Jürgen Fichtl, Development Characterization Pharma Technical Development, Penzberg, Germany Mass Spec 2013, September 23-26, Boston

Similar documents
Highly Confident Peptide Mapping of Protein Digests Using Agilent LC/Q TOFs

Utilizing novel technology for the analysis of therapeutic antibodies and host cell protein contamination

Analysis of Monoclonal Antibodies and Their Fragments by Size-Exclusion Chromatography Coupled with an Orbitrap Mass Spectrometer

ProteinPilot Report for ProteinPilot Software

Monoclonal Antibody Characterization on Q Exactive and Oribtrap Elite. Yi Zhang, Ph.D Senior Proteomic Marketing Specialist Oct.

Analysis of Monoclonal Antibodies and Their Fragments by Size Exclusion Chromatography Coupled with an Orbitrap Mass Spectrometer

Basic protein and peptide science for proteomics. Henrik Johansson

Ensure your Success with Agilent s Biopharma Workflows

ProMass HR Applications!

Biotherapeutic Non-Reduced Peptide Mapping

Fast and Efficient Peptide Mapping of a Monoclonal Antibody (mab): UHPLC Performance with Superficially Porous Particles

Spectral Counting Approaches and PEAKS

ADVANCING ATTRIBUTE CONTROL OF ANTIBODIES AND ITS DERIVATIVES USING HIGH RESOLUTION ANALYTICS

The Peptide Mapping Games!

PAVING THE WAY FOR ASSESSING IN VIVO DYNAMICS OF MULTIPLE QUALITY ATTRIBUTES FOR PROTEIN THERAPEUTICS

Advanced QA/QC characterization MS in QC : Multi Attribute Method

Supplementary Table 1: List of CH3 domain interface residues in the first chain (A) and

mabs and ADCs analysis by RP

Chromatographic Workflows for Biopharmaceutical Characterization

Rapid Peptide Mapping via Automated Integration of On-line Digestion, Separation and Mass Spectrometry for the Analysis of Therapeutic Proteins

ZipChip TM. Microfluidic CE-ESI Biotherapeutics CE-ESI-MS Applications. Please visit us at

Proteins. Patrick Boyce Biopharmaceutical Marketing Manager Waters Corporation 1

John Mehl, Bogdan Sleczka, Eugene Ciccimaro, Christian Caporuscio, Ekaterina Deyanova, Richard Huang, Timothy Olah, Celia D Arienzo

Host Cell Protein Analysis Using Agilent AssayMAP Bravo and 6545XT AdvanceBio LC/Q-TOF

Application Note. Authors. Abstract. Ravindra Gudihal Agilent Technologies India Pvt. Ltd. Bangalore, India

BIOSIMILAR PROFILING SUMMER 2018 ANDREA DETLEFSEN

Comparability Analysis of Protein Therapeutics by Bottom-Up LC-MS with Stable Isotope-Tagged Reference Standards

Workflows for the Characterization of Glycan structure on Biotherapeutics

A Complete Workflow Solution for Intact Monoclonal Antibody Characterization Using a New High-Performance Benchtop Quadrupole- Orbitrap LC-MS/MS

Quantification of Host Cell Protein Impurities Using the Agilent 1290 Infinity II LC Coupled with the 6495B Triple Quadrupole LC/MS System

Characterization of intact monoclonal antibody with microfluidic chip electrophoresis mass spectrometry

Strategies in proteomics

Simple, Robust, High Quality Intact Mass Analysis A Biosimilars Case Study

BioConfirm B Presentation

The world leader in serving science. Jonathan L. Josephs and Aaron O. Bailey. Life Sciences Mass Spectrometry

A High Resolution Bench-Top Orbitrap LC-MS Workflow Solution for Comprehensive Intact Monoclonal Antibody Characterization

Comprehensive characterization of three IgG forms using CESI-MS

基于质谱的蛋白质药物定性定量分析技术及应用

Algorithm for Matching Additional Spectra

Liver Mitochondria Proteomics Employing High-Resolution MS Technology

Investigating Biological Variation of Liver Enzymes in Human Hepatocytes

Biotherapeutic Peptide Mapping Information Dependent Acquisition (IDA) Method

Challenges in peptide mapping mass spectrometry of biopharmaceuticals

Thermo Scientific Peptide Mapping Workflows. Upgrade Your Maps. Fast, confident and more reliable peptide mapping.

Disulfide Linkage Analysis of IgG1 using an Agilent 1260 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column

Columns for Biomolecules BioLC Column Lines

IRDye Infrared Dye Reagents

Profiling Glycosylation of Monoclonal Antibodies at Three Levels Using the Agilent 6545XT AdvanceBio LC/Q TOF

Phi29 Scaffold Has a Helix-Loop-Helix Motif and a Disordered Tail. Marc C Morais et al., Nature Structural Biology 2003

IMPROVE SPEED AND ACCURACY OF MONOCLONAL ANTIBODY BIOANALYSIS USING NANOTECHNOLOGY AND LCMS

Quantitative mass spec based proteomics

Characterization of a fusion protein under native and denaturing conditions with maxis II

PLRP-S Polymeric Reversed-Phase Column for LC/MS Separation of mabs and ADC

Strategies for Quantitative Proteomics. Atelier "Protéomique Quantitative" La Grande Motte, France - June 26, 2007

Objective. Introduction. IP assisted LC/MS/MS making study protein complexes easy. Jon Hao 1, Yi Liu 1, Xiaozhi Ren 2, and King-Wai Yau 2

iprg-2016 Proteome Informatics Research Group Study: Inferring Proteoforms from Bottom-up Proteomics Data

A Highly Accurate Mass Profiling Approach to Protein Biomarker Discovery Using HPLC-Chip/ MS-Enabled ESI-TOF MS

Application Note LCMS-87 Automated Acquisition and Analysis of Data for Monitoring Protein Conjugation by LC-MS Using BioPharma Compass

Supplementary information, Figure S1A ShHTL7 interacted with MAX2 but not another F-box protein COI1.

Bioanalytical LC-MS of monoclonal antibody therapeutics

Mass Spectrometry and Proteomics - Lecture 6 - Matthias Trost Newcastle University

Advanced Characterization of Antibody Drug Conjugates (ADCs) by Liquid Chromatography and Mass Spectrometry (LC/MS) John Gebler, Ph.D.

Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product ICH Guidance

Towards an in vivo Stability Assay for ADCs and Their Metabolites in Serum by Affinity Capture LC-MS

Non-covalent or Native Mass Spectrometry. We can ionize intact protein complexes using ESI!!

Use of a Label-Free Quantitative Platform Based on MS/MS Average TIC to Calculate Dynamics of Protein Complexes in Insulin Signaling

High Resolution Accurate Mass Peptide Quantitation on Thermo Scientific Q Exactive Mass Spectrometers. The world leader in serving science

Increasing Throughput and Efficiency with Exactive LC/MS and Triple Quadrupole LC/MS/MS

Shotgun Proteomics: How Confident are you in that Identification? or Statistical Evaluation of Shotgun Proteomic Data

Easy Enhancements via Column Chemistry and Simplified Sample Preparation for Biosimilars. Joann Purkerson Thermo Fisher Scientific

Simultaneous Quantitation of a Monoclonal Antibody and Two Proteins in Human Plasma by High Resolution and Accurate Mass Measurements

Key questions of proteomics. Bioinformatics 2. Proteomics. Foundation of proteomics. What proteins are there? Protein digestion

Sasidhar N. Nirudodhi, Lin Tzihsuan, Justin Sperry, Jason C. Rouse, James A. Carroll

Advantages of Ion Mobility QTOF for Characterization of BioPharma Molecules

Monoclonal Antibody Analysis on a Reversed-Phase C4 Polymer Monolith Column

N-Glycan Profiling Analysis of a Monoclonal Antibody Using UHPLC/FLD/Q-TOF

Byos. A Clear Sky Solution for Analytical Scientists

RockerBox. Filtering massive Mascot search results at the.dat level

Barry Boyes 1,2, Tim Langlois 1, Brian Wagner 1, Stephanie Schuster 1 and Joe DeStefano 1

Využití cílené proteomiky pro kontrolu falšování potravin: identifikace peptidových markerů v mase pomocí LC- Q Exactive MS/MS

Agilent MassHunter BioConfirm Software NEW FRONTIERS IN THE CHARACTERIZATION OF BIOMOLECULES

Generating Automated and Efficient LC/MS Peptide Mapping Results with the Biopharmaceutical Platform Solution with UNIFI

Universal Solution for Monoclonal Antibody Quantification in Biological Fluids Using Trap-Elute MicroLC-MS Method

Supplementary Figures

Asish Chakraborty, St John Skilton, Weibin Chen and John C. Gebler Waters Corporation, Milford, MA, U.S. INTRODUCTION METHODS. Sample preparation

Multi-Enzyme Digestion for Biotherapeutic Peptide Mapping: Examining BiopharmaLynx 1.3 Functionality

Separation of Native Monoclonal Antibodies and Identification of Charge Variants:

Application Note. Kwasi Antwi, Amanda Ribar, Urban A. Kiernan, and Eric E. Niederkofler Thermo Fisher Scientific, Tempe, Arizona

A comprehensive CE/ESI-MS solution for BioPharma applications

Put the PRO in Protein Characterization

A highly sensitive and robust 150 µm column to enable high-throughput proteomics

Charge Variant Assessment of Nanobodies at the Intact Level by CESI-MS

Analytical Characterization of Biotherapeutics: Looking to the Future with Biosimilars

Biochromatography Bring more Zen into your life and laboratory

Filter-based Protein Digestion (FPD): A Detergent-free and Scaffold-based Strategy for TMT workflows

Enabling routine characterization of proteins. Agilent MassHunter BioConfirm software

Application Note # ET-20 BioPharma Compass: A fully Automated Solution for Characterization and QC of Intact and Digested Proteins

Improving Sensitivity for an Immunocapture LC-MS Assay of Infliximab in Rat Plasma Using Trap-and-Elute MicroLC-MS

ZipChip TM. Microfluidic CE-ESI Utility Life Sciences CE-ESI-MS Applications. Please visit us at

High-Throughput Peptide Mapping with the Vanquish UHPLC System and the Q Exactive HF Mass Spectrometer

Transcription:

Analytical Strategies for Assessment of Disulfide Linkages in Biopharmaceuticals Jürgen Fichtl, Development Characterization Pharma Technical Development, Penzberg, Germany Mass Spec 2013, September 23-26, Boston

Introduction Example 1: bispecific MAB Method description Research Clone Results of a research clone Results of the best producing clone Example 2: MAB with open SH Determination of free thiols Comparison with RP HPLC Determination of incorrect disulfide pairing Conclusions 2

Introduction IGG1 3

Introduction What disulfid modifications may occur? open sulfhydryl groups mainly in VL and CH3 ( Lacy ER et al 2008) Basic conditions may cause the formation of a non reducable thioether between HC - LC (J. Smith et al 2005) long term storage / posttranslational modification - may cause the formation of trisulfide within all inter chain bridges (S. Gu et al 2010) Heat stress conditions -may cause scrambling of C370 $ C96 (Yi Wang et al 2011) - fragmentation of hinge region (J. Vlasak et al 2007) Important role on function and stability IGG1 4

Introduction Analytical approaches Free thiols: - Reversed Phase Chromatography - Derivatization of free thiols with fluorimetric detection - Tryptic peptide map after derivatization of free thiols sum of all free thiols site-specific percentage of open disulfide bonds Incorrect disulfide pairing: - ESI-MS - Tryptic peptide map LCMS comparison before/after reduction poor sensitivity for minor species 5

Introduction Example 1: bispecific MAB Method description Research Clone Results of a research clone Results of the best producing clone Example 2: MAB with open SH Determination of free thiols Comparison with RP HPLC Determination of incorrect disulfide pairing Conclusions 6

Example 1: bispecific MAB Bispecific antibodies: Merge of two antibodies Ridgway JB, et al. (1996) 'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 9:617-621 Atwell S, et al. (1997) Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J. Mol. Biol. 270:26-35. desired mainproduct possible sideproduct 7

Sample preparation for LCMS peptide map Native tryptic digest (50µg antibody; c>2mg/ml) Alkylation of free SH: Buffer exchange: Digest (combination of LysC and Trypsin): - 1. Step: Addition of MAB : LysC 70:1 MAB : Trypsin 25:1-2.Step: Addition of MAB : Trypsin 25:1 Termination of digestion incubation 2h / 37 C incubation 16h / 37 C 8

Data evaluation LC MSMS on Thermo LTQ Orbitrap Top5 LCMSMS method (FT R=30.000; fragmentation in iontrap): Identification of SS-bridged peptides Dbond Algorithm (Seonhwa Choi et al 2009) : - java based software tool which screens all MSMS data to find b-/y- ions of SS bridged peptides - search based on local storage - workflow similar to mascot search (parameter files, modifications, fasta-file, excel export) Quantification by XIC evaluation relative determination of false SS-bridged peptides 9

Results: bispecific MAB of a research clone regular tryptic peptide (rel amount: 8%) 10

Results: bispecific MAB of a research clone regular tryptic peptide (rel amount: 8%) 11

Results: bispecific MAB of a research clone 12

Results: bispecific MAB of a research clone 13

Results: bispecific MAB of a research clone Int 37% 9% 25% 18% m/z 14

Results: bispecific MAB of a research clone 15

Results: bispecific MAB of a research clone Int 37% 9% 25% 18% m/z 16

Results: bispecific MAB of a research clone 17

Results: bispecific MAB of a research clone Quantification by SS bridge HC $ HC Description ratio HC1 366 HC2 343 HC1_$_HC2 88,0 HC2 343 HC2 343 HC2-Dimer 11,4 HC1 366 HC1 366 HC1_Dimer 0,6 18

Results: bispecific MAB of a research clone Int 37% 9% 25% 18% m/z 19

Results: bispecific MAB of a research clone Quantification by each cysteine SS Bond Description ratio LC1_Cys 213 LC1 213 HC1 232 LC1_$_HC1 27,7 LC1 213 HC2 214 LC1_$_HC2 49,6 LC1 213 LC1 213 LC1-Dimer 22,6 LC1 213 LC2 226 LC1_$_LC2 0,1 20

Results: bispecific MAB of a research clone Quantification by each cysteine SS Bond Description ratio LC1_Cys 213 LC1 213 HC1 232 LC1_$_HC1 27,7 LC1 213 HC2 214 LC1_$_HC2 49,6 LC1 213 LC1 213 LC1-Dimer 22,6 LC1 213 LC2 226 LC1_$_LC2 0,1 21

Results: bispecific MAB of a research clone RT: 4,17-9,37 100 80 60 6,83 TIC of native digest NL: 7,90E7 TIC F: ms MS f12100211 40 20 0 100 80 60 40 4,27 5,56 6,15 8,37 6,57 4,49 5,82 5,26 6,41 7,44 4,85 5,14 7,11 7,55 7,99 8,11 8,64 8,74 9,16 7,08 XIC of SS-peptide NL: 2,80E4 m/z= 507,18-507,21 F: ms MS f12100211 20 0 100 80 60 40 20 0 100 80 60 4,85 4,28 5,98 6,58 4,33 7,44 5,09 4,48 5,28 5,70 4,55 4,86 6,46 8,11 8,27 5,38 6,40 7,18 7,57 7,99 8,45 8,79 9,05 9,21 4,77 6,54 6,85 7,08 7,37 TIC of reduced digest XIC of SS-peptide NL: 2,69E7 TIC MS f12101211 NL: 7,36E2 m/z= 507,18-507,21 MS f12101211 40 20 0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 Time (min) 22

Results: bispecific MAB of a research clone RT: 4,17-9,37 100 80 60 6,83 TIC of native digest NL: 7,90E7 TIC F: ms MS f12100211 40 20 0 100 80 60 40 4,27 5,56 6,15 8,37 6,57 4,49 5,82 5,26 6,41 7,44 4,85 5,14 7,11 7,55 7,99 8,11 8,64 8,74 9,16 7,08 XIC of SS-peptide NL: 2,80E4 m/z= 507,18-507,21 F: ms MS f12100211 20 0 100 80 60 40 20 0 100 80 60 4,85 4,28 5,98 6,58 4,33 7,44 5,09 4,48 5,28 5,70 4,55 4,86 6,46 8,11 8,27 5,38 6,40 7,18 7,57 7,99 8,45 8,79 9,05 9,21 4,77 6,54 6,85 7,08 7,37 TIC of reduced digest NL: 2,69E7 TIC MS f12101211 NL: 7,36E2 m/z= 507,18-507,21 MS f12101211 40 20 0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 Time (min) 23

Introduction Example 1: bispecific MAB Method description Research Clone Results of a research clone Results of the best producing clone Example 2: MAB with open SH Determination of free thiols Comparison with RP HPLC Determination of incorrect disulfide pairing Conclusions 24

Results: Bispecific MAB of best producing clone - No incorrect disulfide linkages detected! - Disulfide linkages covered except for: - - 2 peptides > 7000 Da (bad CID fragmentation data) - - 1 peptide with two SS linkages - - 1 peptide due to incomplete digest incomplete digest 25

Introduction Example 1: bispecific MAB Method description Research Clone Results of a research clone Results of the best producing clone Example 2: MAB with open SH Determination of free thiols Comparison with RP HPLC Determination of incorrect disulfide pairing Conclusions 26

Sample preparation In-house optimized reduced tryptic pepmap by derivatization with NEM/NEM-d5 0µg antibody; c>2mg/ml) Derivatization free SH with NEM Buffer Exchange to remove NEM Label concentrate by centrifugation Reduction of linked disulfides Derivatization of ne novo formed thiols with NEM-d5: Buffer Exchange to remove NEM-d5 Label Tryptic Digest Termination of Digestion 27

Example 2: Determination of free thiols C265 C230 C233 Peptid N NEM-d5 [%] N NEM [%] N SH [%] Peptid N NEM-d5 [%] N NEM [%] N SH [%] C22 65,59 34,41 n.n. C96 64,27 35,73 n.n. C149 H12 97,04 2,73 0,23 C204 99,65 n.n. 0,35 C224 99,42 0,58 n.n. C218 n.n. n.n. n.n. C230/233 100 n.n. n.n. C230/233 100 n.n. n.n. C265 94,83 4,9 0,27 C325 n.n. n.n. n.n. C371 95,43 4,39 0,18 C429 96,6 3,28 0,12 C23 96,78 3,14 0,08 C92 100 n.n. n.n. C138 100 n.n. n.n. C198 99,49 0,47 0,04 C325 C371 C429 28

Example 2: comparison with RP HPLC Ratio of free thiol LCMS ca 36% 41% 46% 13% calculated probability based on LCMS data 29

Example 2: Determination of incorrect disulfide pairing NEM-Tag C230 C233 SS Bond Description Ratio ph 7 C22 NEM HC_$_NEM 31.5 C22 C96 HC_$_HC 56.5 C22 C198 HC_$_LC 1.4 C22 C265 HC_$_LC 3.9 C22 minor species 3.0 C265 C325 C371 C429 30

Example 2: Determination of incorrect disulfide pairing NEM-Tag SS Bond Description Ratio ph 7 C96 NEM HC_$_NEM 47.4 C96 C22 HC_$_HC 48.7 C230 C233 C96 C265 HC_$_LC 1.6 C96 C371 HC_$_LC 1.0 C96 minor species 1.3 C265 C325 C371 31 C429

Introduction Example 1: bispecific MAB Method description Research Clone Results of a research clone Results of the best producing clone Example 2: MAB with open SH Determination of free thiols Comparison with RP HPLC Determination of incorrect disulfide pairing Conclusions 32

Conclusion Disulfide mismatching Native Tryptic Pepmap Evaluation by DBond - highly sensitive method to identify minor species of incorrect disulfide pairing - complex evaluation not practical for high troughput applications - induced scrambling during basic tryptic digest ESI-MS - high troughput application - not sensitive to minor species Free thiols - RP HPLC results correlate with tryptic peptide map with NEM/ NEM-d5 derivatization - tryptic peptide map with NEM/ NEM-d5 derivatization appropriate for identification of low ratios of free thiols

Acknoledgements Eunok Paek (University of Soeul; Dbond Algortithm) Nadja Alt Dietmar Reusch Nadine Flöser Manuel Schott Ingo Linder Andreas Adler

Doing now what patients need next 35

Example 2: Determination of Incorrect Disulfide Pairing Influence of Digest conditions C22 Label Area ph8,5 Area ph7 Area ph6 [%] [%] [%] HC_C96 30,1 56,5 52,5 HC_C265 12,1 3,9 0,8 LC_C198 14,2 1,4 0,2 HC_C148 13,4 0,9 0,1 LC_C138 9,8 0,8 0,1 HC_C325 2,6 0,6 0,1 HC_C371 5,5 0,3 0,1 LC_C23 5,3 0,2 0,0 HC_C22 1,1 0,2 0,0 HC_C224 1,3 0,1 0,0 HC_C429 1,0 0,0 0,0 LC_C92 1,0 0,0 0,0 HC_C204 0,3 0,0 0,0 NEM 2,1 35,1 46,1 C96 Label Area ph8,5 Area ph7 Area ph6 [%] [%] [%] HC_C22 36,8 48,7 34,0 HC_C265 7,3 1,6 0,6 HC_C371 10,9 1,0 0,2 LC_C198 15,7 0,4 0,1 LC_C138 4,0 0,4 0,0 HC_C325 2,6 0,3 0,0 HC_C148 6,8 0,2 0,1 HC_C429 7,4 0,0 0,0 HC_C224 1,4 0,0 0,0 HC_C96 0,6 0,0 0,0 HC_C204 0,4 0,0 0,0 NEM 6,3 47,4 64,9 36

ph 6.0 ph 7.0 ph 8.5 ph 6.0 ph 7.0 ph 8.5 ph 7.0 Compare of digest conditions MAB A native MAB B native MAB C native MAB D reduced kda kda 200 200 160 97 160 97 66 66 55 55 36 31 36 31 21 21 14 14 6 6 2.5 2.5 37