Chancen und Grenzen von 3D-Druckern in der industriellen Produktion

Similar documents
Fraunhofer Institute for Laser Technology ILT. Digital Photonic Production

Content. Keynote presentation: Akad. Rat Dr.-Ing. Ingomar Kelbassa Dr.-Ing. Andrés Gasser

High Power Selective Laser Melting (HP SLM) of Aluminum Parts

Selective Laser Melting

MANUFACTURE AND REPAIR OF AERO ENGINE COMPONENTS USING LASER TECHNOLOGY (INVITED PAPER) Paper (405)

Chapter 5 SLM Production Systems: Recent Developments in Process Development, Machine Concepts and Component Design

Laser Additive Manufacturing as a Key Enabler for the Manufacture of Next Generation Jet Engine Components - Technology Push

Direct Metal Printers. Metal Additive Manufacturing with the ProX DMP Series

Additive manufacturing of metallic alloys and its medical applications

DIRECT METAL PRINTERS. Metal Additive Manufacturing with the ProX DMP Series

Discover the variety of Metal Powders

Metal Laser Melting. Efficient, toolless manufacture even of

SIRRIS ADD department. Additive Manufacturing

Design approaches for additive manufactured components

Getting Rapid ROI from Not- So- Rapid Prototyping

Innovative solutions made from aluminium foam for the mechanical engineering sector. Strong lightweight

Metal Powder the Raw Material of Future Production

3D METALS Discover the variety of Metal Powders The range of our standard metal powders

Producing Metal Parts

EMS-Grivory Material Technology. Metal Replacement With Engineering Polyamides. Ron Hamilton [Consultant] EMS-Grivory UK

New Developments in Laser Cladding for Industrial Manufacturing Processes

Metal Powder - the Raw Material of Future Production

Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM. Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden

Whitepaper MATERIALS FOR DIRECT METAL LASER-SINTERING. Mike Shellabear 1, Olli Nyrhilä 2. 1 EOS GmbH, 2 EOS Finland

NEW DMGMORI.COM. ADDITIVE TECHNOLOGIES ADDITIVE MANUFACTURING Reinvent your Metal Production

CHALLENGES AND OPPORTUNITIES FOR ADDITIVE MANUFACTURING IN THE AUTOMOTIVE INDUSTRY. Paul J. Wolcott Ph.D. Body SMT Innovation

Farsoon Introduction. Farsoon. Dr Xu s expertise: Farsoon Positioning: 9/19/2017 2

Micro processing with laser radiation

Titel der Präsentation

Manufacturing Using Light and Dust

Metal powder reuse in additive manufacturing. Alessandro Consalvo AM Support Engineer, Renishaw spa

Andreas Gebhardt. Understanding Additive Manufacturing. Rapid Prototyping - Rapid Tooling - Rapid Manufacturing ISBN:

Strategies for high deposition rate additive manufacturing by Laser Metal Deposition

Poly-Shape introduction

Enlightening Next Generation of Material

Additive Layer Manufacturing: Current & Future Trends

Challenges for Metallic 3D-Printed Parts. Do we want to print a plane?

THE LEADING LIGHT LASERS AND LASER SYSTEMS FOR PRODUCTION ENGINEERING JUNE 24 27, 2019, MESSE MÜNCHEN

Die Hardfacing and Remanufacturing using Direct Metal Deposition (DMD) B. Dutta POM Group, Inc., Auburn Hills, MI-48326

3D Selective Laser Melting (SLM) -from the Drawing to the Part-

3DMP. Fast I Simple I Economic. GEFERTEC GmbH Berlin Germany. 3DMP - 3D Metal Print fast simple economic

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS

NEU DMGMORI.COM. ADDITIVE TECHNOLOGIES ADDITIVE MANUFACTURING Reinvent your Metal Production

Manufacturing and Security Challenges in Additive Manufacturing

Thermo-mechanical Simulation of Additive Layer Manufacturing of Titanium Aerospace structures

Materials Services Materials Trading. Powder Metals. Additive Manufacturing

Welcome Presentation IraSME & CORNET Partnering Event Aachen Dr.-Ing. Dipl.-Wirt.-Ing. Benjamin Döbbeler Aachen, 26 November 2018

Additive Manufacturing Technology

11.3 Polishing with Laser Radiation

Additive Manufacturing Technology November

Concept Laser Industry Specific Solutions

DEVELOPMENT OF A MARAGING STEEL POWDER FOR ADDITIVE MANUFACTURING. Simon Hoeges GKN Sinter Metals Engineering GmbH Radevormwald, Germany

Direct Metal Solutions. Precison production metal printing with the ProX DMP printer series, 3DXpert software and LaserForm materials

Increase of Productivity by Using Adaptive LPBF Process Strategy 3D Valley Conference

Net Shaped High Performance Oxide Ceramic Parts by Selective Laser Melting

Additive Manufacturing and Laser Welding Solutions presented at IMTS Chicago 2018

Every Industry - Every Day DIRECT METAL LASER MELTING. The Experts in Metal Additive Manufacturing.

INDIVIDUAL CUSTOMER-SPECIFIC & ENGINEERED PARTS

Additive Manufacturing Challenges Ahead

ADDITIVE MANUFACTURING Presentation

Recycling of Scrap Tyres in Metal-plastic Composites

Design for Additive Manufacturing Julien Magnien

Determining Appropriate Cooling System For Plastic Injection Molding Through Computer Simulation

Entwicklungsprozess für die Industrialisierung der additiven Fertigung Technologiesymbiose Topologieoptimierung & 3D Druck

CREATING THE CONTINUOUSLY WELDED TRACK TRADITION MEETS MODERNITY

Additive Manufacturing

Development of Build Strategies for Droplet-based Additive

Lost Wax. Investment casting

INDUSTRIAL METAL POWDERS (I) PVT LTD PUNE, INDIA Since 1974

ANALYSIS OF COAXIAL LASER MICRO CLADDING PROCESSING CONDITIONS

Nondestructive Characterization and Quality Control of Lightweight Materials and Assemblies (Advanced Joining Technologies)

EOS Aluminium AlSi10Mg

DETERMINATION OF PROCESS PARAMETERS FOR ELECTRON BEAM SINTERING (EBS)

Qualification of laser based additive production for manufacturing of forging Tools

APF. ARBURG Plastic Freeforming.

PTA WELDING SYSTEMS.

Laser Polishing of Metals. Fraunhofer Institute for Laser Technology ILT Steinbachstraße Aachen (Germany)

DESIGNING FOR THE DMLS PROCESS JONATHAN BISSMEYER Senior Quality Engineer

Introduction to Additive Manufacturing

Material data sheet. EOS StainlessSteel PH1 for EOS M 290. Description, application

Additive Manufacturing Powder

Material data sheet - FlexLine. EOS Aluminium AlSi10Mg

Manufacturing Technology II. Exercise 2. Powder Metallurgy

TRUMPF Unternehmensfilm

Manufacturing UNBOUND

AM metal powders from LPW. Comprehensive range of metal powders optimised for use on all AM machines. 24 hours from order to dispatch

Case Report Glass-lined high pressure reactors for the process industry Potentials of 3D-Printing in plant and equipment

The Democratization of Additive Manufacturing

DAS FRAUNHOFER IKTS ALS INNOVATIVER PARTNER IM BEREICH BIO- UND MEDIZINTECHNIK

Laser Additive Manufacturing and Bionics: Redefining Lightweight Design

A LEADER IN ADDITIVE MANUFACTURING. Metal additive manufacturing solutions for the global OEM supply chains

Material Quality or Quality Material? by Additive Manufacturing

Figure 1: Ablation with a traditional laser causes thermal damage, heating peripheral areas.

ME 6018 ADDITIVE MANUFACTURING

3D Printing Park Hong-Seok. Laboratory for Production Engineering School of Mechanical and Automotive Engineering University of ULSAN

Industrial 3D-Printing of Metal Parts on a Micron Scale

Laser Direct Manufacturing Developments State-of-the-Art and Activities in the French Aerospace Industry

Potentials and challenges of plasticising additive manufacturing

Estudio implantación PYME para fabricación de piezas mediante tecnología de adición metálica por láser

Strength and lightness of a plastic detail

Transcription:

26 th of November 2013 Chancen und Grenzen von 3D-Druckern in der industriellen Produktion Prof. Dr. Reinhart Poprawe, M.A. Lehrstuhl für Lasertechnik RWTH Aachen University Fraunhofer Institut für Lasertechnik, Aachen

Facts and Figures of Fraunhofer ILT and RWTH Aachen University LLT, TOS, NLD About 30 Mio. operating budget (without investments) About 5 Mio. investments per year More than 300 current projects for industrial partners per year About 400 employees ILT, 150 RWTH-Chairs DQS certified according to DIN EN ISO 9001 2 branches abroad: - Center for Laser Technology CLT - Coopération Laser Franco-Allemande CLFA One patent application per month on average Approx. 1 spin off per year, 30 in last 25 years

Digital Photonic Production Eine Industrielle Revolution? Kosten Kosten konventionelle Produktion konventionelle Produktion Losgröße Produktkomplexität

Digital Photonic Production Eine Industrielle Revolution? Individualisation for free Individualisation for free Kosten Kosten laserbasierte Fertigung laserbasierte Fertigung konventionelle Produktion Losgröße konventionelle Produktion Produktkomplexität

Digital Photonic Production Eine Industrielle Revolution? Individualisation for free Individualisation for free Kosten Kosten laserbasierte Fertigung laserbasierte Fertigung konventionelle Produktion Digital Photonic Production Losgröße Digital Photonic Production konventionelle Produktion Produktkomplexität Laserstrahl Bewegungsrichtung des Laserstrahls umgeschmolzene Schicht Schmelzbad Pulverschicht SLM 1-3 cm 3 / min LMD 10-30 cm 3 / min Ablation 0,2-0,5 cm 3 / min

Digital Photonic Production Eine Industrielle Revolution? Individualisation for free Individualisation for free Kosten Kosten Digital Photonic Production Digital Photonic Production konventionelle Produktion konventionelle Produktion Losgröße Produktkomplexität

Digital Photonic Production Eine Industrielle Revolution? Individualisation for free Individualisation for free Kosten Kosten Digital Photonic Production Digital Photonic Production konventionelle Produktion konventionelle Produktion Losgröße Produktkomplexität Innovative Geschäftsmodelle

Digital Photonic Production Eine Industrielle Revolution? Individualisation for free Individualisation Complexity for for free free Kosten Kosten Digital Photonic Production Digital Photonic Production konventionelle Produktion konventionelle Produktion Losgröße Produktkomplexität Innovative Geschäftsmodelle

Digital Photonic Production Eine Industrielle Revolution? Individualisation for free Individualisation Complexity for for free free Kosten Kosten Digital Photonic Production Digital Photonic Production konventionelle Produktion konventionelle Produktion Losgröße Produktkomplexität Innovative Geschäftsmodelle Innovative Produkte

Digital Photonic Production Lightweight Construction Kosten Individualisation Less Complexity weight less for for free cost free Digital Photonic Production Conventional Production Weight reduction Coherent objectives

Digital Photonic Production Bits to Photons to Atoms Using light as a tool means highest power density highest speed shortest interaction (precision) mass-less, force-less, no tools best controllability (CAD to product)

Digital Photonic Production Example Selective Laser Melting

Selective Laser Melting Basic principle Deposition of a powder layer Melting of the powder by a laser beam 3D-CAD model in slices Novel geometries of serial-materials Powder Lowering

Third Industrial Revolution Production 2.0 The Economist, Februar 2011 The Economist, April 2012

Worldwide first ILT Industrial Application: SLM Dental Restaurations Application reconstruction of single teeth Process steps: preparation model digitalization design (CAD) manufacturing (DLF) control of model ceramic cover Production start: Nov. 2002 In cooperation with BEGOmedical AG

First SLM Hip Cup bone substitude implants with mesh structure out of TiAl6V4 Conventional manufacturing not possible Improvement of bone-implant interaction Hip cup manufactured at ILT implanted in January 2008

Current Research Topics Various Materials: SLM of ceramics Ceramic materials Zirconium-based ceramics Density approx. 100% First demonstration parts manufactured Current R&D-focus: Avoidance of micro-cracks

Current Research Topics Various Materials: Bio Resorbable Bone implants Composite material Stent Bio resorbable stent from PDLLA Medtronic

Current Research Topics Construction Design Optimizing Weight and Functionality Airbus A320 Nacelle Hinge Bracket Weight reduction by 64% 918 g 326 g Source: Altair, EADS Innovation Works

Current Research Topics Productivity: Process Speed Deposition rate Since 2003 : Industrial state-of-the-art unchanged at approx. 1.2 mm³/s 15 14 13 12 Deposition rate [mm³/s] Since beginning 2007: Increase in deposition rate up to approx. 9 mm³/s (experimental set-up) 11 10 9 8 7 2008: Installation of demonstration machine 6 5 4 2009: Further increase of deposition rate up to min. 12 mm³/s by using higher laser power (up to 1 kw) 3 2 1 1997 2000 2003 2006 2009 2012 time

Laser Additive Manufacturing Automotive Examples Hose holder Kinematics component Blankholder Chassis component Pulley Blankholder Holder gas-filled absorber Blankholder side panel Closure clamp Brake line holder Heat protection blank steering gear Kinematics component seat adjustment HKL hinge Luggage rack holder Damper intake Source: N. Skrynecki, Kundenorientierte Optimierung des generativen Strahlschmelzprozesses, 2010 Chassis component

Vision SLM 2030

Thank you very Questions? much for your Attention

Current Applications (3) Tooling industry tool inserts for injection moulding and die casting materials: 1.2709, (1.2343) conformal cooling shorter cycle times Source: ILT, EADS

Applications in Realization: Virtual Storage Qualification of Aluminium-alloys Festo. High Volume- Pneumatic-Valve (Die-casting of GD-AlSi10Mg) Production time: 11.5 hours for 2 parts

High Power Selective Laser Melting Demonstrator (Inconel 718) Nozzle guide vane 50 mm Source: Turbomeca Theoretical build up rate: conv. SLM (200 W) Skin: Core: Total: 3,8 mm³/s High Power SLM (1kW) 8 mm³/s 14,4 mm³ 8,4 mm³/s

Laser Additive Manufacturing Automotive Examples Motor Block Mock up 1/3 original size Material: AlSi12 400W Laser, 54 days 19h Cast: app 3 months

Increasing productivity of SLM Results aluminium State-of-the-art SLM process P L = 200 W High Power SLM P L = 1000 W

Current Research Topics Multi-Materials Material combination SLM manufacturing of the shell of a part Filling the hollow core of the part by casting (same material or different material) First demonstrational parts realized Topic of research: Application for tooling

Skin-Core Strategy Procedure Deposition of skin layer (50 μm) SLM of skin area Re-iteration until core layer thickness is reached (e.g. 4 times if core layer thickness is up to 200 μm) SLM of core area Repetition of steps 1-4 substrate plate selective melting of skin area selective melting of core area skin layer (50 µm)

Skin-Core Strategy Material: Stainless steel Skin P L : 350 W Beam diameter: 200 µm Layer thickness: 50 µm Core P L : 1000 W Beam diameter: 1000 µm Layer thickness: 200 µm