FIN DESIGN OF AIR COOLED HEAT EXCHANGER USED IN ROTARY SCREW COMPRESSOR

Similar documents
PERFORMANCE ANALYSIS OF NATURAL DRAFT WET COOLING TOWER AT OPTIMIZED INJECTION HEIGHT

Effect of geometrical parameters on heat transfer and pressure drop characteristics of plate fin and tube heat exchangers

CFD Modelling and Analysis of Different Plate Heat Exchangers

Performance Improvement on Water-cooled Cold-Plate

Experimental Analysis of Heat Transfer Enhancement Using Fins in Pin Fin Apparatus

NUMERICAL STUDY ON FILM COOLING AND CONVECTIVE HEAT TRANSFER CHARACTERISTICS IN THE CUTBACK REGION OF TURBINE BLADE TRAILING EDGE

Numerical Analysis of Heat Pipe Fin Stack by Delta Wing Vortex Generator

Numerical Analysis of Plain Fin-and-Oval-Tube Heat Exchanger with Different Inlet Angles

Solar Flat Plate Thermal Collector

A COMPARATIVE STUDY OF HEAT EXCHANGER EFFECTIVENESS FOR DOUBLE HELICAL AND STRAIGHT CIRCULAR GEOMETRY

Analysis of Natural Convention Heat Transfer Enhancement in Finned Tube Heat Exchangers

Heat transfer enhancement in fire tube boiler using hellically ribbed tubes

ADVANCES in NATURAL and APPLIED SCIENCES

Computational Modeling of Counter Flow Heat Exchanger for LMTD Analysis

FSI ANALYSIS OF TRAILING EDGE REGION COOLING IN HP STAGE TURBINE BLADE

Design and Analysis of Hydraulic Oil Cooler by Application of Heat Pipe

Effect of Vibration on Heat Transfer Enhancement in a Rectangular Channel Heat Exchanger

Experimental Investigation and Comparative Thermal Performance Analysis of Shell and Tube Heat Exchanger by Using CFD

HEAT TRANSFER AUGMENTATION BY PLATE FIN HEAT EXCHANGER USING CFD TECHNIQUES A REVIEW

Experimental Research on the Heat Transfer and Flow Performance of a Composite Heat Sink

NUMERICAL ANALYSIS OF HEAT PIPE HEAT EXCHANGER BY DELTA WING VORTEX GENERATOR

Effect of Corrugation Angle on Heat Transfer Studies of Viscous Fluids in Corrugated Plate Heat Exchangers

DESIGN MODIFICATION AND ANALYSIS OF TWO WHEELER COOLING FINS-A REVIEW

Increase the Cooling Efficiency of Casting Furnace Stave Cooler with Use of Experimental and Analytical Analysis

Investigating Two Configurations of a Heat Exchanger in an Indirect Heating Integrated Collector Storage Solar Water Heating System

Derivation of Global Parametric Performance of Mixed Flow Hydraulic Turbine Using CFD. Ruchi Khare, Vishnu Prasad and Sushil Kumar

Investigating two configurations of a heat exchanger in an Indirect Heating Integrated Collector Storage Solar Water Heating System (IHICSSWHS)

Design and Analysis of Extended Surfaces with Different Thermal Conductivity Using ANSYS 12

A Numerical Investigation of Multi-Louvered Compact Plate Fin Heat Exchanger Having Circular Tube Configuration with and without Hydrophilic Coating

Computational Study of the Turbulent Flow inside a Waste Heat Recovery System with a 25 inclined Angle Diffuser

EFFECT OF COMBINED HOLE CONFIGURATION ON FILM COOLING WITH AND WITHOUT MIST INJECTION

Abstract. 1. Introduction

ISSN (ONLINE): , ISSN (PRINT):

INVESTIGATION OF SHELL & TUBE HEAT EXCHANGER PERFOMANCE FOR PLASTIC INJECTION MOULDING MACHINE

EFFECT OF SYMMETRICAL COMPOUND-ANGLE IN COMBINED-HOLE FILM COOLING

CFD ANALYSIS OF MINI CHANNEL HEAT EXCHANGER USING WATER AS A WORKING FLUID

Numerical Study on Heat Transfer of Internal Combustion Engine Cooling by Extended Fins Using CFD

Fluid Flow and Heat Transfer Analysis in AaParallel Plate Heat Sink Using a Commercial CFD Software

CFD-BASED INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF FLUE GAS-WATER HEAT EXCHANGER PANELS PRODUCED WITH A NOVEL MANUFACTURING PROCESS

Experimental Investigation of Heat Transfer Enhancement of a Double Pipe Heat Exchanger with Helical Fins in the Annulus Side

Review on Heat Transfer Enhancement Using the Wavy Fin

HORIZONTAL SHELL SIDE FLUIDIZED BED HEAT EXCHANGER, DESIGN CONSIDERATIONS AND EXPERIENCES FROM A PILOT UNIT

MODERN PRACTICES FOR MEASUREMENT OF GAS PATH PRESSURES AND TEMPERATURES FOR PERFORMANCE ASSESSMENT OF AN AXIAL TURBINE

Optimization of Heat Sink Embedded with Heat Pipes Design Parameters using Design of Experiments Technique by Taguchi Method

Experimental and Numerical Investigation of Forced Convection Heat Transfer in Heat Sink with Rectangular Plates on Vertical Base

CFD Analysis of Solar Hot Water Heater with Integrated Storage System

Analysis of Longitudinal Fin Patterns in a Concentric Double Tube Heat Exchanger using LMTD and CFD Techniques

Heat Transfer Augmentation of Air Cooled Internal Combustion Engine Using Fins through Numerical Techniques

LIST OF ACRONYMS / ABBREVIATIONS USED IN THIS DOCUMENT Acronym / abbreviation Definition

40-Ton Articulated Truck Cooling System Modelling Using STAR-CCM+

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035

A Schematic Design and Analysis of a Pin Inserted U-Tube Heat Exchanger

Performance Study of Solar Air Heater with Baffled Duct

Design and development of an Earth Air Tube Heat Exchanger

Analytical model of a multichannel double tube CO2 gas-cooler for a water heater

HEAT TRANSFER ANALYSIS OF RECUPERATIVE AIR PREHEATER

Heat transfer intensification in heat exchangers of air source heat pumps

Experimental Study the Performance of Aluminum Foams Condensers in the Vapor Compression Cycle

Performance estimation on micro gas turbine plant recuperator

CFD Modelling of Finned-tube CO2 Gas Cooler for Refrigeration Systems

Parametric CFD analysis of an EMbaffle Heat Exchanger. EMbaffle B.V. The Netherlands

The Experimental Study on Enhanged heat Transfer Performance in Plate Type Heat Exchanger

Optimization of embedded Heat Exchanger in a flat plate Integrated Collector Storage Solar Water Heater (ICSSWH), with indirect heat withdrawal.

3.5.7 Flow Through Simple Dies

Investigation on the Impact on Thermal Performances of New Pin and Fin Geometries Applied to Liquid Cooling of Power Electronics

Effect of Twisted Tape Inserts On Heat Transfer in A Concentric Tube Heat Exchanger

Numerical analysis of eccentric orifice plate using ANSYS Fluent software

AURANGABADKAR. Table 1. Table showing HTC for different notches at base temp of 60 0 C. Table 2: Comparison of HTC by CFD and HTC by experiment

EFFECT OF ROUGHNESS GEOMETRY ON HEAT TRANSFER AND FRICTION CHARACTERISTICS OF PCM STORAGE UNIT FOR NIGHT COOLNESS STORAGE IN SUMMER SEASON

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 4, April ISSN

Department of Mechanical Engineering. MSc/PGDip/PGCert in Energy Systems and the Environment. Specialist Modules

Numerical Investigation of Swirl's Effects in the Outer Annulus of a Reverse-flow Gas Turbine Combustor

Enhancement of Heat Exchange Capacity of Ground Heat Exchangers by Injecting Water into Wells

EFFECTS OF LoD AND PoD IN COMBINED-HOLE FILM COOLING

Experimental Study of Air-Cooled Parallel Plate Fin Heat Sinks with and without Circular Pin Fins between the Plate Fins

EXPERIMENTAL STUDY OF HIGH HEAT REMOVAL BY ALUMINUM PIN FIN HEAT SINK USING MULTI-JET AIR IMPINGEMENT

ANALYSIS OF PERFORMANCE OF NATURAL DRAFT COOLING TOWER AT OPTIMIZED INJECTION HEIGHT

Modelling of the Performance of a Building- Mounted Ducted Wind Turbine

Comparative Analysis of Different Orifice Geometries for Pressure Drop

NUMERICAL SIMULATION OF INTERNAL COOLING EFFECT OF GAS TURBINE BLADES USING V SHAPED RIBS

THERMAL ENVIRONMENT OF OUTDOOR UNITS OF VRV SYSTEM IN HIGH- RISE BUILDING. Gang Wang, Yafeng Hu, and Songtao Hu

ANALYSIS OF TURBINE BLADE COOLING USING RIBS

ISSN: [Sreekireddy * et al., 7(2): February, 2018] Impact Factor: 5.164

Experimental Investigation of Mixed Convection Heat Transfer from Rectangular Fin in a Horizontal Rectangular Channel

Numerical Modeling of Buoyancy-driven Natural Ventilation in a Simple Three Storey Atrium Building

CFD ANALYSIS OF SOLAR HEATER WATER PIPE WITH DIFFERENT INCLINATION

Numerical Simulation of the Thermal Performance of a Dry Storage Cask for Spent Nuclear Fuel Chi-Ming Lai, University Distinguished Professor Departme

Design analysis of Tesla micro-turbine operating on a low-boiling medium

Design of Prototype Supercritical CO2 Superheater Heat Exchanger

Investigation on Core Downward Flow by a Passive Residual Heat Removal System of Research Reactor

Methodology of Modeling and Comparing the Use of Direct Air-Cooling for a Supercritical Carbon Dioxide Brayton Cycle and a Steam Rankine Cycle

Numerical Investigation of the Integration of Heat Transfer Devices into Wind Towers

CFD ANALYSIS OF MEMBRANE HELICAL COIL FOR OPTIMIZATION OF HIGH PRESSURE AND TEMPERATURE OF SYNGAS IN UNDERGROUND COAL MINES

HEAT TRANSFER STUDY OF 3-D PRINTED AIR-COOLED HEAT SINKS

Project Background (long term goals)

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2014/2015 ME257. Fluid Dynamics. Answer FOUR out of SIX questions

EVALUTION OF EROSION WEAR OF CETRIFUGAL PUMP USING CFD

Effect of Orifice Plate Shape on Performance Characteristics

XVII th World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR)

Vipac Engineers & Scientists Ltd

Transcription:

FIN DESIGN OF AIR COOLED HEAT EXCHANGER USED IN ROTARY SCREW COMPRESSOR Mr. Shrenik. Patel 1, Mr. N.M.ora 2, Mr. H.R.Patel 3, 1 Thermal Engineering student, Sardar Patel Institute oftechnology,piludara, shrenikpatel75@gmail.com 2 Design Enginer,IngersollRand Ltd,Ahmadabad 3 Assistant ProfessorMechanical Engineering Department Sardar Patel Institute of Technology,Piludara Abstract: The performance of any compressor is depends on many parameter like pressure, temperature and application of compressor, The efficiency of compressor is mainly depends on heat generation and heat rejection from system, there are variety of heat exchanger used for heat removal like water cooler, air cooler, plate and bar, shell and tube etc. the present work is aim to focus on air-cooled performance enhancement via fin design. The fin is one of the critical components of heat transfer proper design and location of fin on heat exchanger can improve a performance lots. The aim of work is to improve the heat exchange rate of current cooler without changing the parameters like air flow, air velocity. The variety of fin like plain fin, circular fin, herringbone etc. will be verified against geometrical arrangement like circular pitch, rectangular pitch, triangle pitch for performance enhancement and same can be variey with help of CFD. The new cooler fin design was suggested based on the Computational analysis of cooler which was indicating a circular fin with Al as a fin material will give us a better heat rejection and lower pressure drop for cooling air flow. The cooler sample model of cooler was manufactured with help of heat exchanger manufacturer and the cooler performance was measured in industrial test setup having wind tunnel the setup is having all the facilities to measure elocity, temperature and pressure drop across the wind tunnel also the ambient air temperature can be vary with help of submerge heater and oil tank which can be precisely measured and controlled. The latter stage of work shows the comparisons of both results and we have observed the gap of near about 7.875 % in both results which is far enough to accept as per literature review, the gap analysis was carried out to identify why the gap was observed in both case. Key word: Thermal analysis, fins geometry, CFD, Wind tunnel 1. INTRODUCTION 1.1Why Is After coolering Required? The compressed air discharged from an air compressor is hot Compressed air at these temperatures contains large quantities of water in vapor form. As the compressed air cools this water vapor condenses into a liquid form. Reduce compressed air moisture level Increase system capacity Protect downstream equipment from excessive heat Coolers are usually sized with a CTD (2.7 C, 5.5 C, 8.3 C, or 11 C). This means that the compressed air temperature at the outlet of the after cooler will be equal to the cooling medium temperature plus the CTD when sized at the specified inlet air temperature and flow Air cooled after coolers use ambient air to cool the hot compressed air. The compressed air enters the air cooled after cooler. The compressed air travels through either finned tubes or corrugated aluminum sheets of the after cooler while ambient air is forced over the cooler by a motor-driven fan. The cooler, ambient air removes heat from the compressed air 2. LITRATURE REIEW Dong H.Lee et al. [1] the present study investigated the air-side heat transfer performance of a heat exchanger with perforated circular finned tubes. The air-side convective heat transfer coefficients for 2- hole and 4hole PCFT cases increased by 3.55% and 3.31% respectively pressure drop by 0.68% and 2.08%, respectively. The fin factor for the 2-hole PCFT case was 5.19, whereas that for the 4-hole PCFT case was 1.59, M. Zeng et al. [2] In this study, the influence of various design parameters on the heat transfer and flow friction characteristics of a heat exchanger with vortex-generator fins is analyzed by numerical method The @IJAERD-2014, All rights Reserved 1

results show that the intensity of heat transfer can be greatly increased with the increase of the vortexgenerator attack angle, the length and the height, Minsung Kim et al, [3] In this study, the performance of air-cooled cross type PHEs to replace large capacity of open-loop cooling towers is investigated. Double-wave PHE the air-side heat transfer performance approximately 50% higher than single wave PHE, but requires 30% more pressure drop Seth A. Lawson et al. [4] Experiments were conducted to determine the independent effects of span wise and stream wise spacing on heat transfer and pressure loss through multiple row arrays of pin fins. If the stream wise spacing was larger than the span wise spacing, the heat transfer was maximized farther upstream in the array. L.H. Tanget al., [5] In the present study, the air-side heat transfer of five kinds of fin-and-tube heat exchangers have been experimentally investigated The larger attack angle, higher length and smaller height ofvortex generators will lead to better overall performance of heat exchangers with Gs. Kumbhar D.G et al. [6] It is observed that heat transfer rate increases with perforations as cor-pared to fins ofsimilar dimensions without perforations. It is noted that in case of triangular perforations optimum heat transfer is achieved. It is also concluded that heat transfer rate is different for different materials or heat transfer rate changes with change in thermal conductivity Ian J. Kennedyet al. [7] the main conclusion of the study is that inclination leads to a small increase in the thermal performance of the ACHE of approximately 0.5% for the optimum inclination angle of 30, 3. FLOW CHART OF METHODOLOGY @IJAERD-2014, All rights Reserved 2

4. EXISTING MODEL SPECIFICATION OF AIR COOLER Cooler type Aluminium bar and plate Cooler passes- single Max. Working Pr-14bar Max. Working fluid temp. - 109 C Ambient air temp. range 2 C to 49 C Compressed air inlet mass flow 0.4096 kg/s Compressed air inlet temp. 101.7 C Compressed air inlet Pressure 7.9 bar Compressed air outlet temp. - < 54 C Compressed air P - < 0.14bar Rejected Heat Load 32.25 KW Cooling air inlet temp. Ambient Max. Length over Manifolds- 610 mm and Max. Over Width- 450 mm MESH MODEL Domain Nodes Eleme nts Wedges Hexahedra 1 18792 14706 0 14706 2 35612 29184 114 29070 3 25056 12312 0 12312 All Domains 79460 56202 114 56088 Mesh Result 5.BOUNDARY CONDITIONSARE MENTIONED INTHETABLE BELOW: No Boundary conditions alue 1 Inletat Bottom surfaceof the cooler Air mass flow rate0.3328 kg/s at 40 C &99987 pa 2 Outlet at Top surfaceof the cooler Air velocityat5.5 m/s @IJAERD-2014, All rights Reserved 3

3 Coolerinside[inlet Port] Compressed air at 8 barpressure& 85 C 4 Coolerinside[Outlet Port] Compressed air at 0.0532kg/s 100 CFM 5 6 Geometry Ambient Air Symmetrical for cooler so onlysingle coreshould beconsidered for Effectiveanalysis. 40 C 6.CFD ANALYSIS Tempe raturevariationofcircular fins AirvelocityatCooleroutlet @IJAERD-2014, All rights Reserved 4

AirvelocityatCooleroutletAirPressureat Cooleroutlet 7. Heat Transfer Calculation As theheat transfer equation,q = U* A*LMTD Where, Q =Heat transferred, Watt(J/s), U= Overall Heat transfer Co-efficient W/m 2 c = For Forced Convection of Air = Taking 100 W/m 2 c A =Heat transfersurface area(cooler), m 2= (0.490 * 0.335)m 2 LMTD=LogMean TemperatureDifference C T1 t2 (T2 t1) ln (T1 t2) (T2 t1) Heat release, Q = m C T The governing equations are continuity, momentum and energy equations, which are derived from fundamental principles of heat and fluid flow. The equations are posed to implement assumptions are made The compressibility, the gravitational force and the dissipating heat caused by viscosity are neglected, the continuity, momentum ad energy equations for a fully developed 3D flow heat transfer are: Continuity Equation, Momentum Equation (Navier-stokes Equation), and Energy Equation. The Continuity Equation u x + v y + dw dz = 0 ρ = 0 Simplified Momentum Equation (Navier-stokes Equation), X-momentum: ρ Y-momentum: ρ = - p + τxx x x = - p + τxy x x + τyx y + τyy y + τzx z + τzy z + ρg @IJAERD-2014, All rights Reserved 5

Z-momentum: ρ Energy Equation International Journal of Advance Engineering and Research Development (IJAERD) ρ = -p + (k T)+q +ψ = - p + τxz x x + τyz y + τxx z + ρg Turbulence is taken care by Shear Stress Transport (SST) k-ώ model (pk) t + (kui ) xi = xj k xj TABLE- 1 PLATE FIN THICKNESS +Gk Yk + Sk 1.25mm THICKNESS CASE 01 8. CFD RESULT 1.5 mm THICKNESS CASE 02 90 CU/10 MATERIAL AL 90 CU/10 Cu AL Cu NODAL Temp. C 94 96.8 95 94.5 97.12 96.12 Heat loss (w) 8.51 9.38 8.82 9.05 8.68 8.56 CORRECTED LMTD 125 127.8 127 126.3 128 127.6 COOLINGAIR ELOCITY (M/Sec PRESSUREDRO P ACCORSSFIN(Pa ) TABLE 2 TRIANGLULAR(ORPLATEANDBAR) FIN THICKNESS 1.25mm THICKNESS CASE 01 5.4 5.4 5.4 5.32 5.32 5.32 2.12 2.12 2.12 2.32 2.32 2.32 AL 90 CU/10 1.5 mm THICKNESS CASE 02 90 CU/10 MATERIAL Cu AL Cu NODAL Temp. C 94.58 97.32 95.60 94.98 96.45 96.23 Heat loss (w) 8.89934 9.69892 9.19988 8.99478 9.9202 32 9.17498 CORRECTED LMTD 129 130.23 129.67 131 133.45 132.45 COOLINGAIR ELOCITYSTRE AM LINE(M/Sec PRESSUREDRO P ACCORSSFIN(Pa ) 5.42 5.42 5.32 5.67\ 5.67 5.67 2.34 2.34 2.34 2.45 2.45 2.45 TABLE- 3 CIRCULAR FIN THICKNESS 1.25mm THICKNESS CASE 01 1.5 mm THICKNESS CASE 02 @IJAERD-2014, All rights Reserved 6

90 MATERIAL AL 90 CU/10 Cu AL Cu CU/10 NODAL Temp. C 95.23 97.45 96.08 95.92 98.19 97.23 Heat loss (w) 8.51 9.38 8.82 8.67 9.48 8.97 CORRECTED LMTD 125 127.8 127 126.45 128 127.9 COOLINGAIR ELOCITYSTRE AM LINE(M/Sec PRESSUREDRO P ACCORSSFIN(Pa ) 5.34 5.34 5.34 5.27 5.27 5.27 2.34 2.34 2.34 2.43 2.43 2.43 Outofallabovepossiblecombinationwecanobservedthatsomeoffinsaregoodinterms of LMTD someof are inpressuredropacrossthefinhencethefinalselectionbecamevery difficult. To havereasonablesolutionof this quizwehaveformeda Selectionmatrixbasedon manufacturer sopinion andoperationparameters.the firstconsiderationforselectionoffin wouldbeaheatloss (W), thencoolingairelocity StreamLine(M/Sec)thenPressuredrop across the fin(pa).basedonthisselectionmatrixwecanconcludethatthe PlatefinhavingCuasfinbasematerial withfinthicknessof1.25mmisbetter, butthecoolercorematerialis AL hencethemanufacturing processtojoinalwithcu becamechallenges hencethoughitisan optimumvalueweshouldnot beconsidersamefortheevolution.theextavailablesolutionas permatrixandmanufacturingacceptancesis ALwithcircularfinhaving1.50mm thicknessshould beselected. Experimental set-up of Wind tunnel 9.Comparison Analytical AND Experimental Results MATERIAL CFD RESULTS EXPERIMENTAL RESULTS GAP ALUE IN GAP IN % @IJAERD-2014, All rights Reserved 7

NODAL TEMPERATURE C 95.92 NOT MEASURED NA NA HEAT LOSS (KW) 8.67 7.98 0.69 7.958478 CORRECTED LMTD 126.45 115.9 10.55 8.343219 AIR ELOCITY (M/Sec) 5.27 5.15 0.12 2.27704 10.CONCLUTION This table shows the value of Nodal temperature can be measured in wind tunnel as cooler is totally enclosed in the sheet metal shroud to avoid any air flow leakages. The heat loss from the CFD was observed as 8.67 KW while same was observed on wind tunnel as 7.98 KW which indicates the gap in cooler is about 0.69 W which is equal to 7.9584 % and same is 8.34 % in case of LMTD. The air velocity was observed as 5.15 M / sec which is having gap of 2.12 5 with references to CFD results. The gap in computational and experimental results are within limit of 10 % hence we can conclude that the method adopted for computational analysis is up to the required level and same cooler can be consider for the manufacturing with adding design safe factor for application. The gap in actual and prediction was occurred due to numbers of reasons and some of prime are Presence of Humidity in actual test set up cannot be simulated in CFD The CFD is an approximate approach which itself indicates that the actual results may vary in some limit. The temperature measured are having minor offset in both case as in 3D model we can measured temp as actual required points but while in actual test set up we cannot do same due to mounting limitation of sensor hence some diff in temperature is obvious The cooling air was diverted through blower and duct towards the cooler and due to frequency variation there is change in speed and ultimately in cooling flow and velocity. While it is considered as constant in case of CFD The cooler was consider without brazing joint efficiency in 3D model while in actual condition the Fins are brazed to cooler core hence minor temp as well as heat rejection diff in actual location which results to overall diff in both the values. Q = Heat Transfer Rate, W Cp = Specific Heat, J/kgK T1 =Hot Fluid inlet temperature C 11.NOMENCLATURE T2 =Hot Fluid outlet temperature, C t1 = Cold Fluid inlet temperature, C t2 = Cold Fluid outlet temperature, C U = overall heat transfer coefficient, W/m 2 K Ai= Area of Inner Pipe, m 2 T = LMTD K =Thermal Conductivity Of Fluid, W/mK =elocity Of Fluid, m/s p = Pressure Drop, pa @IJAERD-2014, All rights Reserved 8

REFRANCES [1] Dong H.Lee et al. I mprove mentofheattrans ferwithperforatedcircularholes in finnedtubesof aircooledheat exchanger, International Communications in Heat and Mass Transfer 39 (2012) 161 166 [1] [2] M. Zeng et al. Optimization of heat exchangers with vortex-generatorfin by Taguchi method, Applied Thermal Engineering 30 (2010) 1775-1783. [2] [3] Minsung Kim et al. Experimental study on corrugated cross-flow air-cooled plate heat exchangers Experimental Thermal and Fluid Science 34 (2010) 1265 1272. [3] [4] Seth A. Lawson et al. Heat transfer from multiple row arrays of low aspect ratio pin fins, International Journal of Heat and Mass Transfer 54 (2011) 4099 4109 [4] [5] L.H. Tang et al. Experimental and numerical investigation on air-side performance of fin and tube heat exchanger with various fin patterns Experimental Thermal and Fluid Science 33 (2009) 818 827. [5] [6] Mooyeon Lee, Air-side heat transfer characteristics of spiral-type circular fin-tube heat exchangers, Oct-- 2009, PP 313-320, [6] [7] Kumbhar D.G et al. Finite Element Analysis and Experimental Study of Convective Heat Transfer Augmentation from Horizontal Rectangular Fin by Triangular Perforations Proc. of the International Conference on Advances in Mechanical Engineering, August 3-5, 2009 S National Institute of Technology, [7] [8] Jiong Li at al. Numerical study on air-side performance of an integrated finand micro-channel heat exchanger Applied Thermal Engineering 30 (2010) 2738-2745, [8] [9] Tony W.H at al. A comparison study on fin surfaces in finned-tube heat exchangers, Department of Naval Architecture and Ocean Engineering, National Taiwan University, Taipei, Taiwan, R.O.C -1997, [9] [10] Yaser Hamidi at al. Multi-objective optimization of pin fin to determine the optimal fin geometry using genetic algorithm, Oct--2009, PP 313-320, [10] [11] Qiuwang Wang at al. Parametric study and multiple correlations on air-side heat transfer and friction characteristics of fin-and-tube heat exchangers with large number of large-diameter tube rows,applied Thermal Engineering 29 (2009) 1 16, [11] @IJAERD-2014, All rights Reserved 9