A green method to leach vanadium and chromium from residue using NaOH-H 2 O 2

Similar documents
A novel method to extract vanadium from vanadium-bearing steel slag using sodium carbonate solution

Simultaneous extraction of vanadium and chromium from vanadium slag using low-pressure liquid phase oxidation method

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

Leaching of magnesium from desiliconization slag of nickel laterite ores by carbonation process

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-2, Issue-8, August- 2016]

Kinetics of Recovery of Alumina from Coal Fly Ash through Fusion with Sodium Hydroxide

STUDY ON ALKALI LIQUOR ROASTING AND SULPHURIC ACID LEACHING OF BAYAN OBO RARE EARTH CONCENTRATE

Preparation of ZnSO 4 7H 2 O using filter cake enriched in calcium and magnesium from the process of zinc hydrometallurgy

Extraction of vanadium from sulfuric acid leaching solution of stone coal by ion exchange

Green Manufacturing Process of Chromium Compounds

Alkali Fusion-Leaching Method for Comprehensive Processing of Fly Ash

Table of Contents. Preface...

Dissolution of copper from a primary chalcopyrite ore calcined with and without Fe 2 O 3 in sulphuric acid solution

BORABU-MASABA DISTRICTS JOINT EVALUATION TEST 2012 Kenya Certificate of Secondary Education (K.C.S.E)

UTILIZATION OF CALCIUM SULFIDE DERIVED FROM WASTE GYPSUM BOARD FOR METAL-CONTAINING WASTEWATER TREATMENT

Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure


Electrochemistry Written Response

Calcified roasting-acid leaching process of vanadium from low-grade vanadium-containing stone coal

General Principle of Isolation of Elements (NCERT)

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

Oxidative Leaching Kinetics of Vanadium from Egyptian Boiler Ash under Acidic Oxidizing Conditions

Potential ph diagrams of Cr-H 2 O system at elevated temperatures

Quantitative Analysis of Phosphorus Removal Based on its As-Beneficiated Content, Iron Extraction Rate and Input Concentration of H 2 O 2

Predictability of Iron Extraction Rate Based on Rate of Phosphorus Removal and As-Beneficiated Phosphorus Content during Leaching in H 2 O 2

Factors Research on the Influence of Leaching Rate of Nickel and Cobalt from Waste Superalloys with Sulfuric Acid

OXIDATION-REDUCTION TITRATIONS-Permanganometry

Performance of Sulfuric Acid Leaching of Titanium from Titanium-Bearing Electric Furnace Slag

ICSE-Science 2 (Chemistry) 2004

Recovery of Copper and Zinc from Brass Wastes via Ionic Liquid Leach

CO forms CO 2. forms. (a) The coke reacts with the oxygen in the air to form carbon dioxide. C + O 2

Chemical Activation of Low Calcium Fly Ash Part 1: Identification of Suitable Activators and their Dosage

Q1. From the following list of substances, choose the substances which meet the description given in parts (i) to (v) below :

The ion with Vanadium in its oxidation state of 5 exists as a solid compound in the form of a VO 3

A New Method of Potassium Chromate Production from Chromite and KOH-KNO 3 -H 2 O Binary Submolten Salt System

Selective Separation and Recovery of Copper from Iron and Copper Mixed Waste by Ammonia Solution

Extraction of Tin from Hardhead by Oxidation and Fusion with Sodium Hydroxide

WATER AND CARBONATE BALANCES IN AN ALKALINE URANIUM EXTRACTION CIRCUIT

CARBONATION OF WOLLASTONITE USING SUPERCRITICAL CARBON DIOXIDE

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment

The Function of Ca(OH) 2 and Na 2 CO 3 as Additive on the Reduction of High-Phosphorus Oolitic Hematite-coal Mixed Pellets

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER ICSE

Dissolution Kinetics of Chalcopyrite with Hydrogen Peroxide in Sulphuric acid Medium

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System

OVERVIEW on the EXTRAVAN Innovative extraction of Vanadium

Empirical Evaluation of Removed Phosphorus Concentration Based on Its As- Beneficiated Content and Grain Size of Iron Ore Leached in H 2 O 2

Utilization of ferro-manganese slag for production of manganese sulphate and Electrolytic manganese metal/manganese di-oxide

Comparative Assessment of Phosphorus Removal from Nigeria s Agbaja Iron Ore Using Potassium Chlorate and Sodium Hydroxide

One step purification of impurities in the leachate of weathered crust elution-deposited rare earth ores

5th International Conference on Measurement, Instrumentation and Automation (ICMIA 2016)

Research Article. Ozonation catalyzed by iron silicate for the degradation of p-chloronitrobenzene in aqueous solution

Optimisation of the Leaching Parameters of a Gold Ore in Sodium Cyanide Solution

The Effect of Underwater Explosion on the Kinetics of. Alkaline Leaching of Roasted Tungsten Carbide Scraps for Recycling

Gasification of bamboo carbon with molten alkali carbonates

Dissolution kinetics of smithsonite ore in ammonium chloride solution

This section describes the chemicals, apparatus and experimental procedure used.

WM 03 Conference, February 23-27, 2003, Tucson, AZ IN-SITU CHEMICAL OXIDATION OF CHLORINATED HYDROCARBONS IN THE PRESENCE OF RADIONUCLIDES

Non-Ferrous Extractive Metallurgy Prof. H. S. Ray Department of Metallurgical & Materials Engineering Indian Institute of Technology, Kharagpur

Preparation of Trivalent Chromium Coating on 6063 Aluminum Alloy Jian-Zhen HUANG 1,a,* and You-Xiong LUO 1,b

Study on reduction behavior of molybdenum trioxide in molten steel

Study on leaching Ti from Ti bearing blast furnace slag by sulphuric acid

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

Recovery of Nickel from Selectively Reduced Laterite Ore by Sulphuric Acid Leaching

MSE 352 Engineering Ceramics II

IMPC 2016: XXVIII International Mineral Processing Congress Proceedings - ISBN:

Leaching Kinetics and Recovery of Vanadium from Egyptian Boiler Ash Under Alkaline Oxidizing Conditions ( 67 )

Preparation of Polymeric aluminium ferric chloride from bauxite tailings

Using an anodic Fenton process for degradation of nitrobenzene in waste water

EQUILIBRIUM OF LIGNIN PRECIPITATION

Preparation of Magnesium Carbonate Whisker from Magnesite Tailings

LEACHING OF ILMENITE AND PRE-OXIDIZED ILMENITE IN HYDROCHLORIC ACID TO OBTAIN HIGH GRADE TITANIUM DIOXIDE R. Vásquez, A. Molina

Production of g-alumina from waste aluminium dross

2K CrO H SO K CrO K SO H O potassium dichromate yellow. orange

Precipitation of Nickel Hydroxide from Simulated and Atmospheric-Leach Solution of Nickel Laterite Ore

SHAPE EFFECT OF CERIA ON THE ACTIVITY OF Au/CeO 2 FOR PREFERENTIAL CO OXIDATION

The use of ion exchange in the recovery of vanadium from the mass of a spent catalyst used in the oxidation of SO 2 to SO 3

Suggest one reason why spoons are electroplated. ... Why is hydrogen produced at the negative electrode and not sodium?

CHLOR-ALKALI INDUSTRY

Dissolution kinetics and mechanisms of reaction of Udi clay in nitric acid solution

EFFECT OFTHE TYPE OFCARBON MATERIALON THE REDUCTION KINETICS OF BARIUM SULFATE

Kinetics of Sulcis Coal Chemical Cleaning Process

Locked Cycle Leaching Test and Yellowcake Precipitation

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY

Leaching performance of low grade zinc oxide ore in the system of NH3(NH4)2SO4-H2O

1. Scaling. H.O.: H-5/21, KRISHNA NAGAR, DELHI Tel.: , Fax:

addition on the selective reduction of limonite ore from Southeast Sulawesi

EFFECT OF MECHANICAL ACTIVATION ON THE KINETICS OF LEACHING OF CHALCOPYRITE IN THE FERRIC SULFATE MEDIA

Industrial Application of Large Rotary Kiln for Recovery of Vanadium from Vanadium Slag Added MnVO 4 in Calcium Roasting Process

Effect of Nano-Sized Fe 2 O 3 on Microstructure and Hydration Resistance of MgO-CaO Refractories

Reduction smelting on bismuth oxide residue in FeO SiO 2 CaO ternary slag system

Supplementary Information

Chemical reactions and electrolysis

Liquid-Liquid Extraction of Gallium from Jajarm Bayer Process Liquor Using Kelex 100

STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL

ZINC RECOVERY FROM WASTES USING SPENT ACID FROM SCRAPPED LEAD ACID BATTERIES

LEACHING OF STIBNITE BY MIXED Na 2 S AND NaOH SOLUTIONS

9/12/2018. Course Objectives MSE 353 PYROMETALLURGY. Prerequisite. Course Outcomes. Forms of Assessment. Course Outline

Journal of Chemical and Pharmaceutical Research, 2014, 6(3): Research Article

WJEC England GCSE Chemistry. Topic 11: Production, use and disposal of important chemicals and materials. Notes

Transcription:

www.nature.com/scientificreports Received: 4 September 2017 Accepted: 19 December 2017 Published: xx xx xxxx OPEN A green method to leach vanadium and chromium from residue using NaOH-H 2 O 2 Hao Peng 1, Zuohua Liu 2 & Changyuan Tao 2 Hydrogen peroxide as an oxidant was applied in leaching of vanadium and chromium in concentrated NaOH solution. Under the optimal reaction conditions (the liquid to solid ratio of 4.0 ml/g, residue particle size of <200 mesh, the mass ratio of NaOH-to-residue of 1.0 g/g, the volume ratio of H 2 O 2 -toresidue of 1.2 ml/g, reaction temperature of 90 C and reaction time of 120 min), the leaching efficiency of vanadium and chromium could reach up to 98.60% and 86.49%, respectively. Compared with the current liquid-phase oxidation technologies, the reaction temperature was 90 310 C lower, and the NaOH concentration of the reaction medium is lower by more than 50 wt% (the mass ratio of NaOHto-residue of 1.0 g/g equals to concentration of 20 wt%). The kinetics study revealed that leaching process of chromium and vanadium were interpreted with shrinking core model under chemical reaction control. The apparent activation energy of chromium and vanadium dissolution was 22.19 kj/mol and 6.95 kj/mol, respectively. Vanadium is an important strategic metal in the manufacturing of iron and steel, non-ferrous metals and petrochemical industry, due to its excellent mechanical, electrochemical, catalytic, magnetic and other physicochemical properties 1 3. Many hydrometallurgical processes have been proposed to recover vanadium and chromium 4 9, but the problems associated with the high temperature salt roasting technologies, including the low overall resource utilization efficiency, the high energy consumption, and the environmental pollution, are still remain unsolved. The liquid-phase oxidation (LPO) technologies had been developed to improve the resource utilization efficiency and meet more stringent environmental regulations. The sub-molten salt (SMS) technology, one of LPO technologies, had been successfully applied to leaching vanadium and chromium in concentrated alkali solution 10 13. In this new LPO method, the leaching efficiency of vanadium and chromium could reach up to 95% and 90%, respectively. In addition, no hazardous gas or toxic tailings were discharged during the process compared with salt-roasting technology. The process needed high alkaline consumption, high energy cost and also the equipment corrosion was an big challenge due to the high causticity of the reaction medium (usually above 70 wt%). Some other ways were conducted to improve the leaching efficiency of vanadium and chromium. Oxidizing substances like MnO 2 and KClO 3 were added to enhancing the leaching of vanadium in low valence during the leaching process 14,15. Electricity as an environmental-friendly resource was also introduced to intensify the leaching process 5,16,17. This paper presented a method that utilized H 2 O 2 as an oxidant to oxidize vanadium and chromium in low valent in concentrated NaOH solution during the leaching process. The technology principles were discussed and the effects of the mass ratio of NaOH-to-residue, the volume ratio of H 2 O 2 -to-residue, reaction temperature and reaction time on the leaching efficiency of vanadium and chromium were systematically investigated. Results and Discussion Technology principle. In a vanadium and chromium residue particle, V, Cr, and Fe primarily existed in the central area as spinel (Fe(V,Cr) 2 O 4 ), while Si primarily existed in the surrounding area as silicate (SiO 2 ). In concentrated NaOH solution, silicate could readily react with NaOH, exposing the spinel to the reaction medium. In the presence of H 2 O 2, the spinel can be oxidized to produce water-soluble vanadate and chromate, as described below: 1 College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 400044, China. 2 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China. Correspondence and requests for materials should be addressed to H.P. (email: cqupenghao@126.com) or C.T. (email: taocy@cqu.edu.cn) 1

Figure 1. UV adsorption curve of filtrate and Na 2 CrO 4 solution. Figure 2. Effect of the mass ratio of NaOH-to-residue on leaching efficiency of vanadium and chromium. 2FeO VO + 12NaOH + 5HO Fe O + 11H O + 4Na VO (1) 2 3 2 2 2 3 2 3 4 2FeO Cr O + 8NaOH + 7H O FeO + 11H O + 4Na CrO (2) 2 3 2 2 2 3 2 2 4 The UV adsorption of the filtrate and standard Na 2 CrO 4 solution were measured using a UV Vis spectrophotometer (TU-1901, Beijing Persee, China). The results were shown in Fig. 1. The filtrate was found to exhibit adsorption curve at 273 nm and 373 nm, which was the same with the standard Na 2 CrO 4 solution. The results indicated that the chromium in low valent, Cr 3+, was oxidized to chromium in high valent, CrO 4 2, during the leaching process. So was vanadium, as vanadium was easy to be oxidized than chromium. Oxidative leaching of vanadium and chromium. Effect of mass ratio of NaOH-to-residue. The effect of mass ratio of NaOH-to-residue on the leaching efficiency was preferentially examined under the following conditions: the liquid to solid ratio of 4.0 ml/g, residue particle size of < 200 mesh, the volume ratio of H 2 O 2 -to-residue of 1.2 ml/g, reaction temperature of 90 C, reaction time of 120 min. The leaching efficiency of vanadium and chromium over mass ratio of NaOH-to-residue were summarized in Fig. 2. The results shown in Fig. 2 described that the leaching efficiency of vanadium and chromium both exhibited significant increase with the increase of the mass ratio of NaOH-to-residue (MR) from 0.2 g/g to 1.0 g/g. The leaching efficiency of vanadium and chromium was much higher with the addition of H 2 O 25. The reaction activity of the hydroxide ions dramatically increased with the increase of MR and enabled the oxidation reactions to be much more thermodynamics favorable 18. When the MR was less than 0.4 g/g, the leaching efficiency increased sharply, and after that increased slightly. With the increase of MR, the medium viscosity increased, and the salting-out effect would be greatly intensified, resulting in significant decrease of the mass transfer efficiency 19. 2

Figure 3. Effect of the volume ratio of H 2 O 2 -to-residue on leaching efficiency of vanadium and chromium. Figure 4. Effect of temperature on leaching efficiency of vanadium and chromium. It was indicated that high MR was more beneficial for the oxidation reactions in terms of thermodynamic consideration, while unfavorable for the reaction kinetics. According to Fig. 2, the increase in the activity had more significant impact on the leaching of vanadium and chromium in comparison with the decrease of oxidant solubility and mass transfer efficiency during the leaching process. Thus, the mass ratio of NaOH-to-residue of 1.0 g/g was chosen for the following experiments. Effect of volume ratio of H 2 O 2 -to-residue. The effect of volume ratio of H 2 O 2 -to-residue on the leaching efficiency was preferentially investigated under the following conditions: the liquid to solid ratio of 4.0 ml/g, residue particle size of < 200 mesh, the mass ratio of NaOH-to-residue of 1.0 g/g, reaction temperature of 90 C, reaction time of 120 min. The leaching efficiency of vanadium and chromium over volume ratio of H 2 O 2 -to-residue were summarized in Fig. 3. Figure 3 showed that the volume ratio of H 2 O 2 -to-residue (VR) had a small influence on leaching efficiency of vanadium, which just increased from 86.62% to 98.60% with the increase in the VR from 0.2 ml/g to 1.0 ml/g. The result was part of agreement with Yang et al. 14. The leaching efficiency of chromium exhibited a significant increase with the increase of VR from 0.2 ml/g to 1.0 ml/g. During the leaching process, H 2 O 2 was mainly used to oxidize chromium in low valent to water-soluble 2 chromate (CrO 4 ). In other words, leaching of chromium was much more depend on the addition of H 2 O 2 than vanadium. Effect of reaction temperature. The reaction temperature was another important parameter that had significant influence on the leaching of chromium from both thermodynamic and kinetic consideration. Figure 4 summarized the effect of temperature on leaching efficiency of vanadium and chromium under the standard conditions: 3

Figure 5. Effect of reaction time on leaching efficiency of vanadium and chromium. the liquid to solid ratio of 4.0 ml/g, residue particle size of < 200 mesh, the mass ratio of NaOH-to-residue of 1.0 g/g, the volume ratio of H 2 O 2 -to-residue of 1.0 ml/g, reaction time of 120 min. The results indicated that the effect of temperature on the leaching efficiency of vanadium exhibited an analogously parabolic characteristic. This behavior occurred because as the temperature increased from 30 C to 60 C, the medium viscosity dramatically decreased. It was indicated that a higher temperature favors the mass transfer, considering that medium viscosity had a decisive impact on mass transfer once other conditions are specified The leaching efficiency of chromium was increased from 62.45% to 86.49% with the increasing of temperature from 30 C to 90 C. As an important oxidant, mass transfer efficiency of H 2 O 2 was vital for the control of the leaching kinetics, and also the leaching efficiency of vanadium was little gap in 60 C and 90 C. Thus, a temperature of 90 C was chosen for the following experiments. Effect of reaction time. The effect of reaction time on the leaching efficiency was preferentially studied under the following conditions: the liquid to solid ratio of 4.0 ml/g, residue particle size of < 200 mesh, the mass ratio of NaOH-to-residue of 1.0 g/g, the volume ratio of H 2 O 2 -to-residue of 1.2 ml/g, reaction temperature of 90 C. The leaching efficiency of vanadium and chromium over reaction time were summarized in Fig. 5. Figure 5 showed that the leaching efficiency of vanadium and chromium increased significantly. The leaching efficiency of vanadium and chromium was 98.60% and 86.49%, respectively, after reaction time of 120 min. Further reaction time might increase the leaching efficiency. In terms of energy efficiency, equipment corrosion alleviation, reaction time of 120 min was selected as the optimal condition as the leaching efficiency of vanadium and chromium was much high. Kinetics analysis. During the hydrometallurgy process, the leaching process mostly follows the shrinking core model. Three equations were used to describing the kinetic models 5,20. (1) Liquid boundary layer diffusion (2) Solid product layer diffusion control X = kt (3) (3) Chemical reaction control 2/3 1 2 X/3 (1 X) = kt (4) 1/3 1 (1 X) = kt (5) k = 6µ MDc /( ρr ) (6) where X is the leaching efficiency of chromium, k is the overall rate constant, min 1, μ is the stoichiometric coefficient, M is the molecular mass of the solid reactant, g/mol, D is the diffusion coefficient, m 2 /min, c A is the NaOH concentration, mol/l, ρ is the density of the particle, g/ml, r is the radius of residue particle, m. The experimental data was fitted into Eqs (3 5) to determine the kinetic parameters and rate-controlling step in the process showed in Fig. 6. The results showed Eq. (5) fitted the experimental data perfectly. Therefore, the chemical reaction was the controlling step for the leaching process. So Eq. (5) was used to express the shrinking core model. A 2 4

Figure 6. Chromium leaching rate vs time fitted by three kinetics equations at 90 C. Figure 7. Plot of leaching kinetics of chromium at various reaction temperatures. The reaction rates of chromium at different temperatures were fitted in Fig. 7, and the value of K was obtained, where K was the reaction rate constant corresponding to the slopes of the straight lines. Then the specific apparent activation energy could be calculated based on the Arrhenius equations, the result showed in Fig. 8. lnk = lna Ea/(RT) (7) where Ea is the apparent activation energy, A is the pre-exponential factor, and R is the molar gas constant. The apparent activation energy of chromium leaching out was calculated to be 22.19 kj/mol, which was much smaller than 50.27 kj/mol calculated by Liu et al. 10. Similarly, to reveal the controlling step of the vanadium leaching, the experiment data was also fitted into Eqs (3 5), as shown in Fig. 9. The results showed that Equation (5) gave very good linear relationship. It was meant that the chemical reaction was the controlling step for the leaching process of vanadium. The leaching efficiency of vanadium at different temperatures was fitted in Fig. 10 and the apparent activation energy of vanadium leaching was calculated to be 6.95 kj/mol (Fig. 11). The value was lower that of 10.08 kj/mol 5. Residue morphology before and after leaching. XRD (X-ray diffraction) analysis of the raw residue and leaching residue were conducted to analyze the change. The results had been discussed in our previous works 4. The results showed that after leaching, the main content phases disappeared and only peak of SiO 2 left. It was meant that vanadium and chromium in the residue were leached out, which was consistent with the results discussed above. 5

Figure 8. Natural logarithm of reaction rate constant versus reciprocal temperature of chromium. Figure 9. Vanadium leaching rate vs time fitted by three kinetics equations at 90 C. Figure 10. Plot of leaching kinetics of vanadium at various reaction temperatures. 6

Figure 11. Natural logarithm of reaction rate constant versus reciprocal temperature of vanadium. technology advantages disadvantages sulfuric acid leaching high leaching efficiency high acid consumptionand high impurities salt-roasting easily leach out and high leaching efficiency Toxic gases, non-environmental-friendly sub-molten salt (SMS) technology Electro-oxidation technology this work high leaching efficiency environmentally-friendly, and offered good selectivity for vanadium High leaching efficiency of both vanadium and chromium; environmental-friendly Table 1. Difference between NaOH-H2O2 method and others. high alkaline concentration, high process temperature and high ionic strength low leaching efficiency for chromium Conclusions (1) Hydrogen peroxide as an oxidant was applied in leaching of vanadium and chromium in concentrated NaOH solution It was an environmental-friendly technology which was benefit than others (seen in Table 1). Under the optimal reaction conditions, the leaching efficiency of vanadium and chromium could reach up to 98.60% and 86.49%, respectively. Compared with the current liquid-phase oxidation technologies, the reaction temperature was 90 310 C lower, and the NaOH concentration of the reaction medium is lower by more than 50 wt% (the mass ratio of NaOH-to-residue of 1.0 g/g equals to concentration of 20 wt%), showing substantial advantages in terms of energy efficiency, equipment corrosion alleviation and prospects for industrial application. (2) To obtain the optimal reaction conditions, the effects of various reaction parameters were systematically investigated. The leaching efficiency of vanadium was found to exhibited an analogously parabolic characteristic with the increase in reaction temperature; in addition, the increase in the mass ratio of NaOH-to-residue, the volume ratio of H 2 O 2 -to-residue, reaction time favored the leaching process, with the optimal reaction condition determined as the liquid to solid ratio of 4.0 ml/g, residue particle size of <200 mesh, the mass ratio of NaOH-to-residue of 1.0 g/g, the volume ratio of H 2 O 2 -to-residue of 1.2 ml/g, reaction temperature of 90 C and reaction time of 120 min. (3) Leaching kinetic of chromium and vanadium were both controlled by chemical reaction. The apparent activation energy of chromium and vanadium dissolution was 22.19 kj/mol and 6.95 kj/mol, respectively. Methods Materials. The vanadium and chromium residue, supplied by Pangang Group Co., Ltd.,Chengdu, China, was precipitated from a waste water contained vanadium and chromium in low valence in an iron and steel mill. Before the experiment, the residue was first dried in oven overnight, followed by dry-sieving to obtain particles particle size of <200 mesh. The chemical composition of the residue is listed in Table 2. All the reagents including sodium hydroxide, hydrogen peroxide used for leaching and sulfuric acid, phosphoric acid, ammonium ferrous sulfate, hexamethylenetetramine, potassium permanganate, and N-phenylantharalinic used in chemical analysis were analytical grade. Deionized water used in the experiments was produced by water purification system (HMC-WS10). 7

Component O Cr Si Na S V Amount (wt.%) 41.09 14.36 12.02 9.76 12.02 1.63 Component Ca Cl Fe K Mg Amount (wt.%) 1.42 4.09 0.33 0.29 0.20 Table 2. Composition of vanadium and chromium residue (%, wt). Apparatus and procedures. All experiments were performed in a glass beaker with a thermostatic mixing water bath pot. A predetermined amount of NaOH and deionized water was added to the beaker to produce homogeneous slurry under constant stirring. The slurry was heated to a predetermined temperature. Next, the residue was added to the reactor, and the addition of H 2 O 2 was manually slow. After the required reaction time, the leachate was separated from the residue by vacuum filtration. Titration with ammonium ferrous sulfate was used to determine the concentration of vanadium and chromium in the filtrate 21. References 1. Moskalyk, R. R. & Alfantazi, A. M. Processing of vanadium: a review. Minerals Engineering. 16, 793 805 (2003). 2. Nicholas, J. N., Silva, Gd, Kentish, S. & Stevens, G. W. Use of Vanadium (V) Oxide as a Catalyst for CO. Ind Eng Chem Res. 53, 3029 3039 (2014). 3. Voglauer, B., Grausam, A. & Jörgl, H. P. Reaction-kinetics of the vanadium roast process using steel slag as a secondary raw material. Minerals Engineering. 17, 317 321 (2004). 4. Peng, H., Liu, Z. & Tao, C. Leaching of Vanadium and Chromium from Residue. Journal of Research and Development. 4 (2016). 5. Peng, H., Liu, Z. & Tao, C. Selective Leaching of Vanadium from Chromium Residue Intensified by Electric Field. Journal of Environmental Chemical Engineering. 3, 1252 1257 (2015). 6. Pengge, N., Hongbin, C. & Yi, Z. Stability of the interfacial crud produced during the extraction of vanadium and chromium. Hydrometallurgy. 133, 156 160 (2013). 7. Wang, X., Wang, M., Shi, L., Hu, J. & Qiao, P. Recovery of vanadium during ammonium molybdate production using ion exchange. Hydrometallurgy. 104, 317 321 (2010). 8. Guozhi, Z. et al. A novel synergistic extraction method for recovering vanadium (V) from high-acidity chloride leaching liquor. Sep Purif Technol. 165, 166 172 (2016). 9. Hongyi, L. et al. Selective leaching of vanadium in calcification-roasted vanadium slag by ammonium carbonate. Hydrometallurgy. 160, 18 25 (2016). 10. Huibin, L. et al. Kinetics analysis of decomposition of vanadium slag by KOH sub-molten salt method. Transactions of Nonferrous Metals Society of China. 23, 1489 1500 (2013). 11. Biao, L. et al. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH-NaNO3. AIChE Journal. 59, 541 552 (2013). 12. Hongbin, X., Shili, Z., Yi, Z. & Zi, L. W. Z. Oxidative leaching of a Vietnamese chromite ore in highly concentrated potassium hydroxide aqueous solution at 300 C and atmospheric pressure. Minerals Engineering. 18, 527 535 (2005). 13. Hai, Z., Hongbin, X., Xiaofei, Z., Yang, Z. & Yi, Z. Pressure oxidative leaching of Indian chromite ore in concentrated NaOH solution. Hydrometallurgy. 142, 47 55 (2014). 14. Kang, Y., Xiaoyun, Z., Xueda, T., Yonglong, Y. & Yanbo, C. Leaching of vanadium from chromium residue. Hydrometallurgy. 103, 7 11 (2010). 15. Chen, X., Lan, Q., Zhang, H. & Ma, J. Zhou. Leaching vanadium by high concentration sulfuric acid from stone coal. Tramsactions of Nonferrous Metals Society of China. 20, 123 126 (2010). 16. Liu, Z. et al. Hydrometallurgical leaching process intensified by an electric field for converter vanadium slag. Hydrometallurgy. 155, 56 60 (2015). 17. Zhonghang, W. et al. Electrochemical decomposition of vanadium slag in concentrated NaOH solution. Hydrometallurgy. 151, 51 55 (2015). 18. Kenneth, S. P. Thermodytriarnics of Electrolytes. I. Theoretical Basis and General Equation. J Phys Chem A. 77, 268 277 (1973). 19. Mashovet, V., Puchkov, L. V., Sargaev, P. M. & Fedorov, M. K. Zh. Prikl. Khim. 46, 992 996 (1973). 20. Levenspiel, O. Chemical Reaction Engineering, Wliey, 1962. 21. Wang, W. Continuous determination of vanadium and chromium in steel and alloy. Advanced Measurement and Laboratory Management. 4, 9 10 (2007). Acknowledgements This work was supported by the Natural Science Foundation of China (No. 51274261). Author Contributions Changyuan Tao conceived and designed the experiments; Hao Peng performed the experiments; Hao Peng and Zuohua Liu analyzed the data; Hao Peng wrote the paper. All authors reviewed the manuscript. Additional Information Competing Interests: The authors declare that they have no competing interests. Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. 8

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The Author(s) 2017 9