagwan Das Department of Civil Engineering, AKS University, Satna, Madhya Pradesh, India Email address: bd1070@outlook.com To cite this article: Bhagwan Das. Impact of Compaction State and Initial Moisture on Infiltration Characteristic of Soil. American Journal of Water Science and Engineering. Vol. 1, No. 1, 2015, pp. 1-6. doi: 10.11648/j.ajwse.20150101.11 Abstract: Infiltration is the flow of water through the soil surface into a porous medium under gravity action and pressure effects. First the water moist soil grains and subsequently the surplus water moves down due to resulting gravitational force. The present study deals with the effect of compaction state and water content on infiltration property, in particular the saturated hydraulic conductivity. Two soil types have been selected and results have been determined. It is concluded that there is marginal reduction of infiltration rate with increasing the dry density in case of sandy soil and successively reduction of infiltration for Red (Loam) soil. It is found that infiltration rate variation is approximately constant with water content for higher dry density state. Keywords: Compaction, Infiltration Parameters, Disc Infiltrometer 1. Introduction Infiltration process is necessary for inhibiting the runoff in various watershed regions. The knowledge of infiltration characteristics is important in flood modeling, artificial recharge of aquifer, mass transport through subsurface, performance evaluation of landfill covers etc (Chow, 1988). Infiltration rate is strongly related to hydraulic properties, such as the saturated hydraulic conductivity. Prasad et al. (2010) estimated unsaturated hydraulic parameters from infiltration and internal drainage experiments. Kinner and Moody (2010) estimated spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes. Amer (2011) found out effects of infiltration and retention during surface irrigation. Dagadu and Nimbalkar (2012) carried out infiltration studies on different type of soils under different soil conditions. They also fitted the field data to various infiltration models. Other factors such as compaction in practice, hydraulic conductivity is known to be highly heterogeneous in space and large number of dense points could be required for proper and complete study related to variation of infiltration properties. A disk infiltrometer has become a handy instrument for determining infiltration characteristics and permeability of soil. There are several numerical studies simulating cumulative infiltration versus time response from a disc infiltrometer, where in, the initial condition of soil is important. Jaramillo et al. (2000) measured soil surface hydraulic properties using disc and ring infiltrometers. Pitt et al. (2008) have found that the infiltration rates are mainly depending on soil type, soil compaction, initial saturation, and ponded water depth. Fernandez and Cebollada (2009) developed a new method for monitoring soil water infiltration rates in a disc infiltrometer. In the present paper, degree of compaction and initial moisture contents have been related with the infiltration rates for two specific soil types. 2. Locations of the Study Area The experiments of this study were performed in the Laboratory of Water Resource Engineering of the Department of Civil Engineering of IIT Guwahati. Experiments were repeated many times and best results have been enclosed here. 3. Material and Method The mini disk infiltrometer is manufactured by Decagon devices (USA) have been used for performing the infiltration test. The mini disc infiltrometer is ideal for field measurement as well as for laboratory and classroom; due to its compact size, the water needed to operate it can easily be carried in a personal water bottle. For class room it is easy to demonstrate basic concept of soil hydraulic conductivity.

2 Bhagwan Das: Impact of Compaction State and Initial Moisture on Infiltration Characteristic of Soil This infiltrometer enable us to measure the hydraulic conductivity of any soil accurately and affordably. Disc infiltrometer commonly use low-capacity water-supply reservoirs made of small diameter tubes. The infiltration tests have been conducted in the field and a sequence of minidisk infiltrometer measurements was obtained for tension 0-6 cm, on all the locations. The water content of the soil samples was measured. In each case, the desired tension head is set in the Marriot bubbler and the water from the reservoir assembly is allowed to infiltrate the soil through the foot assembly. The rate of water level drop against time is then recorded till it attains a constant rate, which is called steady state infiltration. A PVC cylindrical mold as depicted in Fig. 1 with diameter of 20 cm and height equal to 20 cm were used. A rammer as shown in Fig. 2 is used to impart necessary compaction to the soil sample.the weight of the rammer and mold is 3.350 and 1.703 kg respectively. appropriate amount of tap water to obtain desired water content. The bulk quantity of sand to was packed in PVC cylinder in three layers by giving equal number of blows with the rammer on each layer. The weight of the sand filled in the cylinder is noted and the bulk density is determined. Similarly, three soil samples have been taken during compaction to determine the water content. Similar experiments have been performed on red soil and different results have been perceived and by Knowing water content and bulk density, the dry density of compacted samples has been computed. The method requires determining cumulative infiltration vs. time and fittingthe results with the function C C I = t + 1 1 2 2 Where C 1 (m s -1 ) and C 2 (m s -1/2 ) are parameters. C 1 is related to hydraulic conductivity, and C 2 is the soil sorptivity. The hydraulic conductivity of the soil (k) is then computed from t k C 1 = A Where C 1 is the slope of the curve of the cumulative infiltration vs. the square root of time, and A is a value relating the van Genuchten parameters for a given soil type to the suction rate and radius of the infiltrometer disk. Fig. 1. PVC Mold. Fig. 2. Rammer (15cm dia.). The required mass of air dried soil sample was mixed with 4. Results and Discussion 4.1. Infiltration Test Performed on Sandy Soil Fig. 3. Variation of infiltration rate with time at suction 2cm for different water contents (i) w= 1.3% (ii) w=5.2 % (iii) w= 8.2 % and (iv) w= 12.4 %.

American Journal of Water Science and Engineering 2015; 1(1): 1-6 3 Fig. 4. Variation of infiltration rate with time at suction 6cm for different water contents (i) w= 1.3% (ii) w=5.2 % (iii) w= 8.2 % and (iv) w= 12.4 %. Sand has been selected for conducting experiments, because it is more or less inert soil and hence water retention will not play much role. The infiltration corresponding to two suctions 2cm and 6cm has been performed on all compacted (sand) soil samples. Fig. 3 and 4 exhibits the variation of infiltration rate versus time. However some compacted states, infiltration rate versus time does not exhibit a well-defined trend. This may be mostly attributed to the high infiltration in sands due to which some of the measurements were quite irregular. As a result, it is difficult to obtain well defined steady infiltration rate for some of these measurements. For these cases, final reading is considered as the infiltration rate. These results were repeated three times, and most accurate result has been chosen. Fig. 5. Variation of coefficient C 1 with water contents for different suctions (i) 2 cm and (ii) 6 cm.

4 Bhagwan Das: Impact of Compaction State and Initial Moisture on Infiltration Characteristic of Soil Fig. 7. Variation of Infiltration rate with water content for different suctions (i) 2 cm and (ii) 6cm. Fig. 6. Variation of Infiltration rate with dry density for different suctions (i) 2 cm and (ii) 6 cm. In Fig.7 for suction equal to 2cm, with dry density 1.45g/cc the trend clearly shows that infiltration rate decreases with increase of water content. And other such as 1.5 g/cc and 1.6 g/cc density shown that infiltration rate decrease close to 6% of water content and then increase up to 8% of water content, and further decrease of infiltration rate up to 12% of water content, and it is expected that infiltration rate should decrease continuously with increasing of water. Fig. 5 depicts the variation of C 1 with water content for a given dry density. For infiltration study conducted at suction equal to 2 cm, it can be noted that C 1 variation up to 8% water content it may be increase or decreases, but after 12% water content onward the variation of C 1 value is only decrease continuously. It is expected that as water content increases, infiltration decreases and hence C 1 also decreases. And study conducted for 6cm suction as it is clearly visible by trend and expected that as water content increase the value of C 1 should decrease. It is also noted that for study of sands suction 6cm shows the more accurate result as compare to 2cm suction head. Fig. 6 depicts the variation of C1 with dry density for given water content. There is a decrease in C1 with an increase in dry density for all the water contents. Such a trend is true for both suctions 2cm and 6cm. As dry density increases, there is a decrease in pores and hence infiltration reduces. Such a decrease in infiltration results in reduction of C1. Fig. 8. Variation of Infiltration rate with dry density for different suctions (i) 2 cm and (ii) 6cm. Fig. 8 exhibits the variation of infiltration rate with dry density for particular water content. It can be noted that infiltration rate decreases with an increase in dry density due to decrease in pore space. For infiltration studies conducted at suction equal to 2 cm, all the trend of all water content presents that infiltration rate decreases with the increase of

American Journal of Water Science and Engineering 2015; 1(1): 1-6 5 dry density, except at 5.2% of water content, it may decrease of infiltration rate with dry density, but trend indicate the lower value of infiltration rate and it should be between 1.3% and 8.2% of water content. For infiltration studies conducted at suction equal to 6 cm, it is noted that all cases infiltration rate has marginal decrease with increase of dry density. For air dried water is more infiltrate and decrease with increasing the dry density. 4.2. Infiltration Test Performed on Red (Loam) Soil The infiltration on suctions equal 2cm has been performed on all compacted soil samples. Fig. 9 shows variation of infiltration rate for selected dry densities under different water contents. The infiltration rate versus time exhibits a well-defined trend for all the cases. So the results indicate that the trend show the constant infiltration in majority cases. These experiments carried out for a long duration unlike a sand experiment, and the best results have been obtained. Based on these results, the infiltration parameters such C1 and infiltration rate are correlated with water content and dry density, to study the influence of initial compaction parameters on infiltration. These are shown in Fig. 10 to 13. Fig. 9. Variation of infiltration rate with time at suctionequal to 2cm for different water contents (i) w= 3.3% (ii) w=7.3 % (iii) w= 11.02 % and (iv) w= 15.01 %. Fig. 10. Variation of coefficient C1 with water contents for suctions equal to 2 cm. Fig. 11. Variation of coefficient C1 with dry density for suctions equal to 2 cm. Fig. 12. Variation of Infiltration rate with water content for suction equal to 2 cm.

6 Bhagwan Das: Impact of Compaction State and Initial Moisture on Infiltration Characteristic of Soil References [1] Amer, A.M. (2011) Effects of water infiltration and storage in cultivated soil on surface irrigation. Journal of Agricultural Water Management, 98 (5) 815 822. [2] Chow, T. V. (1988). Applied Hydrology. McGraw-Hill Book Company, New York. Fig. 13. Variation of Infiltration rate with dry density for suction equal to 2 cm. 5. Conclusion Based on the present infiltration experimental studies various conclusions were drawn. Infiltration studies conducted for sand indicate that C 1 decreases with water content. Decrease in C 1 variation is quite drastic for water content up to 8%. Further, decrease in C 1 is marginal with increasing water content.the reduction of infiltration rate is drastic up to 5% water contents, for higher water content there is marginal change in infiltration rate. And it is also noted that there is marginal reduction of infiltration rate with increasing the dry density.it is also noted that for lower dry density infiltration rate is drastically decreasing with water content for suction equal to 2cm. Infiltration studies performed on Red (Loam) soil indicated the various results.for red soil it was indicated that C 1 is successively decreased with water content.it is noted that there is a decrease in C 1 with an increase in dry density for all the water contents, While there is a rapidly change in variation of C 1 with dry density for air dry red soil condition.it is also observed in the case of red soil experiments infiltration rate decreases with water content, because soil becomes saturated.it is also noted that infiltration rate variation is approximately constant with water content for higher dry density state. It can be noted that infiltration rate decreases with an increase in dry density due to the decrease in pore space. Infiltration rate variation with dry density gives the best results unlike sand experiment. [3] Dagadu, J.S., and Nimbalkar, P.T (2012) Infiltration studies of different soils under different soil conditions and comparison of infiltration models with field data., International Journal of Advanced Engineering Technology, 3(2),154-157. [4] Fernandez, D.M., and Cebollada,C.G. (2009) New method for monitoring soil water infiltration rates applied to a disc infiltrometer Journal of Hydrology, 379 (3-4), 315 322. [5] Jaramillo, A. R., Vandervaere, P. J., Roulier, S., Thony, L. J., Gaudet, P. J., and Vauclin, M. (2000). Field measurement of soil surface hydraulic properties by disc and ring infiltrometers. Journal of soil and tillage research, 55, (1-2)1-29. [6] Kinner, D.A., and Moody J. A. (2010) Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes Journal of Hydrology, 381 (3-4), 322 332. [7] Mollerup, M. (2007) Philip s infiltration equation for variable-head ponded infiltration Journal of Hydrology, 347 (1-2), 173 176. [8] Pitt, R., Chen, S.E., Clark, S.E., Swenson, J., and Ong, C.K. (2008) Compaction s impacts on Urban Storm-Water Infiltration Journal of irrigation and drainage engineering, 134(5), 652-658. [9] Prasad, K.S.H., Ojha, C.S.P., Chandramouli, P.N., and Madramootoo, C.A. (2010) Estimation of Unsaturated Hydraulic Parameters from Infiltration and Internal Drainage Experiments Journal of Irrigation and Drainage Engineering, 136(11), 766-773. [10] Woolhiser, D. A., Fedor. R. W., Smith. R. E., and Stothoff. S. A. (2006). Estimating Infiltration in the upper split wash watershed, Yucca Mountain, Nevada. Journal of Hydrologic Engineering, 11(2), 123-133.