Worldwide Pollution Control Association

Similar documents
Worldwide Pollution Control Association. August 3-4, 2010

Impact of quality and quantity of fuel on achieving PAT targets

Panel II Jänschwalde Oxyfuel demonstartion plant.

W P C A. Worldwide Pollution Control Association. WPCA-Duke Energy FGD Wastewater Treatment Seminar March 7, Visit our website at

German experience on compliance of environmental norms by thermal power generation companies

Worldwide Pollution Control Association

Wet Flue Gas Desulfurization (FGD)

ESP and Fabric Filter Technology for Dedusting - Comparison and Optimization -

Energy turnaround and consequences for conventional power stations. Dr.W.A. Benesch Director Energy Technologies

nat Presentation Title ( Arial, Font size 28 ) Control of Sulphur Dioxide, Oxides of Nitrogen and Mercury Date, Venue, etc..( Arial, Font size 18 )

New Indian emissions requirements: Advanced DeSOx solutions for a sustainable power generation

Energy Production Systems Engineering

Projects in NRW. Development of Power plant technology at the Ruhr area using the example of Evonik Steag

Babcock Borsig Steinmüller GmbH. Bełchatów - Retrofitting the EU s Largest Power Plant Site

The Value Proposition of Circulating Fluidized Bed Scrubbing Technology. Robert Giglio Foster Wheeler Global Power Group

Discover optimization potentials. maximizing efficiency of power plant operation. with state of the art energy management systems

Steinmüller Engineering Conference Modernization and Optimization of Flue Gas Cleaning Plants

Fluid Bed Scrubbing TECHNOLOGY

THERMAL ENGINEERING & TECHNOLOGY DEVELOPMENT DIVISION, CEA

Introduction into the German Energy Market and Overview of flue gas cleaning technologies and recycling of residuals Kolkata, Raipur, Hyderabad,

CENTRAL ELECTRICITY AUTHORITY NEW DELHI

Up gradation of Boilers to Implement New Pollution Norms

MECON LIMITED. CONTROL OF SULPHUR DI OXIDE (SO 2 ) FROM TPPs TECHNOLOGY, ISSUES, CHALLENGES & WAY FORWARD SOx NOx 2016 THE FIRST CONFERENCE

Advanced AQCS for Oxy-fuel Combustion System; Controlling Mercury & SO3

Kazushige KUROSAWA*, Zhibao ZHANG**, and Zhengbing WANG** [Delivered Products & Systems] 1. Introduction. 2. Overview of Nanjing

CEMENT PLANT ENVIRONMENTAL TECHNOLOGY FOR ACHIEVING HIGH SO 2 REMOVAL

Evaporative Gas Cooling and Emissions Control Solutions

Adoption of USC CFB Technology to Achieving Lower Cost Generation and Environmental Sustainability. Gerd Heiermann & Douglas Spalding

Mist eliminators for Flue Gas Desulphurization

Convention on Long Range Transboundary Air pollution. APATITY COMBUSTION PLANT SO 2, NOx AND TSP EMISSION REDUCTION COST ASSESSMENT

Announce Partnership for offering Flue Gas Desulphurization Technologies for South Asian Markets

Post Combustion CO 2 Capture Scale Up Study

OPERATING EXPERIENCE OF CIRCULATING FLUIDIZED BED SCRUBBING TECHNOLOGY IN UTILITY SIZE POWER PLANTS AND REFINERIES

Enhancing Capacity Empowering Nation. Technological Parameters in selecting systems to control emissions in Thermal Power Plants

Omya Water & Energy omya.com. Flue Gas Cleaning. Sustainable and efficient flue gas desulfurization (FGD)

Meeting New Environment Norms - Challenges and Possibilities. Presented by: A.K.Sinha General Manager NTPC Limited

Field trip to Arnoldstein WTE facility Arnoldstein, Austria, December 19, by Werner Sunk

Experiences from Commissioning and Test Operation of Vattenfall s Oxyfuel Pilot Plant

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. II - Clean Coal Technologies - Bingjiang Liu

Acerra WtE plant plant block diagram MSW receiving section Combustion and flue gas cleaning

WET FLUE GAS DESULFURIZATION (FGD) SYSTEMS ADVANCED MULTI-POLLUTANT CONTROL TECHNOLOGY

Gary Blythe and Ben Bayer, URS Corporation John Grocki, Advantage Resources Consulting, LLC Casey Smith, Lower Colorado River Authority

Oxyfuel Combustion - Experience of FGD and FGC at 30 MW th

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN

Duke Energy Seminar September 3 5, 2008 Concord, NC

Title: Large scale Implementation of WFGD in Eskom: The Medupi Power Station WFGD Plant Retrofit Project

Long-term pilot testing in 1 MW th scale with hard coal

TECHNOLOGIES for SO 2 and ACID GAS CONTROL

Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries

Dry Sorbent Injection and Modeling for Acid Gas Emissions Control. Lew Benson McIlvaine Hot Topic Hour June 7, 2012

Continous Carbonate Looping Tests in a 1 MWth Pilot Plant

Emissions Control Project

Combustion Optimization & SNCR Technology for coal fired power stations and retrofit experience

Lünen State-of-the-Art 813MW Coal-Fired USC Boiler with High Efficiency and Flexibility

High-Efficiency Integrated Solid Wasteto-Energy

Oslo, February 17th, 2010

MERCURY, SOx AND DUST CONTROL BREF - BEST AVAILABLE TECHNIQUES REFERENCE

STEAG Energy Services LLC. Engineering and Consulting Services with a focus on the environment.

Oxyfuel Pulverized Coal Steam Generator Development 30 MWth Pilot Steam Generator

CO 2 recovery from CPU vent of CFB oxyfuel plants by Ca-looping process

International Conference POWER PLANTS 2010 in Serbia Vrnjacka Banja, 29. October Power Stations to Meet New European Emission Requirements

VGC Gypsum Centrifuge Flue Gas Desulphurisation (FGD)

98,3% Desulphurisation Efficiency - High SO2 Removal Performance using Limestone FGD at retrofit projects Tušimice and Prunerov

Flue Gas Desulphurisation (FGD) Vertical Gypsum Centrifuges

MIT Carbon Sequestration Forum VII Pathways to Lower Capture Costs

Uppgradering av rökgasreningssystem

Flue Gas Desulphurization (FGD) plant 2 x 600 MW Coal based Thermal power plant Cuddalore, Tamil Nadu. By MK Parameswaran 23 rd Dec, 2016

Incineration Technology for Municipal and Industrial Waste. Inserat LAB

Three years operational experiences with the Oxyfuel Pilot Plant of Vattenfall in Schwarze Pumpe

Mercury and SO3 Mitigation Issues for Scrubber Technology

Catalytic Activated Ceramic Dust Filter a new technology for combined removal of dust, NOx, dioxin, VOCs and acids from off gases.

Unique Identifier: Medupi Flue Gas Desulphurisation: Revision: 2.0 Technology Selection Study Report Page: 2 of 44 CONTENTS

Worldwide Pollution Control Association

Flue Gas Cleaning of Coal-fired Power Plant and SEC Technology. Shanghai Electric Power Generation Environment Protection Engineering Co., Ltd.

Techno-Economic Evaluation of. with Post Combustion Capture

Cross-effects and total gas clean-up system lay-out

Operating Experience of Circulating Fluidized Bed Scrubbing Technology in Utility Size Power Plants

Traditional and Advanced Air Quality Control Solutions

Technical concept and energy management of the Tampere WtE plant in Finland. IRRC-Waste-to Energy Vienna 1

NO x and SO x Simultaneous Removal from Exhaust Gas in a Glass Melting Furnace Using a Combined Ozone Injection and Chemical Hybrid Process

GE Power. Smarter. Cleaner. Industry. Iron & Steel 2017 STEAM POWER SYSTEMS INDUSTRY PRODUCT CATALOG

AQCS (Air Quality Control System) for Thermal Power Plants Capable of Responding to Wide Range of Coal Properties and Regulations

Optimization of an Existing Coal-fired Power Plant with CO 2 Capture

Optimising Power Generation Maintenance using Thermal and CFD modelling Warwick Ham Boiler Process Engineering Group Leader Steinmüller Africa,

WHITE PLUME REMOVAL USING FUEL ADDITIVES IN THERMAL POWER PLANTS

CIRCULATING FLUIDIZED BED- FLUE GAS DESULFURIZATION TECHNOLOGY EVALUATION PROJECT NUMBER

CDS Systems for Industrial Boilers

High efficient multi-fuel CYMIC concept for biomass, rejects and coal for Hamburger Hungaria Katriina Jalkanen Valmet Technologies Oy

Technologies for emissions reduction in the metallurgical and chemical process industries

Advances in Dry Cooling Deployed at South African Power Stations

Application of Circulating Fluidized Bed Scrubbing Technology for Multi Pollutant Removal

FIRST APPLICATION OF BABCOCK-HITACHI K.K. LOW SO 2 TO SO 3 OXIDATION CATALYST AT THE IPL PETERSBURG GENERATION STATION

Perspective on Coal Utilization Technology

Mercury emission control in coal-fired power plants. Dr. Dirk Porbatzki Uniper Technologies GmbH

Particulate CEMs for Wet and Dry FGD applications. By William Averdieck, Managing Director, PCME Ltd, UK

G.T. Bielawski J.B. Rogan D.K. McDonald The Babcock & Wilcox Company Barberton, Ohio, U.S.A.

Markus Gleis. Inserat LAB GmbH

Technology & Solutions Availability SOx. September 2017

Worldwide Pollution Control Association

FLUE GAS CLEANING WE MAKE THE WORLD A CLEANER PLACE

Transcription:

Worldwide Pollution Control Association ESKOM Scrubber Seminar April 12 th 13 th, 2007 Visit our website at www.wpca.info

State-of-the-art FGD Technology An Independent View of a Long-term FGD-Experience of an Operator and Owner s Engineer Dr. Hermann Brüggendick STEAG encotec e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 1

Development Emission Regulation in Germany 1964 Technical Instructions on Air Quality Control (Clean Air Act) Revised 1974 / 1984 Requirements of emissions monitoring systems 1974 Emission Protection Law (BImSchG) 1983 Large Combustion Plants Directive (LCPD) 13. BImSchV Requirements for continuously operating emission monitoring systems SO 2 < 400 mg/m³ (i.n.)dry, SO 2 Removal efficiency > 85 % 20.7. 2004 Regulation for Large Combustion and Gasturbine Plants (13. BImSchV) Reheating of flue gas downstream FGD cancelled SO 2 < 300 / 200 mg/m³ (i.n.) dry e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 2

Emissions Limits for existing and new Plants in Germany Emission- Limits (EL) German National Regulations existing- /new plants old, since 1983 new, since 20.07.2004 EL EL daily average value daily average value No daily average value > EL No daily average value > EL plus No 1/2 h average value > 2 x EL plus 97% of 1/2 h average values 1.2 x EL EL 1/2 h - average value No 1/2 h average value > 2 x EL Emission Limits (EL) mg/m³ i.n. dry, 5/6% O 2 mg/m³ i.n. dry, 6% O 2 Dust 50 20 / 20 60 / 40 NOx 200 200 / 200 400 / 400 SO2 400 300 / 200 600 / 400 Hg - 0.03 0.05 e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 3

STEAG s Development of FGD-Technology 1968 5,000 m³/h (stp) Pilot plant at STEAG power station Lünen 1971 140,000 m³/h (stp) Pilot plant at STEAG power station Lünen (Bischoff-Process) 1974 150,000 m³/h (stp) Pilot plant at STEAG power station Lünen (ACT - Process) 1981 750 MW First commercial FGD plant at STEAG power station Bergkamen 1999 10,000 m³/h (stp) Pilot plant at STEAG power plant Herne (Ammonia water process) FGD Operating experience Today ~ 9,000 MW Total capacity of operational FGD - system > 2.0 million Total FGD operating hours > 25 years FGD operating experience ~ 10,000 MW Total capacity of designed STEAG FGD - system > 12,000 MW Total capacity of internat. engineering services as Owner s engineer > 20,000 MW Total capacity of FGD retrofits e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 4

STEAG Power Stations with wet FGD-Installations Power Stations Capacity [MW] Furnace System SOx-Inlet Conc. Process / Absorbent FGD Design Data Byproduct (Gypsum) Approx. Operat. Hours [mg/m³ normal cond.] [t/h] (until 04/2007) Bergkamen 750 dry ash 2,600 wet scrubber lime 18.0 172,000 Oct. 81 Voerde A 760 dry ash wet scrubber 146,000 2,600 14.5 Voerde B 760 dry ash lime 146,000 Oct. 82 / 2005 Herne 1/2 2 x 150 slag tap 124,000 Jan 87 - Jan 04 4,300 wet scrubber 13.5 Herne 3 1 x 300 slag tap 137,000 Jan 87 lime/limestone Herne 4 500 dry ash 4,650 30.0 129,000 Sep 89 Luenen 10 150 dry ash wet scrubber 6.0 119,000 3,850 Luenen 11 350 slag tap lime/limestone 12.5 139,000 Walsum 7 410 dry ash wet scrubber 6.5 44,000 4,000 Walsum 9 150 slag tap lime/limestone 18.0 150,000 West 1 350 slag tap wet scrubber 139,000 3,850 12.5 West 2 350 slag tap lime/limestone 139,000 Apr 88 Oct. 88 Feb 88 Leuna 3 x 162 t/h wet scrubber heavy oil 7,000 115 electricity lime/limestone 7.0 78,000 Dez 96 Godorf 230 steam wet scrubber heavy oil 7,000 103 electricity lime/limestone 8.0 21,500 Sep 04 Bexbach 775 dry ash 2,250 wet scrubber lime/limestone 17.0 134,000 Apr 88 Fenne 1 300 dry ash wet scrubber 6.5 134,000 2,200 Fenne 2 230 dry ash lime/limestone 5.0 134,000 Feb 88 Weiher 3 710 dry ash 2,250 wet scrubber lime/limestone 15.5 139,000 Feb 88 Iskenderun 1 660 dry ash wet scrubber 25,000 33,200 lime/limestone Iskenderun 2 660 dry ash 25,000 Σ 9,000 MW Σ 2,300,000 24.5 Operation since 2003 e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 5

Advantages and Disadvantages of the different FGD Systems Dry/Semidry FGD Limestone FGD Ammonia FGD Features Low/medium sulphur Removal efficiency 90-95% Smaller flue gas flow No liquid waste Small footprint Low capital costs High sulphur Removal efficiency > 95% Larger flue gas flow Rather complex system Low cost reagent By-product flexibility High maintenance costs Rather high capital costs High sulphur Removal efficiency > 95% Larger flue gas flow No liquid waste High cost reagent High value by-product Low maintenance costs High capital costs Reagent Quick lime Limestone Ammonia By-product Non-marketable mixture of Ash from ESP and Ash from ESP and ash, reagent, calcium marketable gypsum marketable fertiliser sulphite and calcium ammonium sulphate sulphate e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 6

Flue Gas Desulphurization Dry / Semidry FGD e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 7

Dry Desulphurization Process e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 8

Desulphurisation with Wet FGD Limestone / Lime - Sum Reactions - Desulphurisation Limestone: CaCO 3 + SO 2 CaSO 3 + CO 2 Lime: CaO + SO 2 CaSO 3 Lime hydrate: Ca(OH) 2 + SO 2 CaSO 3 + H 2 O Oxidation 2 CaSO 3 H 2 O+ H 2 O + O 2 2 CaSO 4 2 H 2 O Calcium sulfite Gypsum dihydrate e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 9

Wet FGD Process Flow Sheet Limestone Process Clean gas Absorber Process water Raw gas Mist eliminator Waste Water hydrocyclone Air Limestone Gypsumhydrocyclone Vacuumbelt filter Waste water Gypsum e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 10

Wet FGD Process State-of-the-art Arrangements T > 72 C Variant 1 Absorber with Flue Gas Reheating Mist Eliminator Stack Combined ID-Fan GGH Absorber T ~ 50-52 C Variant 2 Mist Eliminator Discharge via Cooling Tower e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 11

Wet FGD Process State-of-the-art Arrangements Variant 3 T ~ 50-52 C Discharge via Wet Stack Mist Eliminator T ~ 50-52 C Variant 4 Mist Eliminator Combined Absorber/Stack Arrangement e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 12

Comparison of Quicklime / Limestone Operating and Cost Parameter Absorbent Quick Lime Limestone Power Consumption of scrubber pumps 60-75% 100% Mol. Stoichiometric ratio < 1.01 1.02 1.04 Gypsum Quality Purity 98-99% 95-98% Whiteness > 80% ~ 60% Solid waste Generation from FGD effluent treatment 60-70% 100% Maintenance Cost 80-90% 100% Transport cost of absorbent 54% 100% e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 13

Coal Qualities for STEAG Power Stations Coal Range LCV MJ/kg 19.5 25.7 Ash % 6 35 (45) Water % 8 12 (14) Volatiles % 30-40 Sulfur % 0.5 1.7 Grindability H 50 Softening point C > 1200 e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 14

STEAG Power Plant with dry FGD Power Plant Mindanao, Philippinen Commissioning 2006 Installed Capacity (gross) Project volume Fuel 210 MW 305 Mio US$ Hard coal e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 15

Flue Gas Desulphurization Dry FGD Power Plant Mindanao e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 16

Flue Gas Desulphurization Dry FGD Power Plant Mindanao Fabric Filter e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 17

Comparison of 4 STEAG Power Plants with wet FGD Plant No. 1 The 500 MW STEAG Power Plant Plant No. 2 The 660 MW STEAG Power Plant Plant No. 3 The 760 MW STEAG Power Plant / FGD Retrofit Plant No. 4 The new 750 MW STEAG Power Plant (CCEC) Clean Competitive Electricity from Coal e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 18

Plant No. 1 The 500 MW STEAG Power Plant e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 19

The 500 MW STEAG Power Plant Boiler Height 104 m Steam Mass Flow 420 kg/s Power Output gross 500 MW Steam Pressure 254 bar Steam Temperature 535 C Calorific value 19.5 MJ/kg Sulfur 1.2 % Ash 35%. V : 1,550,000 m³(i.n.)/h. wet V : 1,400,000 m³(i.n.)/h dry SO 2 in : 3,300 mg/m³ (i.n.) SO 2 out : 200 (400) mg/m³ (i.n.) HCl : 490 10 mg/m³ (i.n.) HF : 80 1.7 mg/m³ (i.n.) Dust : 50 30 mg/m³ (i.n.) e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 20

FGD of the 500 MW STEAG Power Plant FGD e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 21

FGD of the 500 MW STEAG Power Plant Flue gas Preheater e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 22

FGD of the 500 MW STEAG Power Plant / Flue Gas Line e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 23

FGD of the 500 MW STEAG Power Plant / Absorber e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 24

Plant No. 2 The 660 MW STEAG Power Plant e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 25

The 660 MW STEAG Power Plant e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 26

The 660 MW STEAG Power Plant. V : 2,000,000 m³(i.n.)/h wet. V : 1,850,000 m³(i.n.)/h dry SO 2 in : 1,460 mg/m³ (i.n.) SO 2 out : 350 mg/m³ (i.n.) HCl : 40 1 mg/m³ (i.n.) HF : 12 <0.5 mg/m³ (i.n.) Dust : < 142 10 mg/m³ (i.n.) Boiler Height 93 m Steam Mass Flow 524 kg/s Power Output gross 660 MW Steam Pressure 185 bar Steam Temperature 541 C Calorific value 25.8 MJ/kg Coal South African Coal e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 27

FGD of the 660 MW STEAG Power Plant FGD Boiler ESP e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 28

FGD of the 660 MW STEAG Power Plant / Plant Overview e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 29

FGD of the 660 MW STEAG Power Plant / Absorber e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 30

Plant No. 3 The 760 MW STEAG Power Plant / FGD Retrofit e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 31

The 760 MW STEAG Power Plant / FGD Retrofit Boiler Height 85 m Steam Mass Flow 600 kg/s Power Output gross 760 MW Steam Pressure 206 bar Steam Temperature 530 C Calorific value 27.3 MJ/kg Coal Import (South African). V : 2,434,000 m³(i.n.)/h wet. V : 2,242,000 m³(i.n.)/h dry SO 2 in : 2,420 mg/m³ (i.n.) SO 2 out : <200 mg/m³ (i.n.) HCl : 143 1 mg/m³ (i.n.) HF : 16.5 <0.5 mg/m³ (i.n.) Dust : 9.5 20 mg/m³ (i.n.) e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 32

The 760 MW STEAG Power Plant / FGD Retrofit Initial situation e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 33

The 760 MW STEAG Power Plant / FGD Retrofit Reasons for the Refurbishment / Project Aims Improvement of the environmental situation New FGD retrofit (SO 2 : 400 200 mg/m³ (i.n.) dr ) Optimisation ESP (Dust: 50 20 mg/m³ (i.n.)dr) Capacity increase (710 MW 760 MW, 2 x 50 MW, utilization of the permitted furnace thermal capacity) Efficiency improvement Reduction of the costs of maintenance Improvement of the profitability Improvement in competition e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 34

The 760 MW STEAG Power Plant / FGD Retrofit New Initial FGD situation without Bypass Boiler/ Turbine: Utilization of existing reserve capacity DeNOx: Utilization of existing reserve capacity ESP: Optimisation, static reinforcement Raw gas ducts: Static reinforcement ID-Fans: Retrofit, capacity increase FGD: New scrubbers Stack: New wet stack e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 35

The 760 MW STEAG Power Plant / FGD Retrofit State-of-the-art FGD Plant One absorber per unit ID-fan for total pressure rise No bypass, no dampers in the flue gas line 4 spray levels (PP), 1 with variable speed 3 stage mist eliminator Flue gas discharge via wet stack e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 36

The 760 MW STEAG Power Plant / FGD Retrofit New FGD One scrubber per unit, without bypass, without dampers Existing ID fans for total pressure rise, capacity increase Diameter 17 m, height approx. 36 m Sump volume approx. 2,400 m³ Steel rubber lining Raw gas inlet Alloy 59 4 Spray levels, design in polypropylen (PP) Circulation pipe in GRP 3 Stage mist eliminator e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 37

The 760 MW STEAG Power Plant / FGD Retrofit New Wet Stack Flue gas discharge via wet stack Total height 230 m Steel concrete shaft with 2 flue gas pipe of GRP Clean gas velocity < 18 m/s at 110% load Selective condensate discharge Avoidance of interior installed components e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 38

The 760 MW STEAG Power Plant / FGD Retrofit Emergency water injection e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 39

The STEAG 760 MW Power Plant / Flue Gas Line FGD e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 40

The STEAG 760 MW Power Plant / Absorber FGD e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 41

Plant No. 4 The new 750 MW STEAG Power Plant (CCEC) Clean Competitive Electricity from Coal e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 42

The new 750 MW STEAG Power Plant (CCEC) Boiler e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 43

The new 750 MW STEAG Power Plant (CCEC) State-of-the-art FGD Plant One absorber ID fan for total pressure rise No bypass, no dampers in the flue gas line 4 spray levels (PP), 1 with variable speed 3 stage mist eliminator Flue gas discharge via cooling tower e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 44

Clean Competitive Electricity from Coal (CCEC) Lowest Investment standardization / modularization reduction of costs by lessons learned application of proven technology but mono components Shortest Construction Period High Availability Low Maintenance Costs quick repair and overhauls, long intervals spare parts on stock or on call at supplier maintenance friendly design skilled and trained team Optimal Logistics (plant sites) e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 45

The new 750 MW STEAG Power Plant (CCEC) Air / Flue Gas Schematic Drawing. V : 2,200,000 m³(i.n.)/h. wet V : 2,000,000 m³(i.n.)/h dry SO 2 in : 2,200 mg/m³ (i.n.) SO 2 out : 200 mg/m³ (i.n.) HCl : < 340 <10 mg/m³ (i.n.) HF : < 116 <1 mg/m³ (i.n.) Dust : 20 <20 mg/m³ (i.n.) e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 46

Comparison of different FGD Plants Benchmarking Figures Dim No. 1 Reheat/Stack No. 3 Wet stack No. 2 Wet stack No. 4 Cooling tower MW 500 2 x 760 2 x 660 750 Comm. 1989 1982 / 85 2003 2009 Refurbishment/ Retrofit 2005 Plant Efficiency net Boiler Efficiency net Sulfur Range Spec. Steam Flow Spec. Fuel Flow Spec. Fluegas Mass Flow Scrubber Design % 38.9 38,6 40,23 45,1 % 93.2 93,2 93,4 94,5 % < 1.55 1,22 < 1,5 0,5-1,5 kg/s/mw net 0.93 0.86 0.87 0.81 kg Fuel /s / kg Steam /s 0.141 0.110 0.107 0.114 kg/s/mw net 1.22 1.29 1.03 1.04 1. Absorbens Quicklime Quicklime Limestone Quicklime 2. L/G Ratio l/m³ 12.6 11.5 12.4 11.9 3. Velocity gas zone m/s 2.6 3.8 4.0 < 4 4. Pressure drop mbar 45 16.5 13 14 5. Gas Temp. beh. Scrubber C 46 52 54 50-52 6. Internal Power Consumption MW 7.0 6.3 5.0 3.5 Equivalent hours of full load Operation h/a 6,800 approx. 7,000 6,600 approx. 7,000 e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 47

Water resources Main data Power Plant DIM Mindanao Flue gas reheat No. 1 Wet Stack No. 2 Wet Stack No. 3 Cooling Tower No. 4 Power Output gross MW 210 500 2 x 660 2 x 760 750 Water resources Quicklime / Limestone t/h QL QL 6,5 LS 5,9 QL 5,9 QL 4,5 Additional Water m³/h 30 90 350 330 150 l/mwh 143 180 265 217 200 Waste water m³/h No 40 80 75 40 l/mwh No 80 61 49 53 Liquid/fluegas ratio (L/G-Ratio) l/m³ No 12.6 12.4 11.5 11.9 e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 48

Selection of Desulphurization Processes General question: Recovery of byproduct gypsum or landfill Semi dry system: Product has to be landfilled Problems with S > 2 % in coal Operating experience up to 350.000 m³/h flue gas for one line Offers up to 750.000 m³/h flue gas for one line For 1000 MW min 4 lines necessary Water 20 40 l / 1000 m³/h Flue gas (~ 0.14 l/kwh) Wet system: Produced gypsum marketable High operating experience with high throughput per line Water 60 80 l / 1000 m³7h Flue gas (~ 0.2 l/kwh) Waste Water 40 80 m³/h (~0,06 l/kwh) e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 49

Comparison of FGD-Processes System Efficiency Ca/S Investment (West European basis) Dry 80-90 % < 2 65-78 US$/KW el (50 60 /KW el ) Semi-Dry 90-97 % 1.2-1.5 65-78 US$/KW el (50 60 /KW el ) Wet 90-99 % 1.05 85-115 US$/KW el (75 90 /KW el ) Wet-system if: - High S-content in coal - Gypsum can be sold - Landfill cost for product of semi dry process - Cost benefit for high flue gas throughput - Water resources are sufficient Semi dry-system if: - Lower desulphurization efficiency is asked for - Product has to be landfilled - Water resources are insufficient e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 50

STEAG International Reference FGD Plants as Owner s Engineer Ratcliffe Power Station UK 4 x 500 MW Chemnitz Germany 120 MW Orhaneli Power Plant Turkey 210 MW Mae Moh Power Plant Thailand 4 x 150 MW Yatagan Power Plant Turkey 3 x 210 MW Beijing Power Plant China 330 MW Banshan Power Plant China 250 MW Chongqing Power Plant China 400 MW West Burton Power Station UK 4 x 500 MW Maritza Bulgaria 4 x 210 MW Cottam Power Station UK 4 x 500 MW Pego Portugal 2 x 300 MW e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 51

STEAG Power Stations Services STEAG can provide unique services as the Owner s Engineer transferring extensive long-term FDG- and SCR-operating experience to our customers: Optimal process, arrangement and equipment design Design review Material and equipment selection Material handling Maintenance assistance Measuring services SCR catalyst management Operator training in our plants e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 52

STEAG Experience with different FGD - Solution STEAG has experience with several FGD Technologies: Lurgi Lentjes Noell / KRC Marubeni/ABB FISIA Babcock, Steinmüller FLS/MHI John Brown Hitachi AE Austrian Energy RWE Solutions Alstom Ebara e-a, Dr. Brüggendick, VortragSüdafrika 21.03.2007. Seite 53