Supporting Information

Similar documents
Velocity of DNA during translocation through a

Wayne Yang, Laura Restrepo-Pérez, Michel Bengtson, Stephanie J. Heerema,

Supplementary Information. Arrays of Individual DNA Molecules on Nanopatterned Substrates

Supporting Information. Label-Free Optical Detection of DNA. Translocations Through Plasmonic Nanopores

Torsional Constraints of DNA Substrates Impact Cas9 Cleavage

Supplementary material 1: DNA tracing

(a) Overview of the 2-helix bundle (2HB) nanospring design used in this study. The

Supporting Information

Masayoshi Honda, Jeehae Park, Robert A. Pugh, Taekjip Ha, and Maria Spies

Current ( pa) Current (pa) Voltage (mv) Voltage ( mv)

Fork sensing and strand switching control antagonistic activities of. RecQ helicases. Supplementary Information

CGTAAGAGTACGTCCAGCATCGGF ATCATTATCTACATCXXXXXTACCATTCATTCAGATCTCACTATCGCATTCTCATGCAGGTCGTAGCCXS

Supplementary Information Assembly of dsdna nanocircles into dimeric and oligomeric aggregates

SUPPLEMENTARY INFORMATION

Supporting Information: Tuning the electromechanical properties of single DNA molecular junctions

RNA-templated DNA origami structures

Novel One-Tube-One-Step Real-Time Methodology for Rapid. Transcriptomic Biomarker Detection: Signal Amplification by

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Enzymatic assembly of DNA molecules up to several hundred kilobases

Supplementary Information. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier

Supplementary Information

SUPPLEMENTARY INFORMATION

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014

Final exam. Please write your name on the exam and keep an ID card ready.

Synthetic Biology for

3-Input Majority Logic Gate and Multiple Input Logic Circuit Based on DNA Strand Displacement

Technical Seminar 22th Jan 2013 DNA Origami

Kinetically Grafting G-quadruplex onto DNA Nanostructure as Structure and. Function Encoding via DNA Machine

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Solid-state nanopores

Supporting Information

A Quick-responsive DNA Nano-Device for Bio-molecular Homeostasis Regulation

Effects of protein binding on topological states of DNA minicircle

Bootcamp: Molecular Biology Techniques and Interpretation

Supplementary Figure 1: Two modes of low concentration of BsSMC on a DNA (a) Protein staining (left) and fluorescent imaging of Cy3 (right) confirm

-SUPPORTING INFORMATION-

Objectives Introduction restriction endonucleases Examples: Hind III: Eco RI: Pst I:

Supplementary material of: Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities

Kinetic characterization of single strand break. ligation in duplex DNA by T4 DNA Ligase

Surface modification of a DNA tetrahedron

Supporting Information for the Manuscript. Characterizing Bonds Formed Between Platelet. Factor 4 and Negatively Charged Drugs Using

Biotechnology DNA technology

Supporting Information Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy

Supporting Information for: Plasmonic Nanopores. for Trapping, Controlling Displacement, and. Sequencing of DNA

GenBuilder TM Cloning Kit User Manual

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014

Amplified segment of DNA can be purified from bacteria in sufficient quantity and quality for :

DNA-Functionalized Electrodes for Nanodevice Assembly

High Throughput Sequencing Technologies. UCD Genome Center Bioinformatics Core Monday 15 June 2015

GenBuilder TM Plus Cloning Kit User Manual

GenBuilder TM Plus Cloning Kit User Manual

An anti-galvanic replacement reaction of DNA templated silver. nanoclusters monitored by light-scattering technique

Supporting Information for Small, smll

Agarose gel electrophoresis of DNA fragments

Assembly and Characterization of Two- Dimensional DNA Nanostructures Using Synthetic Three-Way Oligonucleotides. Master of Science Thesis CALIN PLESA

SUPPLEMENTARY INFORMATION

Suppl. Figure 1: RCC1 sequence and sequence alignments. (a) Amino acid

Purification and Sequencing of DNA Guides from Prokaryotic Argonaute Daan C. Swarts *, Edze R. Westra, Stan J. J. Brouns and John van der Oost

Detection of individual proteins bound along DNA

Supplementary Information

SUPPLEMENTARY INFORMATION

SUPPORTING INFORMATION. A cleavage-responsive stem-loop hairpin for assaying guide RNA activity

Detection of local protein structures along DNA using solid-state nanopores

Computational Biology I LSM5191

1. Molecular computation uses molecules to represent information and molecular processes to implement information processing.

Electronic Supplementary Information

HiPer RT-PCR Teaching Kit

Supporting Information. Sequence Independent Cloning and Posttranslational. Enzymatic Ligation

Experiment 5. Restriction Enzyme Digest and Plasmid Mapping. VY NGUYEN 26 February 2016

Fun with DNA polymerase

Journal of Young Investigators Peer-reviewed, Undergraduate Science Journal

Roche Molecular Biochemicals Technical Note No. LC 10/2000

qpcr Quantitative PCR or Real-time PCR Gives a measurement of PCR product at end of each cycle real time

SUPPLEMENTARY INFORMATION

Amplified Analysis of DNA by the Autonomous Assembly of Polymers Consisting of DNAzyme Wires

SUPPLEMENTARY INFORMATION

Supplementary Information

Non-invasive High-Throughput Single-Cell Analysis of the Intracellular ph of Yeast by

Active delivery of single DNA molecules into a plasmonic nanopore for. label-free optical sensing

Supplementary Figure 1: (a) 3D illustration of the mobile phone microscopy attachment, containing a 3D movable sample holder (red piece for z

Appendix IV Version

Restriction Enzymes and Lambda DNA

An Investigation of Mechanical. Properties of DNA Origami. Nanostructures

Slow DNA Transport through Nanopores in Hafnium Oxide Membranes

Sean M. McCarthy and Martin Gilar Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION

A self-assembled DNA nanostructure-amplified quartz crystal microbalance with dissipation biosensing platform for nucleic acids

* + * RecA * + + for RecA-dependent strand + + MIT Department of Biology 7.28, Spring Molecular Biology

Mission (Im)possible: Plasmid Mapping Student Materials

Supporting Information for. Differential Enzyme Flexibility Probed using Solid-State Nanopores

Supporting Information

This document serves as a detailed protocol to provide you with all the information

Stretching DNA as a template for molecular construction

Studies of G-quadruplexes formed within self-assembled DNA minicircles

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014

BIOLOGY 163 LABORATORY. RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017)

Characteristics of bacterial Plasmid : Size : Conformation : Replication origin of replication : Replication Protein :

Supporting Information

-dependent dynamics of DNA ejections for bacteriophage lambda

Transcription:

Supporting Information Velocity of DNA during translocation through a solid state nanopore Calin Plesa, Nick van Loo, Philip Ketterer, Hendrik Dietz, Cees Dekker Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands. Physics Department, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4a, 85748 Garching near Munich, Germany.

1. Construct Characterization Our synthetic DNA constructs were characterized using gel electrophoresis, atomic force microscopy (AFM), and nanopore measurements. Figure S1 shows the assembly of a DNA construct and the resulting shift in mobility after the attachment of the protrusion. Figure S2 shows that the migration speed of a linearized DNA origami construct is similar to a dsdna molecule of equal length. This indicates no significant difference in the persistence length due to the presence of the nicks that are present every 42 bp in the origami constructs, as any significant reduction in the persistence length would cause the construct to migrate faster in a gel. S1

Figure S1 Assembly of circular DNA construct with asymmetric protrusion. Labels: L, New England Biolabs 1kB DNA ladder; C, folded circular DNA object without protrusion; P, preannealed protrusion; P+C, mixture of P and C in 1:1 after incubation at RT for 1 day; m, folded objects; ex, non-integrated excess staple strands. Marked regions of interest were auto-leveled. The dashed red line assists to note the mobility shift after addition of the protrusion. S2

Figure S2 The 7560 bp asymmetric DNA construct after linearization (lane C+P lin.) alongside a Promega BenchTop 1 kbp DNA ladder (lane L). The linear DNA origami construct migrates accurately at the expected size for equivalent-length dsdna molecules, indicating no significant reduction in the persistence length compared to dsdna. S3

Figure S3 AFM scans of some DNA origami constructs before linearization. Arrow indicates the protrusion. Scale bar denote 1 µm (left) and 200 nm (right). AFM was used to image the DNA origami constructs as shown in Figure S3 and S4. Protrusions are marked with a red arrow. Samples with 10 mm Mg 2+ were incubated on freshly cleaved mica for several min, after which they were rinsed with water and dried with nitrogen gas. Imaging was carried out with a Nanoscope IV in tapping mode with Olympus AC160TS tips. S4

Figure S4 AFM scans of some DNA origami constructs after linearization. Arrows indicate the protrusion. Scale bars denote 200 nm. S5

Figure S5 The end-to-end distance measured for 58 DNA construct molecules after linearization. We find a root-mean-square end-to-end distance of 612 nm. In order to investigate the persistence length of the DNA origami constructs, we measured the end-to-end distances of 58 molecules, as shown in Figure S5. It has previously been shown that this approach can be used to estimate the persistence length of dsdna on a 2D surface, given that DNA molecules have been found to re-equilibrate on the surface in AFM measurements in the presence of Mg 2+. 1 We find a root-mean-square end-to-end distance (RMSD) of 612 nm. We compare this with several values given by the worm-like-chain (WLC) and freely-jointed-chain models, as shown in Table S1. We can determine the 2D end-to-end distance of a WLC polymer on a 2D surface using < > 4 1, (S1) where L is the contour length and L p is the persistence length of the molecule 1. Assuming WLC behavior and using Eq. S1, we thus find a persistence length of 38 nm for our DNA constructs. This value is not significantly lower than the value expected for dsdna (50 nm), while it is very much larger than values that can be expected for a freely-jointed chain model, both if one would S6

insert a persistence length of ~1nm as expected for ssdna, or 14 nm for a freely hinging chain of 42bp segments. Indeed, our DNA constructs do not behave like freely-jointed chains that would result in much smaller values for the RMSD (Table S1). These experimental data clearly indicate that the synthetic DNA constructs used should recapture the same translocation behavior as regular dsdna molecules. Table S1 A comparison of the measured root-mean-square end-to-end distance (RMSD) with the values predicted by several models for L = 2570 nm. AFM measured RMSD for DNA constructs on a mica surface Worm-like chain 2D RMSD using Eq. S1 with L p = 50 nm Worm-like chain 3D RMSD with L p = 50 nm Freely-jointed chain 3D RMSD with segment length of 50 nm Freely-jointed chain 3D RMSD with segment length of 14 nm (42 bp) 612 nm 703 nm 866 nm 507 nm 192 nm 2. Yield The gel shown in Figure S1, shows that the initial assembly reaction went to completion. We quantified the final yield using nanopore measurements, as shown in Table S2. The value of the yield is given as the percentage of unfolded translocation events with a protrusion out of all unfolded translocation events. We observe yields ranging from 29% to 85%. Several factors affect the final yield. i) The protrusion is first assembled through the hybridization of six oligomers. Any excess oligomers from this mixture may interfere with the binding of the protrusion if they hybridize to the M13 scaffold strand before a fully assembled protrusion does. ii) Since the protrusion is mixed with the scaffold strand at a 1:1 ratio, the yield may be affected by uncertainties in the stoichiometry of the oligomers and the presence of some protrusions which are not fully assembled. iii) We observe that purifications, which are required to remove S7

excess oligomers and restriction enzymes, reduce the final yield (Table S2). These factors all contribute to the final observed yield. Table S2 The final yield of the linear DNA construct with a side protrusion, as determined using nanopore measurements. Assembly # Construct Yield (%) Number of purifications after assembly 1 asymmetric 38% 2 29% 2 asymmetric 53% 1 3 symmetric 84% 1 85% 3. Velocity Data Figure S6 shows histograms of the translocation velocities measured for each of the three segments of the symmetric construct. The most probable translocation velocity is similar for all three with a value of around 2 bp/µs. A small shift towards higher velocities is seen in the last segment relative to the first segment which can be attributed to the speed up at the end of the translocation process. Figure S7 shows the mean local translocation velocity over various segments of the asymmetric DNA construct, including the protrusion. Figure S8 shows scatter plots, with the current blockade versus total translocation time, for the asymmetric construct for both events with and without the protrusion. S8

Figure S6 The segment velocities observed for each of the three segments of the symmetric construct. S9

Figure S7 The mean translocation velocity over various segments of the asymmetric DNA construct, for each orientation. Each horizontal line indicates the length of the segment that was used to elucidate its average speed, while the vertical line indicates the standard deviation for that segment. The dashed green line is the mean translocation velocity of all data in the dataset. Changes in the local velocity in the first and last segment are overlaid as grey lines where each line is the data for each molecule. Figure S8 Scatter plots showing the current blockade and total translocation time for the asymmetric DNA construct, showing both events with and without a protrusion. S10

4. Scaling of τ p of with τ DNA Figure S9 The linear scaling observed between the time required to reach the protrusion τ p and the total translocation time of the event τ DNA for the a) symmetric construct b) asymmetric construct in orientation I, and c) asymmetric construct in orientation II. Solid lines are linear fits with an intercept of zero and slopes of a) 0.521, b) 0.261, and c) 0.839. S11

5. Protrusion Oligomer Sequences Table S3 The following oligomers were used to assemble the protrusions. Construct Symmetric construct (protrusion in center) Oligos Used 2251_PK 2252_PK 1917_PK - 1920_PK Asymmetric construct (protrusion at side) 1631_PK 1916_PK - 1920_PK Table S4 Oligomer sequences, bold sequences indicate regions bound to the M13 scaffold. Oligo ID 1631_PK (140 bases) 1916_PK (110 bases) 1917_PK (100 bases) 1918_PK (100 bases) 1919_PK (130 bases) 1020_PK (100 bases) 2251_PK (119 bases) 2252_PK (94 bases) Sequence AAACATCGCCATTAAAAATACCGAACGAACCACCAGCAGAAGAAG ATCCAGCTTATGCTGAACACTGGTCTGATGATGTTAGAAGCGCTAGC GCAATAGGGACTTAACCTTAATTGGATGTCGATAGGATTCCGTGACTC AGGTTAAGTCCCTATTGCGCTAGCGCTTCTAACATCATCAGACCAGTG TTCAGCATAAGCTGGATCTTATAAAACAGAGGTGAGGCGGTCAGTA TTAACACCGCCTGCAA ACTGTAGATCCACTTGCGACCTTCGCTCGAGTCCCGGAGGTGGATGTT AAACTCAGCAGGGACTTATGGAGAGTCACGGAATCCTATCGACATCC AATTA TCCATAAGTCCCTGCTGAGTTTAACATCCACCTCCGGGACTCGAGCGA AGGTCGCAAGTGGATCTACAGTCGAGCTGAATTAATCAAGATCGCGA CCGTC CCTTATACATGAGGTTTGGGAGTCTGGACCATGGGCTCAACGTGCTAC GGGCACGTGCGTTAGCCGACTCCATCCTCACTATTAGATCCACCAGTT GCATGACGGTCGCGATCTTGATTAATTCAGCTCG ATGCAACTGGTGGATCTAATAGTGAGGATGGAGTCGGCTAACGCACG TGCCCGTAGCACGTTGAGCCCATGGTCCAGACTCCCAAACCTCATGTA TAAGG ATTTTGTCACAATCAATAGAAAATTAAGATCCAGCTTATGCTGAAC ACTGGTCTGATGATGTTAGAAGCGCTAGCGCAATAGGGACTTAACCT TAATTGGATGTCGATAGGATTCCGTG AGGTTAAGTCCCTATTGCGCTAGCGCTTCTAACATCATCAGACCAGTG TTCAGCATAAGCTGGATCTCATATGGTTTACCAGCGCCAAAGACAA S12

6. M13 Backbone Oligomer Sequences The following table lists all of the oligomers used to hybridize the 7560 base M13 ssdna scaffold. The HincII cut site used to linearize the molecule, leaving a blunt end, is highlighted in yellow. The control construct which did not contain any protrusion used all of the oligos in the table. In the case of the symmetric and asymmetric constructs, certain oligos where left out (as noted) so the protrusion could be attached. Green marked oligos are not used for the asymmetric construct with protrusion at side. Red marked oligos are not used for the symmetric construct with protrusion in center. An additional oligomer (2253_PK) was added for symmetric construct with center protrusion: 2253_PK AAGGGCGACATTCAACCGATTGAGGGAGGGAA Table S5 M13 oligomer sequences. AAAAATTTTTAGAACCCTCATATATTTTAAATGCAATGCCTG AAACAAACATCAAGAAAACAAAATTAATTACATTTAACAATT AAACATCGCCATTAAAAATACCGAACGAACCACCAGCAGAAG AAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGC AAACGCTCATGGAAATACCTACATTTTGACGCTCAATCGTCT AAAGGAACAACTAAAGGAATTGCGAATAATAATTTTTTCACG AAATCATAGGTCTGAGAGACTACCTTTTTAACCTCCGGCTTA AACATGAAAGTATTAAGAGGCTGAGACTCCTCAAGAGAAGGA AACCTACCATATCAAAATTATTTGCACGTAAAACAGAAATAA AACCTCCCGACTTGCGGGAGGTTTTGAAGCCTTAAATCAAGA AAGCAACTCGTCGGTGGGCACGAATATAGGGGCCTTGAATCG AAGCCCAATAATAAGAGCAAGAAACAATGAAATAGCAATAGC AATATGCAACTAAAGTACGGTGTCTGGAAGTTTCATTCCATA AATCAGAGCGGGAGCTAAACAGGAGGCCGATTAAAGGGATTT S13

AATCAGTGAGGCCACCGAGTAAAAGAGTCTGTCCATCACGCA AATCTACGTTAATAAAACGAACTAACGGAACAACATTATTAC AATTAACCGTTGTAGCAATACTTCTTTGATTAGTAATAACAT ACAGTTAATGCCCCCTGCCTATTTCGGAACCTATTATTCTGA ACGAAAGAGGCAAAAGAATACACTAAAACACTCATCTTTGAC ACGGTGTACAGACCAGGCGCATAGGCTGGCTGACCTTCATCA ACGTAACAAAGCTGCTCATTCAGTGAATAAGGCTTGCCCTGA AGAAACGATTTTTTGTTTAACGTCAAAAATGAAAATAGCAGC AGAAATTGCGTAGATTTTCAGGTTTAACGTCAGATGAATATA AGACAGTCAAATCACCATCAATATGATATTCAACCGTTCTAG AGAGTAATCTTGACAAGAACCGGATATTCATTACCCAAATCA AGCATAAAGCTAAATCGGTTGTACCAAAAACATTATGACCCT AGCGGATTGCATCAAAAAGATTAAGAGGAAGCCCGAAAGACT AGCTTAATTGCTGAATATAATGCTGTAGCTCAACATGTTTTA AGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAA AGGTAGAAAGATTCATCAGTTGAGATTTAGGAATACCACATT AGTAATGTGTAGGTAAAGATTCAAAAGGGTGAGAAAGGCCGG ATAAAACAGAGGTGAGGCGGTCAGTATTAACACCGCCTGCAA ATAAGGGAACCGAACTGACCAACTTTGAAAGAGGACAGATGA ATATATGTGAGTGAATAACCTTGCTTCTGTAAATCGTCGCTA ATCGCAAGACAAAGAACGCGAGAAAACTTTTTCAAATATATT ATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTG ATTGCTCCTTTTGATAAGAGGTCATTTTTGCGGATGGCTTAG ATTTTGTCACAATCAATAGAAAATTCATATGGTTTACCAGCG CAAAAATCAGGTCTTTACCCTGACTATTATAGTCAGAAGCAA CAAATGCTTTAAACAGTTCAGAAAACGAGAATGACCATAAAT CAACTAATGCAGATACATAACGCCAAAAGGAATTACGAGGCA CAAGAGAATCGATGAACGGTAATCGTAAAACTAGCATGTCAA CACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTACTA S14

CACAGACAGCCCTCATAGTTAGCGTAACGATCTAAAGTTTTG CACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGG CACTTGCCTGAGTAGAAGAACTCAAACTATCGGCCTTGCTGG CAGCTTGATACCGATAGTTGCGCCGACAATGACAACAACCAT CAGTAACAGTACCTTTTACATCGGGAGAAACAATAACGGATT CAGTAATAAAAGGGACATTCTGGCCAACAGAGATAGAACCCT CAGTGCCACGCTGAGAGCCAGCAGCAAATGAAAAATCTAAAG CATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACT CATATTCCTGATTATCAGATGATGGCAATTCATCAATATAAT CATCACCTTGCTGAACCTCAAATATCAAACCCTCAATCAATA CATCCTAATTTACGAGCATGTAGAAACCAATCAATAATCGGC CCAAAGACAAAAGGGCGACATTCAACCGATTGAGGGAGGGAA CCAATACTGCGGAATCGTCATAAATATTCATTGAATCCCCCT CCAATGAAACCATCGATAGCAGCACCGTAATCAGTAGCGACA CCACCCTCAGAACCGCCACCCTCAGAGCCACCACCCTCATTT CCCCAGCGATTATACCAAGCGCGAAACAAAGTACAACGGAGA CCCGAACGTTATTAATTTTAAAAGTTTGAGTAACATTATCAT CCGCACTCATCGAGAACAAGCAAGCCGTTTTTATTTTCATCG CCGCCAAAATAACCCCGCTTCTAATCTATTTACGCTCGCCCT CCGCCGCCAGCATTGACAGGAGGTTGAGGCAGGTCAGACGAT CCGCCTCCCTCAGAGCCGCCACCCTCAGAACCGCCACCCTCA CCGGAATCATAATTACTAGAAAAAGCCTGTTTAGTATCATAT CCGTCACCGACTTGAGCCATTTGGGAATTAGAGCCAGCAAAA CCGTCGAGAGGGTTGATATAAGTATAGCCCGGAATAGGTGTA CCTGATTGTTTGGATTATACTTCTGAATAATGGAAGGGTTAG CCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTT CCTGGTTGGTGTAATGAGTAAACAGGGCTTAAGCTACGTGGT CGACAATAAACAACATGTTCAGCTAATGCAGAACGCGCCTGT CGAGAAACACCAGAACGAGTAGTAAATTGGGCTTGAGATGGT S15

CGCAGTATGTTAGCAAACGTAGAAAATACATACATAAAGGTG CGCCCACGCATAACCGATATATTCGGTCGCTGAGGCTTGCAG CGCCTGATTGCTTTGAATACCAAGTTACAAAATCGCGCAGAG CGGAAGCAAACTCCAACAGGTCAGGATTAGAGAGTACCTTTA CGGAATACCCAAAAGAACTGGCATGATTAAGACTCCTTATTA CGGCAAAATCCCTTATAAATCAAAAGAATAGCCCGAGATAGG CGGGAGAATTAACTGAACACCCTGAACAAAGTCAGAGGGTAA CGGGTAAAATACGTAATGCCACTACGAAGGCACCAACCTAAA CGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGC CTACAAAGGCTATCAGGTCATTGCCTGAGAGTCTGGAGCAAA CTATATTTTCATTTGGGGCGCGAGCTGAAAAGGTGGCATCAA CTCGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAA CTGATAAATTAATGCCGGAGAGGGTAGCTATTTTTGAGAGAT CTTAGATTAAGACGCTGAGAAGAGTCAATAGTGAATTTATCA CTTTACAGAGAGAATAACATAAAAACAGGGAAGCGCATTAGA GAAAGACAGCATCGGAACGAGGGTAGCAACGGCTACAGAGGC GAAATGGATTATTTACATTGGCAGATTCACCAGTCACACGAC GAACAAAGTTACCAGAAGGAAACCGAGGAAACGCAATAATAA GAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCA GAAGGCTTATCCGGTATTCTAAGAACGCGAGGCGTTTTAGCG GAATCAAGTTTGCCTTTAGCGTCAGACTGTAGCGCGTTTTCA GAATGGAAAGCGCAGTCTCTGAATTTACCGTTCCAGTAAGCG GACCATTAGATACATTTCGCAAATGGTCAATAACCTGTTTAG GACCGTAATGGGATAGGTCACGTTGGTGTAGATGGGCGCATC GAGCCACCACCCTCAGAGCCGCCACCAGAACCACCACCAGAG GATAAAAACCAAAATAGCGAGAGGCTTTTGCAAAAGAAGTTT GCAACATATAAAAGAAACGCAAAGACACCACGGAATAAGTTT GCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTCCGAAAT GCCTTCCTGTAGCCAGCTTTCATCAACATTAAATGTGAGCGA S16

GCGAATTATTCATTTCAATTACCTGAGCAAAAGAAGATGATG GCGTTATACAAATTCTTACCAGTATAAAGCCAACGCTCAACA GCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCG GCTCCATGTTACTTAGCCGGAACGAGGCGCAGACGGTCAATC GCTGACGCATTTCACATAAATCATTTCTCCGAACTCTGACCT GCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTC GCTTGTTACCTCGATAAAGACGGAGGATCCCCGGGTACCGAG GGAAGATTGTATAAGCAAATATTTAAATTGTAAACGTTAATA GGAGTGACTCTATGATACCGACAGTGCGGCCCTGCCATCTGT GGAGTTAAAGGCCGCTTTTGCGGGATCGTCACCCTCAGCAGC GGCAAGGCAAAGAATTAGCAAAATTAAGCAATAAAGCCTCAG GGCCTCAGGAAGATCGCACTCCAGCCAGCTTTCCGGCACCGC GGGCGATGGCCCACTACGTGAACCATCACCCAAATCAAGTTT GGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTC GGTAAATATTGACGGAAATTATTCATTAAAGGTGAATTATCA GGTTATCTAAAATATCTTTAGGAGCACTAACAACTAATAGAT GGTTGGGTTATATAACTATATGTAAATGCTGATGCAAATCCA GTAACAACCCGTCGGATTCTCCGTGGGAACAAACGGCGGATT GTAACCGTGCATCTGCCAGTTTGAGGGGACGACGACAGTATC GTAATACTTTTGCGGGAGAAGCCTTTATTTCAACGCAAGGAT GTAGGGCTTAATTGAGAATCGCCATATTTAACAACGCCAACA GTGGATGTTCTTCTAAGTGGTTGTGAATTCATGCGCACGACT GTTACAAAATAAACAGCCATATTATTTATCCCAATCCAAATA GTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAA GTTTTAACGGGGTCAGTGCCTTGAGTAACAGTGCCCGTATAA TAAAACGACGGCCAGTGCCAAGCTTTCTCAGGAGAAGCCAGG TAACAGTTGATTCCCAATTCTGCGAACGAGTAGATTTAGTTT TAAGAACTGGCTCATTATACCAGTCAGGACGTTGGGAAGAAA TAAGTGTCCTTAGTGCTGAATTGTCAACCTTATGACAATGTC S17

TAATATCCAGAACAATATTACCGCCAGCCATTGCAACAGGAA TACCGACCGTGTGATAAATAAGGCGTTAAATAAGAATAAACA TAGACAGGAACGGTACGCCAGAATCCTGAGAAGTGTTTTTAT TAGACTTTACAAACAATTCGACAACTCGTATTAAATCCTTTG TAGAGCCGTCAATAGATAATACATTTGAGGATTTAGAAGTAT TAGGAATCATTACCGCGCCCAATAGCAAGCAAATCAGATATA TAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCAC TAGTAAGAGCAACACTATCATAACCCTCGTTTACCAGACGAC TATAAAGTACCGACAAAAGGTAAAGTAATTCTGTCCAGACGA TATCTTACCGAAGCCCTTTTTAAGAAAAGTAAGCAGATAGCC TCAAATATCGCGTTTTAATTCGAGCTTCAAAGCGAACCAGAC TCACCAGTAGCACCATTACCATTAGCAAGGCCGGAAACGTCA TCACCGTACTCAGGAGGTTTAGTACCGCCACCCTCAGAACCG TCAGGGATAGCAAGCCCAATAGGAACCCATGTACCGTAACAC TCATACATGGCTTTTGATGATACAGGAGTGTACTGGTAATAA TCATATGTACCCCGGTTGATAATCAGAAAAGCCCCAAAAACA TCATTTGAATTACCTTTTTTAATGGAAACAGTACATAAATCA TCGGCATTTTCGGTCATAGCCCCCTTATTAGCGTTTGCCATC TCGTCTTTCCAGACGTTAGTAAATGAATTTTCTGTATGGGAT TCTGACCTGAAAGCGTAAGAATACGTGGCACAGACAATATTT TCTGGTCAGTTGGCAAATCAACAGTTGAAAGGAATTGAGGAA TGAGTTTCGTCACCAGTACAAACTACAACGCCTGTAGCATTC TGCCAGAGGGGGTAATAGTAAAATGTTTAGACTGGATAGCGT TGGCCTTGATATTCACAAACAAATAAATCCTCATTAAAGCCA TGGTTGCTTTGACGAGCACGTATAACGTGCTTTCCTCGTTAG TGTAATTTAGGCAGAGGCATTTTCGAGCCAGTAATAAGAGAA TGTATCGGTTTATCAGCTTGCTTTCGAGGTGAATTTCTTAAA TGTCTTTCCTTATCATTCCAAGAACGGGTATTAAACCAAGTA TTAATTAATTTTCCCTTAGAATCCTTGAAAACATAGCGATAG S18

TTAATTTCAACTTTAATCATTGTGAATTACCTTATGCGATTT TTACCAACGCTAACGAGCGTCTTTCCAGAGCCTAATTTGCCA TTAGGATTAGCGGGGTTTTGCTCAGTACCAGGCGGATAAGTG TTAGTTAATTTCATCTTCTGACCTAAATTTAATGGTTTGAAA TTAGTTGCTATTTTGCACCCAGCTACAATTTTATCCTGAATC TTATCAACAATAGATAAGTCCTGAACAAGAAAAATAATATCC TTCTACTAATAGTAGTAGCATTAACATCCAATAAATCATACA TTCTGGTGCCGGAAACCAGGCAAAGCGCCATTCGCCATTCAG TTGAAAATCTCCAAAAAAAAGGCTCCAAAAGGAGCCTTTAAT TTGAATGGCTATTAGTCTTTAATGCGCGAACTGATAGCCCTA TTGAGCGCTAATATCAGAGAGATAACCCACAAGAATTGAGTT TTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAG TTTGAGGACTAAAGACTTTTTCATGAGGAAGTTTCCATTAAA TTTGCGGAACAAAGAAACCACCAGAAGGAGCGGAATTATCAT TTTGCTAAACAACTTTCAACAGTTTCAGCGGAGTGAGAATAG TTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAA TTTGTATCATCGCCTGATAAATTGTGTCGAAATCCGCGACCT TTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCG TTTTCATAATCAAAATCACCGGAACCAGAGCCACCACCGGAA TTTTGTTAAAATTCGCATTAAATTTTTGTTAAATCAGCTCAT TTTTTAACCAATAGGAACGCCATCAAAAATAATTCGCGTCTG S19

References (1) Rivetti, C.; Guthold, M.; Bustamante, C. J. Mol. Biol. 1996, 264, (5), 919-932. S20