Measurement Methods and Calculations to Determine Internal Deposit Stress. Frank H. Leaman Specialty Testing & Development, Inc.

Similar documents
DEPOSIT STRESS ANALYZER

DEPOSIT STRESS ANALYZER

Comparative Study of Three Internal Stress Measurement Methods

THE HULL CELL & ITS IMPORTANCE IN ELECTROPLATING

ATI Datalloy HP TM Alloy

MATERIALS. Music Wire. The following will be a general discussion of. Music wire is best used for smaller springs.

Page 1 of 46 Exam 1. Exam 1 Past Exam Problems without Solutions NAME: Given Formulae: Law of Cosines: C. Law of Sines:

MATERIAL PROPERTIES. Spring Characteristics

SnAg3.5 (CLF5013) Halide Free No Clean Core Wire

Beryllium Copper (BeCu) Fingerstrip Gaskets

CHAPTER 5 WORKPIECE MATERIALS AND PARAMETERS FOR EXPERIMENT

SnAg3.0 (CLF5013) Halide Free No Clean Core Wire

SOLIDS: Mass, Volume and Density Measurements

Prestressed bolt connection. i ii? Calculation without errors. Project information. Input section

Evaluation of Young s modulus of thin coated layer on cold-rolled steel sheet

Precision Micro-Aperture Catalog

MECHANICAL PROPERTIES PROPLEM SHEET

Beryllium-Copper Gaskets

Innovative, decorative grills & Screens

Stress in Electrodeposited Rhodium

Stainless Steel & Stainless Steel Fasteners Chemical, Physical and Mechanical Properties

Stamping Basics. Die Components Class of Tools Cost Drivers

STAINLESS STEEL. Useful Information

Tip Jacks. Johnson Components P.O. Box 1732 Waseca, MN Fax:

BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS

Modulus of elasticity and yield bending stress of coating lubrotec produced by the metal spraying process

material specifications

New approach to improving distortional strength of intermediate length thin-walled open section columns

Custom 455, UNS S45500

Electrical conductivity

48.5% Throughput. 6 Connector 51.5% Plastic. 45.7% Throughput. 4 Connector 54.3% Plastic. 51.0% Throughput. 2 Connector 49.

Page 1. by Tony Oriti * Coventya. Inc. Brooklyn Heights, Ohio, USA ABSTRACT

PIPEPROP Composite Pipe Properties Calculator

Understanding Coating Thickness Measurement Helmut Fischer

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor

Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES

Nickel Based Superalloy Hastelloy B-3 (UNS N10675)

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

Weldsafe Gross price list on request :

ATI 601 ATI 601. Technical Data Sheet. Nickel-base Alloy INTRODUCTION PRODUCT FORMS SPECIFICATIONS & CERTIFICATES (UNS N06601)

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

Sample Questions for Welding Engineering Examinations

Materials Selection: Case Studies

FINITE ELEMENT ANALYSIS FOCUSED ON THE FLANGE PLATES AND CONNECTING BOLTS OF RUBER BEARINGS

SECTION TRESPA ATHLON SOLID COMPOSITE PHENOLIC TOILET PARTITIONS. A. Solid composite phenolic toilet compartments and urinal screens.

SECTION DETENTION WINDOW SCREENS. 1. Detention screens for interior and exterior installations at exterior windows in existing buildings.

Complete Solder Solutions

Design of a Horizontal Creep Testing Machine

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

Stress Analysis of Fixed Site Series 6000 Antennas

EDEXCEL NATIONALS UNIT 18 ADVANCED MECHANICAL PRINCIPLES. ASSIGNMENT No. 1 - THE AFFECTS OF STRESS

Electroplating, Anodizing & Metal Treatment Hand Book

Density. The purpose of this experiment is to investigate the topic of density by determining the densities of some materials.

Electroplating, Anodizing & Metal Treatment Hand Book

I. CUSTOMER INFORMATION: REPORT NO

R = kc Eqn 5.1. R = k C Eqn 5.2. R = kc + B Eqn 5.3

E APPENDIX. The following problems are intended for solution using finite element. Problems for Computer Solution E.1 CHAPTER 3

CHAPTER III DYNAMIC BEHAVIOR OF A LABORATORY SPECIMEN

ARCAP AP1D AP1D lb/in³ 8.8 g/cm³ 240 Ohm circ mil/ft 40 microohm cm 212 F 572 F 932 F 1112 F 1832 F 100 C 300 C 500 C 600 C 1000 C

Part 4 MECHANICAL PROPERTIES

Chapter 6: Mechanical Properties

Team Metal Finishing Inc.

Question Paper Code : 11410

MECHANICAL PROPERTIES. (for metals)

ME 499/699 Materials Selection. Homework -1 Solutions. (a) Using the E-ρ chart identify metals with both E > 100 GPa and E/ρ > 23 GPa/(Mg/m 3 ).

Mechanical Properties of Metals. Goals of this unit

Development of High Throughput CIGS Manufacturing Process. PI: Neelkanth Dhere Students: Sachin Kulkarni, Ph.D.; Ph.D.; Ashwani Kaul, Ph.D.

Material data sheet. EOS StainlessSteel 316L. Description

SPECIFIC HEAT OF A METAL0103CP1

Nickel Electroplating

Phone: +49 (0) 231 / Fax: +49 (0) 231 / Spring hinges. Art.: 6164 Art.

AL 29-4C AL 29-4C. Technical Data Sheet. Stainless Steel: Superferritic INTRODUCTION (UNS S44735)

ME 207 Material Science I

Electrical conductivity

Code No: R Set No. 1

EDDY CURRENT TECHNOLOGY

Section Gabions Tender No. [ ] Page The following detail drawings are appended hereto and form part of this section.

GREEN THREAD Piping Systems

ATI 201 HP /ATI 201L HP

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Determination of Tensile Property of Bamboo for Using as Potential Reinforcement in the Concrete

SECTION Coiling Doors and Grilles Model 4320

Hastelloy C-2000 (UNS N06200)

Supporting Information. Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air

Hastelloy G-30 (UNS N06030) Chemical Composition

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar.

SECTION FLAGPOLES. 1.1 SUMMARY A. Section Includes: 1. Fixed high dimensional, ground set, uniform conical taper, seamless tube flag pole.

SECTION MASONRY ACCESSORIES

SEMMPF3-031 Finishing materials by electroplating methods

Testing and Evaluation of CFS L-headers

Estimate the endurance strength in MPa if the rod is used in rotating bending.

ALLOY DESCRIPTIONS. In the sections that follow, each of the common Ney alloys is described and the general characteristics of each are summarized.

Detailed studies of tensile and delamination properties of REBCO coated conductors

Belleville Spring. The relation between the load F and the axial deflection y of each disc. Maximum stress induced at the inner edge

Properties in Shear. Figure 7c. Figure 7b. Figure 7a

Stainless Steel 310/310S (UNS S31000/ UNS S31008)

Part IA Paper 2: Structures and Materials MATERIALS Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties

CAPACITOR DISCHARGE (CD) WELD STUDS & STUD WELDING EQUIPMENT

Determining the Density of Unknown Substances

Precision Electroforming in High-Strength NiColoy

Transcription:

Measurement Methods and Calculations to Determine Internal Deposit Stress Frank H. Leaman Specialty Testing & Development, Inc. York, PA

Methods for Deposit Stress Determination Bent Strip (simple beam theory) Spiral Contractometer

Simple Beam Theory Where: Then: N = Thickness of the plated coating (inches) T = Thickness of the test strip (inches) D = Deflection of the strip due to bending (inches) L = Length of the test section (inches) E = Modulus of elasticity of the test strip (lb/in 2 ) I = Moment of inertia of the cross section of test strip about its neutral axis S = Stress in plated layer (lb/in 2 ) S = 4E (N+T) D 3NTL

Bent Strip Method (Initial Approach) During the application of a coating, one end of the test piece is held in a fixed position and the other end is free to move. It is difficult to measure the value for D.

Bent Strip Method (Different Approach) A test piece split into two legs spreads outward due to the deposit stress The deflection is easily read by placing the test piece over a scale Calculate the deposit stress value by using a simple formula

Simple Beam Tensile and Compressive Stress Tensile Compressive

Compressive and Tensile Stress Compressive Tensile

Stress Evaluation Using the Bent Strip Method Test Strip in a Plating Cell

In-Site 1 Plating Cell Ideal for small solution volumes and lab studies, particularly when working with precious metals

Bent Strip Test Piece Measuring Stand

Stress Evaluation Using the Bent Strip Method Bent Strip Plating Test Cell

Test Strip Plating Cell with Accessories

Typical Deposit Stress Evaluation Plating Set-Up

Deposit Stress Calculations for Test Strips The Stoney Formula: = E T² M δ 3 L² t E = Modulus of elasticity of the substrate = 120,655 kg/cm². T = Thickness of the substrate in millimeters = 0.05077 mm. δ = 1/2 the distance between the test strip leg tips in mm. Example: 0.540 inch spread 2 x 25.385 mm/inch = 6.85 mm. = Stress in megapascals, MPa. Note: MPa x 145 = PSI. L = Length of substrate on which the deposit is applied in mm. For Deposit Stress Analyzer test strips, this value is 76.2 mm. t = Deposit average thickness in millimeters. M = Correction for modulus of elasticity difference between the deposit and substrate: M = EDeposit ESubstrate = 206,900 120,690 = 1.714 = E (.05077 mm) ² M ( δ mm) = mm³= MPa 3(76.2 mm)²(.002538 mm) 44.21 mm³ Deposit Stress in PSI = MPa x 145 = PSI Note: MPa is Megapascals, kg/cm.²

Spiral Contractometer Existing Design The test piece is a spiral. One end of the spiral is held, other end is free to move. As the free end moves, a dial registers the movement in degrees. The stress of the coating can be calculated.

Spiral on an Existing Contractometer

Spiral Plated on Existing Type Contractometer for Target Nickel Deposit Thickness of 500µ in a Semi-bright Bath after 20 Seconds Wood s Nickel Strike Deposit Location Thickness, µ Outside Surface 410 Inside Surface 85 Deposit stress over a 2 minute strike = 26.4% less than the New Design Contractometer result

New Spiral Properties New design spirals are constructed from 0.010 inch thick stainless steel and have a precise surface area of 13.57 in 2. Spirals mount on the contractometer in a way that the entire spiral plates from end to end and deposition of metal on the inside of spirals is minimal even if they are void of a masking material. The average test deposit thickness is 500

Properties and Plating Conditions for Spiral Contractometer Tests Spiral Material Stainless Steel Spiral Surface Area, in 2 13.57 Square Feet 0.0942 Amps per square foot 30 Amps 2.90 Stock Thickness, inches 0.010 Avg. Deposit Thickness, µ 500 Plating Time, Minutes 21 Solution Temperature 140 ± 1 F

A new geometry solves problems related to an exposed interior that allows deposition of the applied deposit to occur on the inside surface. Interior deposits reverse the type of stress and reduce calculated results as much as 30%. Interior masking is critical.

The new design provides masking of the interior surface by geometry and enables spirals to be plated tip to tip so the plated surface area is a constant value. Other advantages: Stainless steel inserts 30% glass filled nylon construction which prevents thread damage and spiral slipping More accurate results Saves time

Spiral Contractometer Equipment to Determine Internal Nickel Deposit Stress Spiral Contractometer with calibration weights, support stand and spiral test pieces. Container 4 diameter and 10 height for nickel strike anode basket and bath (1750 ml) Titanium Mesh Anode Basket 3.5 outside and 2.25 inside diameter, 8 high with support contact tabs and cover for Wood s nickel strike Titanium Mesh Anode Basket 5 outside and 4 inside diameter with support contact tabs and cover for the plating bath Nickel anode buttons to fill the anode baskets Pyrex beaker 4000 ml for a nickel plating bath Support stand designed to perfectly center over beaker Magnetic stirrer hot plate, 115 volt Digital temperature Controller pre-wired with probe to control ± 1 0 F Power Supply constant current, constant voltage, 0-5 amps, 0-30 volts Magnetic stirrer hot plate, 115 volt

Contractometer Stand, Anode Basket & Beaker

Contractometer Plating Set-Up

Data Recording for Spiral Contractometer Tests Deposit weight in grams: Kc degrees: Kt degrees: Degrees deflection caused by the deposit: Spiral weight in grams: Deposit weight in grams by subraction:

Average Deposit Thickness Calculation in Inches T = W = Inches D (87.55 cm 2 ) (2.54 cm/inch) W = Grams of nickel D = Density of nickel = 8.90 g/cm 3, and T = Deposit thickness in inches For the new spirals plated on the new design contractometers, the constant spiral plated surface area is 13.57 in 2 and the following shortened formula applies: T = W = Inches 1979.2

Calculating Deposit Stress Stress = 13.02 (D) (M) w x d = PSI D = Degrees caused by the deposit, M = Modulus of Elasticity of the deposit that of the substrate = 206,897 198,186 = 1.044 for nickel deposits over new spirals that are 0.010 inch thick, w = degrees Kt from spiral calibration if the stress is tensile or degrees Kc if the stress is compressive, and d = Deposit thickness in inches. Calculation Example: S = 13.02 (26) (1.04897) 33 (0.000536) = 20,073 PSI

Modulus of Elasticity Values Stock Material Cu-Fe Alloy Ni Fe Alloy Ni-Fe Alloy Pure Ni ES* 120,690 144,830 179,310 206,900 Stock Thickness, in 0.0020 0.0015 0.0010 0.0010 Metal ED** Values for M*** Cadmium 31,720 0.263 0.219 0.177 0.153 Chromium 248,280 2.06 1.71 1.39 1.20 Cobalt 206,897 1.72 1.43 1.15 1.00 Copper 117,240 0.971 0.810 0.654 0.567 Gold 74,480 0.617 0.514 0.415 0.360 Nickel 206,900 1.71 1.42 1.14 1.00 Platinum 146,900 1.22 1.02 0.819 0.710 Rhodium 289,650 2.40 2.00 1.62 1.400 Silver 75,860 0.629 0.524 0.423 0.367 Zinc 82,760 0.686 0.571 0.462 0.400 ES*, modulus of elasticity of substrate material in the Stoney Formula. ED**, Modulus of elasticity of deposit for use in modified Deposit Stress Analyzer and Stoney formulas. M***, modulus of elasticity of deposit modulus of elasticity of substrate for deposit stress determinations using the modified Deposit Stress Analyzer and Stoney Formulas.

A Frequent Mistake in Test Procedure Spiral Test Strips Deposit Thickness 1 2 3 To Stock Ratio 1:20 1:20 1:5 Stock Thickness, Inches 0.010 0.002 0.002 Deposit Thickness, µ Inches 500 500 100 Minutes Plated 20 4 20 Current Density, ASF 30 30 30 Deposit Stress, PSI 14,060 14,127 6,865 Note: Extra thick deposits of the harder metals increases the degree of stiffness which results in lower proportional test strip spread.

Formulas for Bent Strip with One End Stationary* Bent Strip Stress Curve For the comparison of equations that follow that apply to calculating the internal deposit stress of applied metallic coatings over various substrate materials, the value of U = 8.5 units = 0.780 inch will consistently be used as a basis. It will be noted that the calculated internal deposit stress values vary from equation to equation, particularly where the equation fails to address Modulus of Elasticity differences between the substrate and the deposit. Relationship between δ and Z. Example: For a given test strip, U = 8.5 units = 0.780 inch, and δ = U in inches x 25.385 mm/inch 2, so in this case δ = 9.90 mm. δ = 4Z Z = δ 4 L = 76.155 mm Using δ = 9.900 mm, Z = 9.90 mm 4 = 2.475 mm R = L² + 4Z² = 5824.1 = 303.34 mm 8Z 19.2 *Note: These formulas only work for bent strip applications

Stoney Formula Without and With Correction for Modulus of Elasticity Differences Between the Deposit and the Substrate Example: For a Cu-Fe test strip, U = 8.5 units = 0.780 inch δ = U in inches x 25.385 mm/ inch 2 = 9.900 mm WITHOUT σ = 4ET²Z = ET² δ = 91.137 MPa = 13,214.9 PSI 3L²t 3L²t L = test strip plating length = 76.2mm, T = Stock thickness = 0.05077mm and t = Deposit thickness = 0.000075 inch = 0.001904mm WITH M = Edeposit Esubstrate = 206900 120690 = 1.714 σ = ET² δm = 120690(0.05077)²(9.900mm)(1.715) = 156.30 MPa 3 L² 3(76.2mm)²(0.00194mm) σ = MPa (145 PSI/MPa) σ = 22,663.5 PSI

Other Bent Strip Formulas to Determine Internal Deposit Stress in Applied Metallic Coatings Barklie and Davies Formula σ = ET² 6Rt (1 t/t) Heussner, Balden and Morse Formula σ = 4ET²Z 3t (T + t) L Brenner and Senderoff Formulas σ = ET(T+ ᵦt) ᵦ = Edeposit Esubstrate 6Rt σ = E (t + T)³ 3Rt (2T + t)

Brenner and Senderoff Formula for Bent Strip Applications Brenner and Senderoff Formula σ = ET(T+ ᵦt) ᵦ = Edeposit Esubstrate = 1.714 6Rt σ = 120690 MPa (.05077mm)(.05077mm +1.714(.001904mm) = 95.538 MPa 6(303.34mm)(.001904mm) 95.538 MPa x 145PSI/MPa = 13,853 PSI Note: This formula doesn t correct for large differences in Modulus of Elasticity values. The uncorrected Stoney result was 13,215 PSI. To be correct, this Brenner and Senderoff formula requires modification.

Modified Brenner and Senderoff Formula Modified for Modulus of Elasticity Differences To be correct, this Brenner and Senderoff formula requires modification as follows: σ = ET²ᵦ (25)(t/T), ᵦ = 206900 MPa = 1.714 6Rt 120690 MPa σ = 120690 MPa(0.054077mm)²(1.714)(26.5)(0.001904mm/0.054077mm) 6(303.34mm)(0.001904mm) σ = 153.66 MPa (145 PSI/MPa) = 23,618 PSI The corrected Stoney formula result was 23,664 PSI