Lecture 12 Converter Steelmaking Practice & combined blowing. Key words: Top blown steelmaking, combined blowing, bottom stirring, hot metal refining

Similar documents
LECTURE 13. Fundamentals of Converter Steelmaking Technology. Key words: BOF steelmaking, jet penetration, refining reaction, soft and hard jet

Lecture 21: Evolution of ladle Treatment and Requirements

Lecture 14 Modern trends in BOF steelmaking

Lecture 23: Injection ladle metallurgy

Metallurgy and lining life in basic oxygen converters

L. Coudurier, D.W. Hopkins and I.wilkomirsky: Fundamentals of metallurgical processes

Sulphur Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka. Today s Topics

Steel Making Prof. Deepak Mazumdar Prof. S. C. Koria Department of Materials Science and Engineering

Lecture 17 Alternative Charge Materials in EAF

Development of Dynamic Models for Oxygen Steelmaking

Secondary Steelmaking 1 Synthetic slag practice, injection ladle metallurgy, deoxidation

Phosphorous Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka

A DYNAMIC SLAG-DROPLET MODEL FOR THE STEELMAKING PROCESS

Research Article Adoption of Sinter Addition in Steelmaking Converter to Control Spitting

PYREJET A MULTI-FUNCTION COMBUSTION/INJECTION SYSTEM FOR EAF STEELMAKING

Part III: Slag Practices and Oxygen/Carbon Injection when Melting Direct Reduced Iron

Lecture 42: Self Assessment questions. 1a) Explain the role of a basic oxidising slag in steelmaking. (04)

Physical modelling of slag-metal dispersion

Oxidation of Iron, Silicon and Manganese

EAF Technology and process

Stainless Steelmaking

KITAMURA Laboratory ( )

A.K. LAHIRI. Thermodynamics of refining in electric furnace steelmaking

Application practice of BOF Slag tailings in steelmaking process

DEPHOSPHORIZATION AND DESULFURIZATION OF MOLTEN DUCTILE IRON AND ITS EFFECT ON DUCTILITY

Pyrometallurgy of iron is still the most important pyrometallurgical process economically.

Analysis of Droplet Generation in Oxygen Steelmaking

Steel Making Prof. Deepak Mazumdar Prof. S. C. Koria Department of Materials Science and Engineering

Analysis of Hot Metal Desiliconization Behavior in Converter Experiments by Coupled Reaction Model

Installation of Praxair s CoJet Gas Injection System at Sumikin Steel and other EAFs with Hot Metal Charges

Reduction in Charge Requirements of Hismeltiron-Making Process in Indian Context

REFINING STEELS PRODUCED IN ELECTRIC ARC FURNACE

Lecture 19: Emerging Steelmaking Technologies

PYROMETALLURGY OF IRON

Detailed CV. Degree obtained B.Tech Met. Engg M.Tech. Met. Engg Ph.D. (Dr.-Ing.) Met. Engg Post Doc Fellow Met Engg.

Steel Making Prof. Deepak Muzumdar Prof. S. C. Koria Department of Material Science and Engineering Indian Institute of Technology, Kanpur

A Novel Bottom Stirring Scheme to Improve BOF Performance through Mixing and Mass Transfer Modelling

Improvement in Hot-Metal Dephosphorization

THE INFLUENCE OF SLAG EVOLUTION ON BOF DEPHOSPHORISATION

GSMPM BLOW CHARGE MODEL IMPLEMENTATION AT ARCELORMITTAL TUBARÃO*

Production of Iron and Steels

Effect of MgO and Al 2 O 3 variations in oxygen steelmaking (BOF) slag on slag morphology and phosphorus distribution

Analysis of bloated droplet theory using steelmaking process models

Fundamental Research on a Rational Steelmaking Slag Recycling System by Phosphorus Separation and Collection

An optimal and consistent production process in a BOF

Lecture 26 Degassing Practice

BENEFIT OF GAS PURGING IN BOF AND EAF WITH A FOCUS ON MATERIAL EFFICIENCY AND CO2 EMISSION REDUCTION.

Sustainable Steel Decarburization by Oxide Addition

Module - 02 Lecture - 06 Limitation of Primary Steelmaking & Importance of secondary Refining

Lecture 25: Principles of degassing

Steelmaking using Induction Furnace

NUMERICAL SIMULATION OF SLAG FOAMING IN OXYGEN STEELMAKING

Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production

Efforts to improve the processing ratio of the BOF type furnace for hot metal dephosphorization at the Kakogawa Works

Multilayer Perceptron to Model the Decarburization Process in Stainless Steel Production

MASS AND HEAT BALANCE OF STEELMAKING IN BOF AS COMPARED TO EAF PROCESSES M.M.LOTFY 1, H.A.AHMED 2 AND F.A.ELREFAIE 3

IRONMAKING and THEORY AND PRACTICE. Ahindra Ghosh Amit Chatterjee

Twinjection Technology Improves Hot Metal Desulphurisation at Corus Scunthorpe Works

DISSOLUTION RATE OF PURE CaO AND INDUSTRIAL LIME IN CONVERTER SLAGS*

Improvement of Flux Reaction Efficiency in Steel Refining

Alloy Recovery and Control in Steel Melting

Steel Making Prof. Deepak Muzumdar Prof. S.C. Koria Department of Material Science and Engineering Indian Institute of Technology, Kanpur

Optimization of EAF Operations Through Offgas System Analysis INTRODUCTION

IRON AND STEEL INDUSTRY DEVELOPMENT AND TECHNOLOGICAL INNOVATION IN CHINA

The necessity of hot metal desiliconization process

FIRST OPERATING EXPERIENCES WITH POST-COMBUSTION LANCES AT BOF SHOP LD3

Manufacture of Pig Iron Concentration Calcination Smelting Blast furnace Chemistry of reactions in Blast furnace. 15CY101: Chemistry SRM University 2

calcium oxide removes acidic oxides basic oxides acidic oxides basic oxides Iron obtained from the blast furnace is contaminated with

Unique functions of slags in steelmaking

CFD modelling of argon stirred ladle. FIMECC Advanced Melt Metallurgy (AMMe) -project

Computer Supported Calculation and Evaluation of the Correct Composition of BOF Converter Slag

Modeling of Fluid Flow, Mixing and Inclusion Motion in Bottom Gas- Stirred Molten Steel Vessel

MGO-C REFRACTORY SELECTION AND EVALUATION FOR STEELMAKING VESSELS. J Terblanche Arcelormittal

Development of the Molten Slag Reduction Process -1 Characteristics of Closed Type DC arc Furnace for Molten Slag Reduction

RECYCLING PRACTICES OF SPENT MgO-C REFRACTORIES

An Insight into the Mechanism and Kinetics of Reactions In BOF Steelmaking: Theory vs Practice

AN OVERVIEW OF TREATMENT OF STEEL- MAKING SLAG FOR RECOVERY OF LIME AND PHOSPHORUS VALUES

Mechanism of Dissolution of Burnt Lime into Molten Slags Containing Iron Oxide.

Innovations in refining process technique Combined blowing vacuum converter with CO2

ROMELT PROCESS - PROMISING TECHNOLOGY FOR IRONMAKING. Yury Pokhvisnev, Vladimir Romenets, Valery Valavin, Alexander Zaytsev, Semen Vandariev

Joint Doctoral Projects in the area of process metallurgy of iron-making and Steelmaking/Non-Ferrous Extraction

Dipl.-Ing. Michael Berger, RHI AG, Vienna and Dipl.-Ing. Jochen Schlüter SMS Mevac GmbH, Essen. Seminar:

Modeling of Heat Transfer in LD Converter (BOF) Lining

Analysis of parameters affecting end blow manganese content at oxygen steelmaking

Trial on the Applicaton of Capillary Phenomenon of Solid CaO to Desulfurization of Liquid Fe

Thermodynamic database of P 2 O 5 -containing oxide system for De-P process in steelmaking

Conversion of CO 2 Gas to CO Gas by the Utilization of Decarburization Reaction during Steelmaking Process

EAF burdening How can EAF burdening best utilise DRI? Rutger Gyllenram Kobolde & Partners

MASTER'S THESIS. Thermodynamic Study of Trace Elements in the Blast Furnace and Basic Oxygen Furnace. Anton Andersson 2014

Cold rolled non-oriented (CRNO) silicon steel production at Rourkela Steel Plant, SAIL

This place covers: all treatments of molten iron or steel, including the apparatuses specifically related thereto, e.g. converter, electric furnace.

MELTING PROCESS INTENSIFICATION AT 20 t EAF - ŽĎAS, A.S.

Dr. Joseph J Poveromo, Raw Materials & Ironmaking Global Consulting DR Pellet Quality & MENA Applications

Over the past few decades the demand for steel

Characterization of Metal Droplets in Slag after Desulfurization of Hot Metal

< > The Experience of ArcelorMittal Lázaro Cardenas Flat Carbon. By R. Lule 1), F.Lopez 2), J. Espinoza 3) R. Torres 4) & R.D.

Use of Direct Reduced Iron in the Electric Furnace P CaO + MgO... o. 20. Mn Cr... <o.o05

Low Carbon Steels, Collected in the Refining Treatment and Continuous Casting Stages

Importance and Effect of Foaming Slag on Energy Efficiency

EFFECT OF ACTIVITY COEFFICIENT ON PHOSPHATE STABILITY IN MOLTEN SLAGS

Transcription:

Lecture 12 Converter Steelmaking Practice & combined blowing Contents: Refining of hot metal Composition and temperature during the blow Physico-chemical interactions Developments in Top blown steelmaking practice Concept of bottom stirring in top blowing Top blowing attributes Characteristic feature of converter steelmaking Environmental issues in oxygen steelmaking Causes of high turnover rates of BOF Key words: Top blown steelmaking, combined blowing, bottom stirring, hot metal refining Refining of hot metal After the previous heat is tapped and slag is drained, lining is inspected. Scrap and hot metal are charged. Converter is tilted into the vertical position and the lance is lowered in the vessel to start the blowing. Selection of the starting lance distance is such that the concentration of the force at the bath level should not cause ejection of tiny iron particles (sparking) and at the same time maximum bath surface area is covered by the oxygen jet. The starting lance distance(x i ) for specific oxygen blowing rate 3 Nm 3 can be calculated by ton min X i = 0.541(d b ) 1.04 d b is bath diameter in meter. For 150 Tons converter, d b = 4.87 m and X i = 2.8 m, when oxygen flow rate in approximately 450 Nm 3 /min. Initially oxygen is blown soft by keeping lance distance higher to promote slag formation and to avoid ejection of small particles, because hot metal is not covered by slag. Lime may be added either at the beginning of the blow or in portion during the blow. Oxygen is blown for nearly 15-20 minutes by progressively decreasing the lance distance such that slag foaming remains under control and oxidation reactions occur uninterruptedly. Slag and metal samples are analyzed. Composition and temperature during the blow

Typical variation of composition of metal with the blowing time is shown in figure 12.1 Figure 12.1: Variation of composition of metal during the blow The following observations can be made: Impurities like C, Si, Mn begin to oxidize simultaneously. Si and Mn oxidize faster relative to C. Also Fe oxidizes to FeO. Rate of carbon removal is low in the beginning. Formation of slag begins with the oxidation of Si SiO 2, Mn MnO and Fe FeO Dissolution of lime increases during the blow. In the initial periods FeO helps lime dissolution. Formation of basic and limy slag promotes removal of P. It may be noted that once slag is formed both C and P removal occur simultaneously. In the initial stages, carbon removal rate is kept lower than P removal since P removal is favoured at lower temperatures. If carbon is removed at a faster rate in the beginning bath temperature would increase which impedes dephosphorization. Once phosphorus removal is complete, carbon removal rate can be increased. Note that Mn content of metal decreases initially but at later periods of blow Mn content of bath increases. This is due to the onset of the following reaction: (MnO) + [Fe] = [Mn] + (FeO) In the later stages of the blow bath temperature increases due to decrease in carbon content and at the sametime FeO content of slag decreases. Both conditions are responsible for increase in Mn content of the bath. To overcome, sometimes iron ore additions are made to increase the FeO content of slag to adjust the Mn content of steel. Temperature of the bath increases continuously. Physico-chemical interactions Physico- chemical interactions of molten bath with oxygen jet depends on the lance profile i.e. change of lance height during the blow. The lance profile is specific to each converter and depends on converter profile, hot metal composition, oxygen flow rate, hot metal chemistry and steel of desired composition. Nevertheless, in all converters initial lance distance is such as to promote iron oxidation so that dissolution of CaO commences. The idea is to create a basic and limy slag at the early part of the blow to onset dephosphorization. Shallow jet penetration covers the larger bath surface and is favorable more for iron and silicon oxidation. Small amount of carbon may be removed. Once slag is formed, lance is lowered. Oxygen jet penetrates into the bath and carbon reaction favours because oxygen is available now deep into the bath. At the same time, force of the oxygen jet creates metal droplets and as a

consequence three phase dispersion of gas/slag /metal droplets are formed which enhance the rate of decarburization. Figure 12.2 shows the lance profile and the accompanying physico-chemical interactions A= hot metal, B=slag, C= oxygen jet, B 1 There phase dispersion of slag/ gas bubbles / metal droplets We note that at higher lance distance, oxygen jet penetration into bath is shallow and slag formation occurs. (See 12.2 a) As the lance distance is decreased, jet penetrates deep into the bath, carbon reaction commences, CO forms, droplets are produced which together leads to the formation of a three phase dispersion consisting of gas bubbles/slag/metal droplets (See 12.2 b and c). In this state of blow, both carbon and phosphorus removal occur at a faster rate. Formation of three phase dispersion is a characteristic feature of the top blown steelmaking. Three phase dispersion creates conditions for faster removal rates of C and P. Foaming of slag has to be controlled to avoid expulsion of slag, which can be controlled by controlling C reaction with FeO in slag. Reaction between C and FeO of slag in slag will not allow CO bubbles to grow. Smaller size gas bubbles can be trapped easily in slag as compared to larger sizes. Slag may foam and may be expelled from the converter. Developments in Top blown steelmaking practice The most important development in top blown steelmaking practice is the simultaneous gas stirring of the bath form the bottom of the converter. This has resulted in combination blowing processes. These processes differ in terms of bottom gas rate, number and arrangement of bottom tuyeres and type of bottom injection elements i.e. porous plugs or tuyeres and whether inert gas or oxidizing gas is used. All processes which use top blowing of oxygen and bottom stirring by inert gas is known as bath stirred top blown processes. In another type, oxygen is blown form top and bottom and is called top and bottom blowing processes. Concept of bottom stirring in top blowing In pure top blown steelmaking, bath agitation is very weak particularly during the initial and final stages of the blow. In the initial stages Si and Mn removal delays carbon removal whereas in the final stages carbon removal rate decreases. Figure 12.3 shows decarburization rate Vs time, typically observed in top blown steelmaking practice. Figure 12.3: Rate of carbon removal as a function of time of blow In the hatched regions, CO evolution in the bath is very low in pure top blown steelmaking; O 2 jet could not produce adequate bath stirring. Evolution of CO is the principle cause of bath agitation. Both in initial periods (silicon oxidation period) and in final periods (where rate of carbon removal is mass

transfer controlled), evolution of CO is low. Slag analysis reveals higher rate of oxidation of Fe to FeO in both the periods which is due to weak stirring in the bath. In main part of the blow higher carbon removal rate produces higher amount of CO and produces enough bath stirring. It is considered appropriate to introduce bottom stirring gas in a top blowing converter to stir the bath. Top blowing attributes Energetic supply of oxygen Control of slag formation Control of oxygen distribution. Simultaneous removal of C and P. Inadequate stirring of slag /metal phases. In bottom blown steelmaking, all oxygen is injected through the bottom tuyeres.though this technology provides efficient bath stirring and enhanced carbon removal, but it is difficult to distribute oxygen within the bath and also to control slag formation. The advantages of pure top and pure bottom are coupled and a new technology is developed under the name combined top blowing of oxygen and bottom stirring. The advantages of such a technology when compared with pure top blowing like reduced FeO content of slag and O content of steel etc. are obvious. Several process technologies for combined blowing were developed under different names. These technologies differ in Amount of inert gas Type, number and arrangement of bottom tuyeres and porous plugs. The reader may see the references given at the end of lecture to get technological details. Characteristic feature of converter steelmaking Supply of oxygen in the form of free gas jet is an important feature of converter steelmaking both in pure and different versions of combined blown ones. In this form of oxygen supply, the total time of blowing of oxygen is almost independent of converter capacity, oxygen blowing rate and bottom stirring. This was reflected by evaluating dimensionless momentum flow rate vs. ratio of time of blowing (t) /total blowing time(t tot ) for different converter capacities ranging from 40-400 tons. (See reference at the end). Dimensionless momentum flow rate was correlated as

m ρ l g L 3 = 7.25 10 3 (ϕ) 0.78 Where ϕ = t total It is illustrated in lecture 13 that dimensionless momentum flow rate describes the action of free oxygen jet produced by constant volume flow rate of oxygen at various lance distances. The dimensionless momentum flow rate number increases with the decrease in lance distance. Decrease in lance distance makes the blow hard and increase in lance distance makes the blow soft. Lance profile can be considered to generate soft blow initially and progressively harder blow with the progress of the blow. The fundamental requirements of the lance profile in all converter steelmaking are formation of FeO rich slag in the initial stage and then removal of carbon and phosphorus by progressively increasing the availability of oxygen in the bath to avoid over oxidation of slag. The first requirement is achieved by soft blow (shallow penetration of jet) and the other requirement is achieved by hardening the blow (deep penetration of jet into bath) progressively. Thus soft and hard blow are essential requirement of refining of hot metal by impinging oxygen jet irrespective of the converter capacity and type of converter steelmaking practices (pure top blowing combined blowing) as a result the total oxygen blow time remains more or less same. Environmental issues in oxygen steelmaking Control of emissions during transfer of hot metal to desulphurization station. Disposition of slag Capture and removal of contaminants in hot and dirty exit gas from the converter. Particulate matter exiting with the exit gas. Emission of CO. for this purpose sufficient excess air must be used at the hood to burn CO. Causes of high turnover rates of BOF i) Energetic supply of oxygen: This method ensures. Availability of oxygen where it is needed during refining Faster mechanism of mass transfer by producing droplets and slag/metal emulsion. ii) iii) Bottom stirring A basic and limy slag of required basicity is formed at the early stages of the blow.

References: A.Ghosh and A. chatterjee: ironmaking and steelmaking A chakrabarti: steelmaking R.H. tupkary and V.R. tupkary: modern steel making S C Koria: Dynamic variations of lance distance in impinging jet steelmaking processes, Steel Research, Vol. 59 (1988), No.6, p.257-262. S C Koria and K W Lange: Experimental investigation on selection of bottom injection parameters in combined blown steelmaking S C Koria and and A George: Experimental investigation on selection of bottom injection parameters in combined blown steelmaking, Ironmaking & Steelmaking, Vol.15 (1988) p.127-133 S C Koria and K W Lange: Penetrability of impinging gas jets in molten steel bath, Steel Research 58 (1987) No.9 p.421-426 S C Koria and K W Lange: Experimental investigation on selection of bottom injection parameters in combined blown steelmaking, Ironmaking & Steelmaking, Vol.15 (1988) p.127-133 S C Koria: Nozzle design in impinging jet steelmaking processes, Steel Research 59 (1988) No.3, p.104-109. S C Koria and K W Lange: Estimation of drop sizes in impinging jet steelmaking, Ironmaking and steelmaking V.13 (1986) No.5 p.236-240. S C Koria and K W Lange, Development of blowing practice for combined top blowing and bottom stirred processes, Process, Techn. Proceedings 5 th Intern. Iron and Steel Congress Vo.6, (1986) p.219-224 S C Koria and K W Lange: Correlation between drop size distribution or total drop mass and oxygen top blowing parameter, Process Techn./ Proceeding (5 th Intern. Iron and Steel Congress) Vol.6 (1986) p.353-356 S C Koria and K W Lange: Penetrability of impinging gas jets in molten steel bath, Steel Research 58 (1987) No.9 p.421-426 S C Koria, K W Lange and R. Siemssen: Application of empirical correlations to develop blowing pattern for small scale, combined blown Steelmaking converter, Institute for Ferrous Metallurgy, Technical Report (1987)p.1-117. S C Koria and A George Experimental investigation on selection of bottom injection parameters in combined blown steelmaking Ironmaking & Steelmaking, Vol.15 (1988) p.127-133

S C Koria and K W Lange Mixing time correlation in top gas stirred melts Arch. Eisenhuttenwes, 55 (1984) p. 97-100.. S C Koria and K W Lange Effect of Melting scrap on the mixing time of bottom gas stirred melts Proceeding 6 th Japan-Germany seminar, Tokyo, Japan (1984) p.91-101 S C Koria and K W Lange A new approach to investigate the drop size distribution of BOF steelmaking Met. Trans. 15B (1984) p.109-116.