VZV Replication Assays Samantha J. Griffiths * and Jürgen Haas

Similar documents
sirna Screening for Genes Involved in HSV-1 Replication Samantha J. Griffiths * and Jürgen Haas

STANDARD OPERATING PROCEDURE

STANDARD OPERATING PROCEDURE

Using the xcelligence RTCA SP Instrument to Perform GPCR Assays

Growth and Maintenance of the 293A Cell Line

Storage on Arrival. Aliquot and store at -20 C for up to 6 months. Store at -20 C. Aliquot and store at -80 C for up to 6 months

Human ipsc-derived Endothelial Colony Forming Cells. Protocol version 1.0

NF-κB/Jurkat/GFP Transcriptional Reporter Cell Line

Human Skeletal Muscle Myoblast Care Manual: Maintenance and Differentiation from Myoblasts to Myocytes

EUCOMM Protocol for ES cells

Kit Components (Included) Cat # # of vials Product Name Quantity Storage Human Renal Cortical Epithelial Cells (HRCEpiC)

Human ipsc-derived Renal Proximal Tubular Cells. Protocol version 1.0

Important: Please read these instructions carefully

Propagation of H7 hesc From: UW (John Stamatoyannopoulos) ENCODE group Date: 12/17/2009 Prepared By: S. Paige/S. Hansen (UW)

Using the xcelligence RTCA SP Instrument to Perform Cytotoxicity Assays

OPPF-UK Standard Protocols: Mammalian Expression

Protocols for Neural Progenitor Cell Expansion and Dopaminergic Neuron Differentiation

Clonetics Skeletal Muscle Myoblast Cell Systems HSMM Instructions for Use

HIV-1 Pseudovirus Neutralization Protocol using Ghost cells

Transfection of Jurkat cells with METAFECTENE

L6 Cell Growth Protocol

3D Mammary Colony-Forming Cell Assay Giusy Tornillo 1* and Sara Cabodi 2

Data Sheet. TCR activator / PD-L1 - CHO Recombinant Cell line Cat. #: 60536

Human Tenocyte Care Manual

Human Skeletal Muscle Cells. Protocol version 2.0

Human Skeletal Muscle Progenitor Cells. Protocol version 2.0

TACS MTT Assays. Cell Proliferation and Viability Assays. Catalog Number: TA tests. Catalog Number: TA tests

icell DopaNeurons Kit

Human ipsc-derived Sensory Neuron Progenitors. For the generation of ipsc-derived sensory neurons

Human ipsc-derived Sensory Neuron Progenitors. For the generation of ipsc-derived sensory neurons

WOOD CELL PASSAGING PROTOCOL OVERVIEW

Data Sheet. Hedgehog Signaling Pathway Gli Reporter NIH3T3 Cell Line Catalog #: 60409

CAROUSEL CELL PASSAGING PROTOCOL OVERVIEW

Human Dermal Fibroblast Manual

Data Sheet. Hedgehog Signaling Pathway Gli Reporter NIH3T3 Cell Line Catalog #: 60409

MiraCell Endothelial Cells (from ChiPSC12) Kit

Alt-R CRISPR-Cpf1 System:

Protocol. GoClone Reporter Constructs: Sample Protocol for Adherent Cells. Tech support: Luciferase Assay System

3T3-L1 Differentiation Protocol

VDL602.2 RAPID ASSAY FOR DETERMINING ADENOVIRAL VECTOR TITER

Protocol. High-throughput Transfection Protocol for GoClone Reporter Assays. Tech support: Luciferase Assay System

IncuCyte S3 Neuronal Activity Assay

icell DopaNeurons Application Protocol

Protocol Using a Dox-Inducible Polycistronic m4f2a Lentivirus to Reprogram MEFs into ips Cells

IncuCyte S3 Neuronal Activity Assay

Reprogramming of Murine Somatic Cells Using mir302/367 lentivirus Modification by: Frederick Anokye-Danso, Ph.D

Materials and Reagents

LHCN-M2 cell culture, differentiation treatment, and cross-linking protocol.

Data Sheet. TGFβ/SMAD Signaling Pathway SBE Reporter HEK293 Cell Line Catalog #: 60653

VDL300.3 PRODUCTION OF RETROVIRAL VECTOR BY TRANSIENT TRANSFECTION

Clonetics Normal Human Epidermal Keratinocyte Cell Systems

CARE MANUAL INSTRUCTIONAL MANUAL ZBM SHIPPING CONDITIONS STORAGE CONDITIONS ORDERING INFORMATION AND TECHNICAL SERVICES

Amaxa Cell Line Nucleofector Kit L

Data Sheet. Glucocorticoid Receptor Pathway GAL4 Reporter (Luc)-HEK293 cell Line Catalog #: w70666

3T3-L1 Cell Care Manual Maintenance and Differentiation of 3T3-L1 Preadipocytes to Adipocytes

Data Sheet. Glucocorticoid Receptor Pathway GR-GAL4 Reporter (Luc)-HEK293 cell Line Catalog #: 60655

CHO-K1 (+G 16 ) Parental, Frozen Cells

Data Sheet PD-1 / NFAT - Reporter - Jurkat Recombinant Cell Line Catalog #: 60535

Tech support: Luciferase Assay System. Protocol. LightSwitch Transfec tion Optimization Kit. Genome In. Function Out.

Measuring cell proliferation using the CyQUANT Cell Proliferation Assay with SpectraMax Microplate Readers

Human Adult Mammary Fibroblast Care Manual

MimEX TM GI Human Descending Colon Stem Cells

Adeno Associated Virus (AAV) Purification ViraKit

Cortical Neural Induction Kit. Protocol version 1.0

human Dopamine D 2L Receptor, Frozen Cells

TransIT -Lenti Transfection Reagent

ReproRNA -OKSGM is a non-integrating, self-replicating RNA-based reprogramming vector for generating induced pluripotent stem (ips)

Mouse Embryonic Stem Cell Differentiation to Hematopoietic Precursors Hogune Im

User Manual. OriCell TM Dog Adipose-Derived Mesenchymal. Stem Cells (ADSCs) Cat. No. CAXMD-01001

Ready to use: Serum free culture in Insectomed SF express

With the ibidi Culture-Insert 2 Well in a µ-dish 35 mm

Amplification of Cre- expressing Adenovirus in 293T cells Jointly prepared by Lauren, Kazu, and Bingnan July 2011

Murine in vivo CD8 + T Cell Killing Assay Myoungjoo V. Kim 1*, Weiming Ouyang 2, Will Liao 3, Michael Q. Zhang 4 and Ming O. Li 5

Transwell Co-culture of Bone Marrow Macrophages with Tumor Cells Mackenzie K. Herroon and Izabela Podgorski *

Corning BioCoat Matrigel Matrix 6-well Plates for Embryonic Stem (ES) Cell Culture. Catalog Number Guidelines for Use

Application Protocol: Guidelines for MCF7 cells growth and maintenance

Code No Retrovirus Packaging Kit Ampho

p* = (number of negative results)/total number of results.

Data Sheet. camp/pka Signaling Pathway CRE/CREB Reporter (Luc) HEK293 Cell Line Catalog #: 60515

Human Adult Mesothelial Cell Manual

Protocol Reprogramming Human Fibroblasts into ips Cells using the Stemgent VSVg Retrovirus Reprogramming Set: Human OKSM

Cell Line Nucleofector Kit V

All quality control test results are reported on a lot specific Certificate of Analysis which is available at or upon request.

Protocol CRISPR Genome Editing In Cell Lines

Human Hepatic Organoids

Standard Operating Procedure

Human Muscarinic M2 Receptor, -Irradiated Frozen Cells

HEK G α16 Parental Aequorin Cell Line

Color-Switch CRE recombinase stable cell line

PromoFectin-Hepatocyte Cell Transfection Reagent. Instruction Manual. Cat.No. PK-CT-2000-HEP-10 PK-CT-2000-HEP-50

CHO-K1 + G α16 Parental Aequorin Cell Line

Human Recombinant PTHR1 Stable Cell Line

FectoCHO Expression system DNA transfection kit for protein production PROTOCOL

ETS-Embryo Medium. In Vitro Culture Media. Version 1.0

Guide to Induced Pluripotent Stem Cell Culture

Evolution of Escherichia coli to Macrophage Cell Line Migla Miskinyte and Isabel Gordo *

Chemical mixtures isolated from house dust disrupt thyroid receptor β (TRβ) signaling

VDL102.3 Production of Adenovirus in 293 Cells

Data Sheet. MAPK/ERK Signaling Pathway SRE Reporter HEK293 Cell Line Catalog #: 60406

Assay ID Assay name Description Components of the assay SYS-A115 DRD5/ARRB2 targetscreener

Transcription:

VZV Replication Assays Samantha J. Griffiths * and Jürgen Haas Division of Pathway and Infection Medicine, University of Edinburgh, Edinburgh, UK *For correspondence: samantha.griffiths@ed.ac.uk [Abstract] Varicella zoster virus (VZV) is a human herpesvirus which causes Varicella (chickenpox) upon primary infection and Zoster (shingles) following reactivation from latency (von Bokay, 1909). Whilst VZV is extensively studied, inherent features of VZV replication, such as cell-association of virus particles during in vitro culture and a restricted host range (limited to humans and some other primates) mean the cellular and viral mechanisms underlying VZV reactivation and pathogenesis remain largely uncharacterised. Much remains to be learnt about VZV, interactions with its host, and the development of disease. This protocol describes a basic VZV replication assay using a recombinant VZV-GFP reporter virus. As VZV is highly cellassociated in tissue culture, the reporter virus inoculum described here is a preparation of infected cells. This reporter virus-infected cell line can be used in combination with sirna gene depletion or cdna overexpression transfection protocols to determine the effect of individual cellular genes on virus replication. Materials and Reagents 1. VZV-permissive human cells (e.g. MeWo cells) (ATCC, catalog number: HTB-65) 2. Minimal essential medium eagle with Earle s BBS, with L-glutamine (Lonza, catalog number: 12-611F) 3. Fetal bovine serum (FBS) (LabTech, catalog number: FCS-SA-10454) 4. Penicillin: streptomycin (5,000 units/ml each) (Lonza, catalog number: DE17-603E) 5. Non-essential amino acids (NEAA) (Life Technologies, catalog number: 11140035) 6. 1x Trypsin-EDTA liquid (0.05% Trypsin, 0.53 mm EDTA-4Na) (Life Technologies, catalog number: 25300096) 7. Phosphate buffered saline without Magnesium or Calcium (Lonza, catalog number: 17-516F) 8. Recombinant VZV-GFP cell-associated virus stock (Zerboni, 2000) 9. MeWo growth medium (see Recipes) Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 1

Equipment 1. 75 cm 2 filter cap tissue culture flasks (Sigma-Aldrich, catalog number: C7106-120EA) 2. 96-well black tissue culture-treated plates (48/case) (VWR International, catalog number: 734-1609) 3. 50 ml centrifuge tube (e.g. Corning, catalog number: 430290) 4. Disposable hemocytometer (KOVA Glasstic slide 10 with counting grid) (HYCOR Biomedical, catalog number: 87144E) 5. Fluorescent plate reader (e.g. POLARstar OPTIMA, BMG LABTECH) 6. Class II Microbiological safety cabinet 7. Humidified cell culture incubator (37 C, 5% CO2) 8. Pipette aid (Alpha laboratories, catalog number: 4-131-201-E) 9. Centrifuge (e.g. Eppendorf, catalog number: 5811-000.010) 10. Light microscope Procedure 1. Take a semi-confluent (~50%) T75 flask of MeWo cells that has been split the previous day (see Note 1). 2. Remove media, rinse gently in sterile phosphate buffered saline (PBS), and discard wash. 3. Dislodge cells by adding 3 ml trypsin. Incubate for around 5 min at 37 C or until cells are fully dislodged. 4. Inactivate trypsin by adding 7 ml MeWo growth medium. 5. Pipette up and down to create a single-cell suspension. 6. Remove 12 μl and count cell density in a disposable hemocytometer. 7. Dilute cells to a density of 2 x 10 5 cells/ml in MeWo growth medium and seed 100 μl per well in a black, flat-bottomed 96-well plate to give 2 x 10 4 cells/well (see Note 2). 8. Leave cells to adhere overnight in a humidified incubator with 5% CO2 at 37 C. 9. Remove a vial of VZV-GFP of known titre from liquid nitrogen storage and thaw immediately in a water bath at 37 C until just thawed (see Note 3). 10. Transfer thawed cells to a 50 ml centrifuge tube and slowly add 30 ml growth medium (pre-warmed to 37 C) drop by drop to gradually increase the temperature of the cells. 11. Centrifuge for 10 min at 200 x g to pellet cells. 12. Gently remove the entire washing medium and resuspend in 1 ml growth media. 13. Dilute the cells in sufficient growth media to result in 1,000 IU/ml (see Note 4). Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 2

14. Remove plates from the incubator, and remove media by inverting plate and shaking over a container of suitable disinfectant. 15. Add 100 μl of the washed and resuspended VZV-GFP cell inoculum to each well to be infected, and 100 μl growth medium to uninfected control wells (see Note 5). 16. Replace the lid on the plate and return the plate back to the incubator. Monitor virus replication as a measure of GFP fluorescence from ~22 h post-infection until replication plateaus (see Note 6). 17. For comparison of virus replication in untreated and treated cells (protein overexpression, gene depletion, drug treatment etc.) calculate the replication slope over the linear growth phase and normalise treated cells to untreated ( normal replication; Figure 1). Figure 1. Calculation of replication slopes. A) Virus growth is monitored over multiple rounds of replication as a function of GFP fluorescence. B) Relative fluorescence units for mock transfected and positive controls-transfected (IDE, a cellular receptor for VZV; ORF28, the DNA polymerase for VZV) cells is plotted against hours post-infection to generate growth curve. C) The slope of replication over the linear phase of growth is calculated in Excel using the linest equation, and normalized to control (mock) transfected cells. D) Replication slopes are compared in a bar chart to see the effect of sirna gene depletion on VZV replication. Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 3

Notes 1. Virus replication proceeds more efficiently in cells that have been freshly passaged before seeding into assay plates. 2. Using a black assay plate will help reduce background and crosstalk between wells. 3. When grown in culture VZV virus particles remain associated with the cell membrane. As such, VZV-infected MeWo cells are used as the inoculum for VZV replication assays. These cells are stored in liquid nitrogen and need to be thawed and washed before use. Cells are extremely sensitive to temperature changes. When thawing it is essential that they are thawed quickly at 37 C until only just thawed (1-2 min). Do not leave cells for longer periods of time as this will considerably reduce cell viability and therefore titre of replication-competent virus. 4. It is important to do the infection with a known quantity of virus (multiplicity of infection; MOI) to generate growth curve over a reasonable time-scale. The titre [number of infectious units per ml of virus (IU/ml)] of VZV-GFP-infected MeWo cells is determined by a standard plaque assay, where a virus stock is added to a Mewo cell monolayer and overlaid with agarose. This results in the infection only of adjacent cells, which subsequently die to leave an empty patch within the cell monolayer. These patches, or plaques can be counted to quantify the virus as plaque-forming units, or infectious units (IU), per ml inoculum. In our experience 100 IU per well of a 96-well plate produces a suitable growth curve for replication analyses and comparisons. For example, a virus stock with a titre of 6.6 x 10 4 IU/ml would contain 6,600 IU in 100 µl. A 1 ml aliquot of virus inoculum should therefore be resuspended in 66 ml media. 5. Tissue culture plasticware, cells and growth medium all have some level of fluorescence. When utilising fluorescent reporter genes it is therefore essential to have appropriate controls to provide background fluorescence readings. For this assay, the fluorescence from mock-infected cells is used as background. 6. Replication is monitored over regular intervals to enable a complete growth curve (fluorescence over time) to be plotted. When comparing VZV replication between untreated and treated samples we use the slope of replication over the linear growth phase. It is therefore important to have as many measurements over this phase as possible (with a minimum of 6 for statistical reliability of the slope calculation). A test replication assay with your own equipment will allow the time of linear growth to be established, and assay timings can be adjusted to ensure measurements can be taken over this period. Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 4

Recipes 1. MeWo growth medium Eagle s minimum essential medium (EMEM) 5% FCS 1% p-s 1% NEAA Acknowledgments We are grateful to Prof. Ann Arvin (Stanford School of Medicine) for the kind gift of the VZV- GFP clone, and to Dr. Armin Baiker for the propagation of a cell-associated VZV-GFP virus stock. The protocol was optimised by Dr Lakshmi N. Kaza and Dr Samantha Griffiths. The authors gratefully acknowledge the MRC for funding (G0501453 J.H.). References 1. von Bokay, J. (1909). Uëber den aëtiologischen Zusammenhang der Varizellen mit gewissen Fällen von Herpes Zoster. Wien Klin Wochenschr 22: 1323-1326. 2. Zerboni, L., Sommer, M., Ware, C. F. and Arvin, A. M. (2000). Varicella-zoster virus infection of a human CD4-positive T-cell line. Virology 270(2): 278-285. Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 5