Genetic Affinity, ß ODAP, Homoarginine and Asparagine Contents of Turkish Grass Pea Landraces

Similar documents
VARIABILITY IN FORAGE QUALITY OF TURKISH GRASS PEA (Lathyrus sativus L.) LANDRACES

Banat s Journal of Biotechnology

Vegetable Seed Regeneration and Quality Preservation

Maja Boczkowska. Plant Breeding and Acclimatization Institute (IHAR) - NRI

VARIATION OF AGRONOMIC TRAITS IN A WORLD COLLECTION OF VETCH (VICIA SATIVA L.)

Path Coefficient and Correlation response for Yield Attributes in Pigeon Pea (Cajanas cajan L.)

Mango, the King of Fruits is a delicious and widely cultivated fruit for a fresh

Soil Fertility Management. Mirza Hasanuzzaman Assistant Professor Department of Agronomy Sher-e-Bangla Agricultural University

COMPARATIVE EFFECTIVENESS AND EFFICIENCY OF PHYSICAL AND CHEMICAL MUTAGENS IN CHICKPEA (CICER ARIETINUM L.)

Identification of useful potato germplasm adapted to biotic and abiotic stresses caused by global climate change: old genes coping new challenges

AGILE (Application of Genomics to Innovation in the Lentil Economy) describes the diversity of lentil species by characterizing more than 300 lentil

Agroecology and Ecosystem based Adaptation (EbA)

Breeding rye (Secale cereale L.) for early fall-winter forage production

Achieving a forage revolution through improved varieties and seed systems

QUESTIONNAIRE about the socio-economic implications of the placing on the market of GMOs for cultivation. Contact Details

Applying next-generation sequencing to enable marker-assisted breeding for adaptive traits in a homegrown haricot bean (Phaseolus vulgaris L.

Key words: local landraces, dry beans, organic growing conditions, yield characteristics, cooking time

TABLE OF CONTENTS. Abbreviations List of figures List of Tables Acknowledgements Abstract..1-2

Lecture 1 Introduction to Modern Plant Breeding. Bruce Walsh lecture notes Tucson Winter Institute 7-9 Jan 2013

REFORMA Resilient, water- and energy-efficient forage and feed crops for Mediterranean agricultural systems

Advanced Plant Technology Program Vocabulary

Comparative assessment of wheat landraces from AWCC, ICARDA and VIR germplasm collections based on the analysis of SSR markers

SSR Markers For Assessing The Hybrid Nature Of Two High Yielding Mulberry Varieties

Volume -1, Issue-4 (October-December), 2013 Available online at popularkheti.info

Coping with Climate Change Challenges and Potential for Agriculture and Food Security in Arab Countries

AVOCADO GERMPLASM CONSERVATION AND IMPROVEMENT IN GHANA G. O. Nkansah*, K. G. Ofosu- Budu and A. W. Ayarna

Pulses strategy for sustainable food and nutritional security in SAARC region. Mohan C. Saxena

Crowdsourcing approach in East Africa: methods and lessons learned Jeske van de Gevel, Associate Expert Genetic Diversity Montpellier, France - 25

Crop Science Society of America

Mutagenesis as a tool for improvement of traits in grasspea (Lathyrus sativus L.)

Grand Challenges. C r o p S c i e n c e S o c i e t y o f A m e r i c a. Plant Sciences for a Better World

The European Protein Transition

EVALUATION AND CHARACTERIZATION OF PERENNIAL RYEGRASS (LOLIUM PERENNE L.) GENOTYPES COLLECTED FROM NATURAL FLORA

Biotechnology & Art HC 177 FOOD: nourishment

Seed microstructure and genetic variation of characters in selected grass-pea mutants (Lathyrus sativus L.)

Silage Corn in Australia

Maize genetic improvement for enhanced productivity gains in West and Central Africa

From Seed to Supply: Challenges and Opportunities in Potato Processing

Testing of uniformity of seven Lathyrus species using Bennett s and Miller s methods

Legumes are the 3 rd largest family of flowering plants

Authors: Vivek Sharma and Ram Kunwar

A research worker studies the growth of barley in a field at the Seibersdorf laboratory of the IAEA. Photo: IAEA/Void

Unit 3: Sustainability and Interdependence

Ethiopia and ICARDA Ties that Bind

NATIONAL INVENTORY FOR THE EX SITU CONSERVATION OF PLANT GENETIC RESOURSES IN TURKEY. Abdullah Inal Head of PGR Dept. Genebank Manager AARI-Turkey

Adaptation to new environments

YIELD EVALUATION OF EIGHTEEN PIGEON PEA (Cajanus cajan (L.) Millsp.) GENOTYPES IN SOUTH EASTERN TANZANIA ABSTRACT

HealthyMinorCereals. 1. Publishable summary

Clubroot Research Update: What have you done for me lately? Bruce D. Gossen AAFC, Saskatoon Research Centre

Azerbaijan National Academy of Sciences GENETIC RESOURCES INSTITUTE

AAFC Sector Science Strategies

Advanced Biology: Bahe & Deken. Agriculture & Nutrition. Chapter 9. Text Page

CONTRACT NUMBER: ICA4-CT FINAL REPORT

Chickpea is the world s 2 nd most important grain legume and critical to food security in much of the developing world

Resilient, water- and energy-efficient forage and feed crops for Mediterranean agricultural systems (REFORMA)

Application of U.S. EPA GLP Terminology for Selected Studies on Genetically-Engineered Crops. December 18, 2017

International Research and Development. Designing a Crop Rotation Plan with Farmers

EFFECTS OF ROW SPACING AND SEEDING RATE ON HAY AND SEED YIELD OF EASTERN ANATOLIAN FORAGE PEA (Pisum sativum ssp. arvense L.

The potential of underutilised crops to improve food security in the face of climate change

Forage, feed and supplements, Forages Hay and Processed Forage

Comparative study of EST-SSR, SSR, RAPD, and ISSR and their transferability analysis in pea, chickpea and mungbean

CONCEPT OF SUSTAINABLE AGRICULTURE

GMO Answers: Get to Know GMOs

B. Sc. (Ag) Hons. Semester- I

Evaluation of Lentil (Lens culunaris Medrik) Genotypes for Moisture Stress Plant Traits, Yield and Seed Quality under Rainfed Condition

University of Belgrade 31 faculty students graduates

ISSN: F. Budak, T. Tukel and R. Hatipoglu * ABSTRACT

Development of Early Maturing GEM lines with Value Added Traits: Moving U.S. Corn Belt GEM Germplasm Northward

The following are answers to frequently asked questions

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES AND DNA-PROFILING IN PARTICULAR. Eighth Session Tsukuba, Japan, September 3 to 5, 2003

Development of a new strategic plan

Policies to Strengthen Turkish Agriculture for Adaptation to Climate Change

Utilization Workgroup. Breeding Forage Bermudagrass for the U.S. Transition Zone Charles M. Taliaferro Oklahoma State University

Florica MORAR * TEZA DE DOCTORAT

1 A Genetically Modified Solution? Th e u n i t e d n a t i o n s World Food Program has clearly stated, Hunger

Agricultural Development Market Access Sub-initiative

Application of ISSR markers for detection of genetic variation in two Bulgarian autochthonous goat breeds

Overview: The DNA Toolbox

Public-Private Collaboration a Finnish solution. Marja Jalli MTT Agrifood Research Finland Plant Protection

ADAPTATION OF ANDEAN DRY BEAN (Phaseolus vulgaris L.) GENOTYPES TO DROUGHT STRESS

CALL FOR LETTERS OF INTENT BEEF CATTLE INDUSTRY SCIENCE CLUSTER III ( )

Biosafety Issues and Risk Assessment in Transgenic Crops

Grand Challenges. Plant Science for a Better World

ETHICAL AND SOCIAL CHALLENGES OF AGRICULTURAL TECHNOLOGIES ISSUES FOR DECISION-MAKERS. Julian Kinderlerer

Recent developments in the selection and breeding programme on Juglans spp. in Italy

Session Format 2/8/12. Is there a need to breed. to organic systems

Nutrition News for Africa 03/2017

ICARDA as a CGIAR Center

Directorate of Oilseeds Research

Kansas State University Pearl Millet Breeding Program Desalegn D. Serba

THE EFFECTS OF DIFFERENT NITROGEN DOSES ON TUBER YIELD AND SOME AGRONOMICAL TRAITS OF EARLY POTATOES

WHAT S ON THE HORIZON FOR BIOTECHNOLOGY IN ALFALFA AND FORAGE GRASSES? Joe Bouton 1 ABSTRACT

HCS806 Summer 2010 Methods in Plant Biology: Breeding with Molecular Markers

Activity 19 Winter Canola Rates/Dates Trial Annual Report March 31, 2016

Food, Agriculture, Fisheries and Biotechnology

Vegetable Production in Turkey II. Management of Production

GMO & Food Safety. Presented By: Dr. Yasser Mostafa Quality & Food Safety Manager MARS KSA

EVALUATION AND CHARACTERIZATION OF COWPEA (VIGNA UNGUICULATA (L.)WALP.) GENOTYPES FOR GROWTH, YIELD AND QUALITY PARAMETERS

Biotechnology and Genetically Modified Crops

Horticulture Research in Europe to 2020 and beyond

Transcription:

Genetic Affinity, ß ODAP, Homoarginine and Asparagine Contents of Turkish Grass Pea Landraces Z. Acar 1, N. Onar 1, H. Uysal 2, M. Can 1, F. Kumbasar 1, E. Tuzen 1 1 Ondokuz Mayis University, Samsun- Turkey 2 Adnan Menderes University, Aydin-Turkey

Lathyrus natural distribution is primarily centered in the Eastern Mediterranean region (Cocks et al., 2000). Turkey is an important center for Lathyrus with 65 species, 23 of them endemic (Gunes and Ozhatay 2000). In Anatolia grasspea has been cultivated for thousands years (Turk et al., 2007).

Advantages of grass pea; Drought and water logging tolerance, Low input requirements, Insect and pest resistance, Adaptation to a variety of climates and soils, Nutritional value of seeds, up to 35% protein content (Rosa et al., 2000).

L. sativus seeds has been consumed as a food legume in human and animal diet, but ıt contains some free amino acids. Such as; ß- N-oxalyl-L-α,ß-diaminopropionic acid (ß ODAP) is suggested to be the causative agent for a paralysis of the lower limbs, known as "neurolathyrism".

Homoarginine, which also play an important role in physiological and biochemical processes. Homoarginine has been proposed to modulate the toxicity of ß ODAP (Shamin et al., 2002). Asparagine is essential for healthy brain development in children and ıt also affect some body functions.

The aim of this paper was to provide information on the ß ODAP, homoarginine and asparagine contents and genetic affinity of grass pea populations cultivated in Turkey.

Methods From various regions of Turkey, 51 grass pea and one Lathyrus clymenum local landraces were collected and cultivated in the experimental fields of Ondokuz Mayis University. One released cultivar was also included in the research. The seeds harvested in the year of 2011 were analysed for ß ODAP, homoarginine and asparagine by a new, validated and simple capillary electrophoretic method.

Figure 1. The regions grasspea seeds collected from

Figure 2. Peak time and area of a) homoarginine, b) asparagine, c)α-odap and d, β -ODAP.

DNA analysis was performed in 5 plant stools by using appropriate primers and the method of ISSR to examine the genetic proximity.

Results and Discussion The highest values of both β-odap, homoarginine and asparagine belonged to the same genotype (LS 1501). The most abundant of the three measured amino acids was homoarginine.

Figure 3. Proportions of ß -ODAP, homoarginine and asparagine in seed extracts of 52 grass pea populations Concentrations; ß ODAP 1.04 to 8.68 mg/g Homoarginine 2.14 to 1.27 mg/g Asparagine 0.06 to 4.74 mg/g

This amino acid was followed by ß ODAP and asparagine. Polignano et al. (2005) reported ß -ODAP grass pea seed concentrations as 0.24-0.64% in 47 progenies. Fikre et al. (2008) indicated that homoarginine was up to 0.8%, ß -ODAP was between 0.02% and 0.54% while asparagine content was between 0.01% and O.06% in 9 genotypes.

There was a medium level positive correlation between β- ODAP and homoarginine concentrations (r 2 =0.649). Seeds containing high levels of β-odap, were found to have enhanced homoarginine content. This is very important because homoarginine can modulate the toxicity of ß ODAP (Shamin et al., 2002).

Figure 4. Correlation betweenβ-odap and homoarginin

This finding is in agreement with literature information; Piergiovanni & Damascelli (2011) also found a significant positive correlation between homoarginine and β- ODAP contents of seven Italian grass pea ecotypes cultivated in two locations of southern Italy.

Also a correlation between asparagine and β-odap levels was observed in some accessions. Comparison of these results with the data of this work reveals that homoarginine, ß -ODAP and asparagine concentrations of 52 Lathyrus local landraces seeds spread from low to high levels.

The ß -ODAP content of grass pea is known to vary widely, both among genotypes and environments (Campbell, 1997). We compared the data of ß -ODAP with the data published by Basaran et al. (2011) that belongs to the same Lathyrus local landraces (used the same analysis method). A statistical difference between ß -ODAP contents of 2011 harvest and collected samples in 2007 was found at 95% confidence level. The ß -ODAP data of this work reflect the differences due to the environment, because grass pea seeds of this study were obtained by cultivation of samples collected by Basaran et al. (2011).

The concentrations of the isolated DNA samples ranged between 17.3 ng/ml and 267.5 ng/ml. In the used primers, the band sizes in each genotype were obtained ranging between 0.23 kilo base (kb) and 1.28 kb. The DNA samples from grass pea genotypes were analysed through the program of NTSYSpc 2.0 after screening and scoring via ISSR primers.

Table 1. According to AMOVA (Analysis of Molecular Variance) proximity values of Lathyrus sativus genotypes ELZ01 ELZ02 ELZ03 MLT01 MLT02 MLT03 MLT04 ADI01 ADI02 NEV01 NEV02 NEV03 NEV04 NEV05 NEV06 BRD01 BRD02 BRD03 MUG01 DEN01 DEN02 DEN03 DEN04 DEN05 DEN06 DEN07 DEN08 USK01 USK02 USK03 USK04 USK05 USK06 USK07 USK08 USK09 USK10 USK11 USK12 USK13 USK14 USK15 USK16 KUT01 BUR01 BUR02 BUR03 BUR04 CNR01 CNR02 CNR03 SAM01 GURBUZ ELZ01 1,000 ELZ02 0,722 1,000 ELZ03 0,662 0,661 1,000 MLT01 0,661 0,660 0,716 1,000 MLT02 0,613 0,630 0,605 0,684 1,000 MLT03 0,672 0,709 0,678 0,650 0,639 1,000 MLT04 0,646 0,706 0,620 0,682 0,500 0,605 1,000 ADI01 0,652 0,588 0,624 0,600 0,542 0,614 0,713 1,000 ADI02 0,675 0,689 0,614 0,650 0,569 0,696 0,783 0,726 1,000 NEV01 0,637 0,607 0,635 0,648 0,481 0,686 0,739 0,595 0,756 1,000 NEV02 0,593 0,631 0,667 0,667 0,449 0,640 0,825 0,766 0,774 0,718 1,000 NEV03 0,579 0,568 0,561 0,555 0,466 0,609 0,615 0,557 0,574 0,538 0,614 1,000 NEV04 0,541 0,595 0,438 0,420 0,522 0,623 0,373 0,464 0,448 0,395 0,378 0,429 1,000 NEV05 0,610 0,610 0,552 0,622 0,532 0,616 0,645 0,581 0,680 0,532 0,631 0,634 0,503 1,000 NEV06 0,599 0,585 0,500 0,585 0,479 0,568 0,579 0,460 0,585 0,633 0,565 0,621 0,459 0,643 1,000 BRD01 0,515 0,591 0,436 0,542 0,589 0,552 0,561 0,467 0,573 0,496 0,573 0,595 0,456 0,657 0,626 1,000 BRD02 0,573 0,576 0,544 0,597 0,512 0,564 0,621 0,633 0,703 0,606 0,649 0,563 0,471 0,644 0,603 0,714 1,000 BRD03 0,578 0,587 0,481 0,495 0,449 0,551 0,543 0,493 0,567 0,477 0,553 0,520 0,504 0,591 0,500 0,722 0,755 1,000 MUG01 0,427 0,478 0,443 0,424 0,446 0,482 0,510 0,463 0,466 0,353 0,461 0,409 0,382 0,471 0,443 0,520 0,462 0,486 1,000 DEN01 0,588 0,579 0,548 0,681 0,504 0,611 0,598 0,618 0,632 0,604 0,642 0,595 0,460 0,624 0,545 0,637 0,728 0,705 0,486 1,000 DEN02 0,648 0,671 0,527 0,677 0,542 0,627 0,727 0,621 0,674 0,593 0,671 0,671 0,455 0,673 0,640 0,685 0,684 0,693 0,556 0,720 1,000 DEN03 0,568 0,589 0,536 0,651 0,463 0,634 0,732 0,638 0,715 0,636 0,731 0,652 0,412 0,631 0,562 0,644 0,699 0,627 0,488 0,807 0,743 1,000 DEN04 0,609 0,676 0,547 0,688 0,500 0,603 0,768 0,621 0,706 0,662 0,732 0,604 0,394 0,626 0,622 0,667 0,685 0,630 0,637 0,733 0,786 0,798 1,000 DEN05 0,542 0,685 0,467 0,588 0,519 0,580 0,551 0,533 0,475 0,478 0,600 0,556 0,458 0,481 0,543 0,620 0,529 0,623 0,504 0,647 0,709 0,639 0,681 1,000 DEN06 0,541 0,594 0,563 0,656 0,528 0,545 0,667 0,545 0,612 0,535 0,719 0,693 0,314 0,560 0,509 0,626 0,598 0,587 0,392 0,612 0,631 0,703 0,641 0,557 1,000 DEN07 0,504 0,625 0,386 0,462 0,466 0,471 0,590 0,436 0,574 0,562 0,577 0,681 0,442 0,649 0,716 0,678 0,595 0,559 0,452 0,488 0,652 0,544 0,692 0,651 0,522 1,000 DEN08 0,598 0,690 0,543 0,642 0,474 0,612 0,633 0,540 0,644 0,486 0,596 0,622 0,429 0,589 0,533 0,604 0,602 0,559 0,392 0,613 0,619 0,718 0,692 0,526 0,627 0,436 1,000 USK01 0,661 0,688 0,549 0,575 0,487 0,531 0,659 0,632 0,594 0,482 0,586 0,660 0,473 0,579 0,563 0,619 0,585 0,596 0,444 0,595 0,652 0,581 0,631 0,630 0,620 0,593 0,629 1,000 USK02 0,708 0,680 0,535 0,528 0,457 0,667 0,717 0,698 0,660 0,623 0,646 0,633 0,505 0,614 0,576 0,635 0,629 0,660 0,496 0,741 0,682 0,673 0,688 0,582 0,522 0,593 0,755 0,667 1,000 USK03 0,635 0,706 0,462 0,644 0,563 0,611 0,732 0,613 0,678 0,635 0,656 0,660 0,514 0,634 0,653 0,648 0,642 0,588 0,540 0,662 0,738 0,667 0,718 0,591 0,615 0,660 0,571 0,653 0,810 1,000 USK04 0,595 0,630 0,551 0,521 0,500 0,596 0,571 0,583 0,571 0,536 0,559 0,510 0,500 0,516 0,496 0,520 0,582 0,549 0,448 0,612 0,638 0,639 0,632 0,709 0,481 0,577 0,526 0,589 0,615 0,645 1,000 USK05 0,644 0,596 0,624 0,607 0,579 0,691 0,667 0,607 0,660 0,639 0,626 0,530 0,400 0,567 0,571 0,539 0,650 0,624 0,462 0,646 0,712 0,648 0,620 0,591 0,449 0,541 0,535 0,597 0,723 0,613 0,651 1,000 USK06 0,651 0,600 0,566 0,547 0,500 0,583 0,637 0,612 0,641 0,558 0,629 0,626 0,460 0,576 0,544 0,613 0,681 0,649 0,400 0,718 0,680 0,718 0,625 0,577 0,714 0,516 0,649 0,674 0,725 0,678 0,660 0,629 1,000 USK07 0,620 0,607 0,549 0,533 0,395 0,596 0,676 0,644 0,644 0,574 0,574 0,563 0,458 0,577 0,560 0,602 0,648 0,679 0,500 0,710 0,653 0,683 0,647 0,643 0,553 0,515 0,621 0,634 0,750 0,667 0,629 0,727 0,660 1,000 USK08 0,636 0,598 0,578 0,482 0,494 0,653 0,590 0,585 0,614 0,563 0,589 0,519 0,500 0,482 0,559 0,561 0,630 0,558 0,417 0,667 0,574 0,679 0,569 0,493 0,582 0,375 0,612 0,507 0,712 0,600 0,638 0,711 0,682 0,692 1,000 USK09 0,763 0,690 0,707 0,649 0,630 0,697 0,574 0,598 0,609 0,604 0,551 0,504 0,554 0,543 0,517 0,522 0,583 0,603 0,449 0,616 0,636 0,593 0,531 0,527 0,500 0,386 0,568 0,584 0,766 0,673 0,614 0,755 0,612 0,685 0,753 1,000 USK10 0,697 0,643 0,621 0,706 0,568 0,642 0,743 0,633 0,655 0,667 0,673 0,581 0,435 0,710 0,708 0,677 0,704 0,649 0,574 0,692 0,767 0,740 0,786 0,696 0,471 0,667 0,567 0,578 0,714 0,752 0,636 0,718 0,611 0,682 0,629 0,696 1,000 USK11 0,549 0,598 0,544 0,566 0,449 0,600 0,634 0,603 0,677 0,597 0,648 0,619 0,503 0,658 0,617 0,657 0,745 0,671 0,547 0,673 0,731 0,690 0,740 0,589 0,561 0,620 0,600 0,634 0,681 0,654 0,575 0,695 0,638 0,671 0,578 0,560 0,734 1,000 USK12 0,588 0,568 0,497 0,612 0,532 0,586 0,605 0,557 0,586 0,527 0,606 0,639 0,446 0,591 0,533 0,667 0,634 0,619 0,503 0,687 0,700 0,720 0,691 0,652 0,564 0,571 0,636 0,632 0,673 0,597 0,529 0,639 0,636 0,652 0,532 0,571 0,754 0,704 1,000 USK13 0,542 0,611 0,517 0,525 0,452 0,588 0,647 0,589 0,631 0,601 0,646 0,659 0,483 0,698 0,647 0,700 0,658 0,587 0,514 0,689 0,709 0,676 0,704 0,592 0,571 0,662 0,626 0,593 0,671 0,698 0,551 0,611 0,601 0,663 0,575 0,532 0,732 0,765 0,735 1,000 USK14 0,609 0,594 0,520 0,610 0,514 0,571 0,596 0,541 0,588 0,672 0,600 0,520 0,469 0,637 0,601 0,594 0,724 0,647 0,482 0,719 0,754 0,699 0,706 0,585 0,545 0,623 0,511 0,561 0,708 0,703 0,667 0,709 0,597 0,686 0,642 0,691 0,786 0,728 0,629 0,700 1,000 USK15 0,534 0,483 0,515 0,600 0,463 0,516 0,617 0,513 0,583 0,548 0,627 0,621 0,417 0,587 0,561 0,658 0,617 0,557 0,418 0,659 0,607 0,716 0,634 0,561 0,659 0,480 0,688 0,577 0,556 0,550 0,556 0,571 0,603 0,642 0,639 0,523 0,650 0,648 0,706 0,690 0,568 1,000 USK16 0,623 0,574 0,495 0,520 0,478 0,590 0,487 0,543 0,548 0,521 0,553 0,660 0,505 0,552 0,538 0,549 0,597 0,661 0,431 0,679 0,629 0,629 0,603 0,495 0,587 0,447 0,667 0,619 0,694 0,629 0,520 0,648 0,595 0,661 0,660 0,602 0,569 0,667 0,658 0,688 0,671 0,608 1,000 KUT01 0,489 0,587 0,495 0,529 0,333 0,510 0,620 0,563 0,563 0,549 0,583 0,577 0,388 0,545 0,505 0,583 0,653 0,591 0,371 0,655 0,661 0,693 0,667 0,658 0,638 0,556 0,590 0,537 0,750 0,630 0,579 0,627 0,575 0,727 0,576 0,596 0,640 0,639 0,636 0,637 0,667 0,571 0,548 1,000 BUR01 0,552 0,523 0,492 0,561 0,437 0,516 0,532 0,471 0,554 0,526 0,588 0,567 0,370 0,632 0,582 0,676 0,667 0,655 0,443 0,696 0,679 0,685 0,622 0,505 0,593 0,481 0,571 0,491 0,651 0,632 0,513 0,604 0,614 0,691 0,628 0,594 0,752 0,655 0,711 0,677 0,721 0,699 0,619 0,655 1,000 BUR02 0,567 0,512 0,523 0,536 0,366 0,597 0,526 0,523 0,537 0,505 0,534 0,583 0,444 0,560 0,544 0,618 0,642 0,678 0,364 0,702 0,615 0,687 0,623 0,538 0,523 0,505 0,658 0,545 0,654 0,544 0,577 0,577 0,655 0,612 0,652 0,610 0,585 0,647 0,667 0,696 0,629 0,617 0,699 0,674 0,678 1,000 BUR03 0,585 0,622 0,607 0,578 0,426 0,568 0,652 0,565 0,619 0,592 0,667 0,659 0,459 0,673 0,519 0,652 0,698 0,667 0,517 0,757 0,681 0,757 0,714 0,604 0,706 0,429 0,667 0,676 0,780 0,656 0,597 0,642 0,720 0,800 0,657 0,595 0,717 0,750 0,814 0,796 0,694 0,808 0,754 0,632 0,800 0,667 1,000 BUR04 0,633 0,582 0,638 0,533 0,412 0,645 0,667 0,634 0,629 0,610 0,640 0,613 0,434 0,523 0,497 0,536 0,595 0,603 0,440 0,671 0,632 0,706 0,591 0,545 0,655 0,438 0,620 0,586 0,705 0,615 0,703 0,760 0,655 0,717 0,753 0,694 0,650 0,616 0,579 0,588 0,634 0,667 0,689 0,667 0,603 0,643 0,747 1,000 CNR01 0,581 0,590 0,576 0,576 0,600 0,675 0,407 0,500 0,500 0,594 0,430 0,394 0,521 0,348 0,417 0,385 0,462 0,430 0,327 0,514 0,517 0,510 0,455 0,500 0,444 0,366 0,419 0,493 0,604 0,556 0,644 0,623 0,591 0,523 0,632 0,789 0,484 0,475 0,521 0,475 0,587 0,429 0,537 0,478 0,400 0,557 0,390 0,618 1,000 CNR02 0,557 0,500 0,466 0,522 0,400 0,466 0,646 0,567 0,590 0,651 0,667 0,532 0,313 0,504 0,547 0,598 0,605 0,598 0,523 0,617 0,655 0,707 0,737 0,611 0,623 0,591 0,483 0,613 0,597 0,605 0,554 0,593 0,657 0,650 0,509 0,526 0,719 0,661 0,617 0,580 0,641 0,622 0,526 0,627 0,598 0,521 0,667 0,619 0,491 1,000 CNR03 0,470 0,458 0,480 0,488 0,395 0,590 0,481 0,389 0,496 0,571 0,495 0,400 0,444 0,384 0,425 0,433 0,460 0,400 0,420 0,515 0,500 0,553 0,527 0,469 0,491 0,429 0,479 0,429 0,554 0,584 0,585 0,518 0,583 0,516 0,613 0,560 0,515 0,483 0,456 0,434 0,574 0,482 0,490 0,382 0,451 0,515 0,441 0,569 0,623 0,656 1,000 SAM01 0,528 0,617 0,467 0,500 0,421 0,608 0,525 0,533 0,596 0,571 0,591 0,632 0,425 0,515 0,464 0,529 0,547 0,526 0,389 0,597 0,574 0,667 0,632 0,578 0,642 0,557 0,603 0,554 0,657 0,593 0,743 0,535 0,568 0,642 0,592 0,593 0,579 0,583 0,615 0,611 0,594 0,559 0,540 0,667 0,518 0,637 0,613 0,652 0,613 0,590 0,545 1,000 GURBUZ 0,466 0,476 0,543 0,405 0,244 0,486 0,429 0,419 0,396 0,378 0,454 0,366 0,431 0,319 0,358 0,381 0,382 0,348 0,375 0,426 0,354 0,440 0,444 0,364 0,348 0,339 0,408 0,536 0,542 0,508 0,557 0,379 0,515 0,533 0,549 0,559 0,480 0,408 0,370 0,347 0,455 0,424 0,379 0,388 0,386 0,476 0,484 0,441 0,462 0,462 0,577 0,522 1,000

Figure 5. Genetically similarity dendrogram created with ISSR markers for grass pea genotypes

The lowest genetic relationship was determined between the genotype numbered 4402 and cultivar Gurbuz with the value of 0.244. The maximum genetic relationship was determined between the genotype numbered 4404 and the genotype numbered 5002 with the value of 0.825.

The average values of genetic distances among all genotypes identified as 0.592. Ten main groups were formed in dendrogram. The genotypes collected from similar ecological conditions have been found to combine as the basis of the subgroup of genotypes. Probably there has been seed exchange among the local farmers.

Conclusions The Lathyrus local landraces were collected from traditional farmers in various regions of Turkey. The data of this work reflects that ß -ODAP, homoarginine, asparagine contents and genetic affinity of grass pea local landraces vary in a wide range from very low to high levels. Although all of these accessions should be preserved as a genetic material, the grass pea genotypes with higher yield and low ß - ODAP content are relevant for future genetic and breeding studies.

A positive correlation between homoarginine and ß -ODAP quantities in seeds of 52 Lathyrus local landraces was proven in this work. This is very important because homoarginine can modulate the toxicity of ß ODAP (Shamin et al., 2002). The results obtained from this work and the other study conducted with the same landraces showed that environment affected ß -ODAP content of Lathyrus seeds.