L e s s o n 1 INTRODUCTION TO HYDROELECTRIC POWER

Similar documents
The largest hydroelectric dam in the United States is the Grand Coulee Dam on the Columbia River in Washington state. Construction.

Hydroelectric power. Made by: Kekoa, Sara, Kupaa and Bree

Fig Micro-hydro s economy of scale ( based on data in 1985)

Bob Gundersen, PSNH Hydro Manager

Prehistoric Resources

Converting Non-Powered Dams to Produce Electricity Andrew Scott HSA10-7 The Economics of Oil and Energy March 7, 2014

Energy Resources. Assosciate Professor

Energy and Society. Professor Ani Aprahamian

Dams Information Sheet. Student Page. A dam is a structure that. Often. Beavers are nature s. They use to block the flow

The Hoover Dam By Michael Stahl

State of the Colorado River System: Drought and the Outlook for Floodplain Management Conference Rancho Mirage, CA September 10, 2015

Instructions For Undershot Water Wheel Power Calculations

Generators supply electrical energy.

In this module we'll cover seven objectives. At the end of the module you will be able to: Describe what hydro and hydrokinetic power are.

La Rance tidal power plant in La Rance, France. Tidal and Wave Energy

REET Energy Conversion. 3 Hydro Energy. Hydro Energy. Hydro energy refers to energy that is derived from the motion of water.

REPORT OF THE COLORADO RIVER COMMISSION OF NEVADA TO THE LEGISLATIVE COMMITTEE ON PUBLIC LANDS

AP Environmental Science. Understanding Energy Units- Skeleton Notes

Renewable vs. Non-Renewable Energy

Renewable and Alternative Energies

Natural Resources of the West: Water and Drought

Petroleum Energy Source Expo

Solar and Hydroelectric Power. By Abby Counihan, Ella Counihan, Deqa Mahammud, Paige Carlson, Fiona Kelliher

The National Dam Safety Program: 25 Years of Excellence

Section 1: Hydropower: Dams

Alternate Energy Sources

EXHIBIT C CONSTRUCTION SCHEDULE

Hydroelectricity What is hydroelectricity? Hydroelectricity or hydroelectric power is the electricity obtained by

Florida LAFS. English Language Arts INSTRUCTION

Micro Hydro In a Municipal Water and Power System

Releasing a River. Reading Selection

Green River Diversion Rehabilitation

Types of Hydropower Facilities

Earth s Energy Resources: GeothermaL

Hydraulic Machines, K. Subramanya

1/25. When the well is dry, we will know the true worth of water. Benjamin Franklin. Monday, May 16, 16

Saluda Hydro Operations. William R. Argentieri, P.E. Fossil & Hydro Technical Services

Energy and the Environment. CHEN HONG Phone:

Grafton Hydro, LLC. 55 Union Street, 4 th Floor Boston, MA, USA Tel: Fax: October 9, 2015

Managing Idaho Power Company s Hydro Projects During Drought Conditions The Benefits of Communication and Collaboration

Objectives: Targeted Alaska Grade Level Expectations: Vocabulary:

Renewable Energy Sources. Lesson Plan: NRES F1-2

Hydroelectric power plants

Senate Interim Committee on Veterans and Emergency Preparedness

02/14/2016 V3.3 AZ Science Lab 1

The Force, Energy Transfer and Machines Water Wheel Energy Transfer, Work and Machines

The Drainage Basin. From Peaks of Colorado to Mexico 1,400 miles Drains 242,000 square miles of Western US Colored River because of sediments

Hydroelectricity. How immaculate is it?

Exploring Energy Science Texts for Close Reading

Technology Exploration-II

RE: Fishery evaluation for South, Old Cow Creek Hydroelectric Facilities

GENERATING ELECTRICITY AT A POWER PLANT ???? Law of Conservation of Energy. Three Major Components THE SCIENCE BEHIND ENERGY TRANSFORMATIONS

WaterSim: Supply and Demand Simulation Model for Metropolitan Phoenix

16.3 Electric generators and transformers

Low Impact Hydropower Institute 34 Providence Street Portland, ME Tel. (207) Fax (206)

LESLIE JAMES EXECUTIVE DIRECTOR COLORADO RIVER ENERGY DISTRIBUTORS ASSOCIATION (CREDA)

Chapter 4. Work and Energy. Sections

Intro to. Part 1: Systems Overview. Dan New

Renewable Energy Vermont Conference Oct. 19, 2006

Hydro Electric Power (Hydel Power)

DOWNLOAD PDF HOW DOES A WATERFALL BECOME ELECTRICITY?

Small Wind Electric Systems. A U.S. Consumer s Guide

GEOS / ENST Lecture 11: mechanical -> mechanical (wind and water, the modern version)

Read the following article from the United States Geological Survey and answer the questions that follow.

Section 1: Renewable Energy Today

The Vending Machine. April 23, Olivia Juneau Logan Taylor Chris Hensel Michael Culley. Team 6 Class C1

Big Idea 6. Day 1. Weekly Question How do windmills make electricity?

Chapter 5 1. Hydraulic Turbines (Gorla & Khan, pp )

NATURAL, BUT NOT FOREVER

Design and Construction of a Mini Hydro Turbine Model

Hybrid Hydroelectric Power Plant : The Ultimate Technology For Electricity Generation

Water/Energy Symposium

MICRO-HYDRO POWER. Technical

Solar and Renewable Energies

COSI ON WHEELS ENERGY! Program Information Packet

ENGS 41. SUSTAINABILITY and NATURAL RESOURCE MANAGEMENT. Reservoir Dynamics

Salt River Project Water Resource Management

Report on Industrial Visit To

IMPROVING CENTER PIVOT PERFORMANCE TO INCREASE SURFACE WATER SYSTEM EFFICIENCY

WEST POINT PERTINENT DATA. GENERAL Location (damsite) Troup County GA, Chambers County AL, miles above mouth of Chattahoochee River

How Hydropower Works! Hydrologic cycle

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation

From Wikipedia, the free encyclopedia

Harnessing the power of. Harnessing the power of. water: Building a Hydropower plant. Photo courtesy of Jonathan Matthews

Hydropower in Minnesota's Future

Wind Energy and Wildlife: Frequently Asked Questions

Wind and Wave Power. By Nelle Anderson, Jenna Raderstrong, and Ryan Heltemes

Power Generation Using Irrigation Pump System

Draft Application for New License for Major Water Power Project Existing Dam

Renewable Energy Sources

A Tale of Two Dams and a dry river. November 1, 2011 Planning, Resources and Technology Committee Mojave Water Agency

INDEX. What are the renewable resources? Solar power. Wind power. Hydropower. Geothermal. Biomass. Marine power

HEAD TANK (FOREBAY TANK)

Hydro Energy and Geothermal Energy

3.3 FLOOD CONTROL AND HYDROLOGY

British Hydropower Association

APES- Water Diversions Name: Brandon Tran

Yukon Energy. Rural Generating Facilities

3.3 FLOOD CONTROL AND HYDROLOGY

Case Study: Roza Canal

Transcription:

R e n e w a b l e E n e r g y E d u c a t i o n Unit 3: Low Impact Hydroelectric Power L e s s o n 1 INTRODUCTION TO HYDROELECTRIC POWER

R e n e w a b l e E n e r g y E d u c a t i o n Unit 3: Low Impact Hydroelectric Power L e s s o n 1 INTRODUCTION TO HYDROELECTRIC POWER P a r t O n e

Hydroelectric power (often called hydropower) is considered a renewable energy source. A renewable energy source is one that is not depleted (used up) in the production of energy. Through hydropower, the energy in falling water is converted into electricity without using up the water.

Hydropower energy is ultimately derived from the sun, which drives the water cycle. In the water cycle, rivers are recharged in a continuous cycle. Because of the force of gravity, water flows from high points to low points. There is kinetic energy embodied in the flow of water.

Kinetic energy is the energy of motion. Any moving object has kinetic energy.

Humans first learned to harness the kinetic energy in water by using waterwheels. A waterwheel is a revolving wheel fitted with blades, buckets, or vanes. Waterwheels convert the kinetic energy of flowing water to mechanical energy.

Mechanical energy is a form of kinetic energy, such as in a machine. Mechanical energy has the ability to do work. Any object that is able to do work has mechanical energy.

Early waterwheels used mechanical energy to grind grains and to drive machinery such as sawmills and blacksmith equipment.

Waterwheel technology advanced over time. Turbines are advanced, very efficient waterwheels. They are often enclosed to further capture water s energy.

Not long after the discovery of electricity, it was realized that a turbine s mechanical energy could be used to activate a generator and produce electricity. The first hydroelectric power plant was constructed in 1882 in Appleton, Wisconsin. It produced 12.5 kilowatts of electricity which was used to light two paper mills and one home.

Hydroelectric power (hydropower) systems convert the kinetic energy in flowing water into electric energy.

How a Hydroelectric Power System Works - Part 1 Flowing water is directed at a turbine (remember turbines are just advanced waterwheels). The flowing water causes the turbine to rotate, converting the water s kinetic energy into mechanical energy.

How a Hydroelectric Power System Works Part 2 The mechanical energy produced by the turbine is converted into electric energy using a turbine generator. Inside the generator, the shaft of the turbine spins a magnet inside coils of copper wire. It is a fact of nature that moving a magnet near a conductor causes an electric current.

How much electricity can be generated by a hydroelectric power plant? The amount of electricity that can be generated by a hydropower plant depends on two factors: flow rate - the quantity of water flowing in a given time; and head - the height from which the water falls. The greater the flow and head, the more electricity produced.

Flow Rate = the quantity of water flowing When more water flows through a turbine, more electricity can be produced. The flow rate depends on the size of the river and the amount of water flowing in it. Power production is considered to be directly proportional to river flow. That is, twice as much water flowing will produce twice as much electricity.

Head = the height from which water falls The farther the water falls, the more power it has. The higher the dam, the farther the water falls, producing more hydroelectric power. Power production is also directly proportional to head. That is, water falling twice as far will produce twice as much electricity.

It is important to note that when determining head, hydrologists take into account the pressure behind the water. Water behind the dam puts pressure on the falling water.

A standard equation for calculating energy production: Power = (Head) x (Flow) x (Efficiency) 11.8 Power = the electric power in kilowatts or kw Head = the distance the water falls (measured in feet) Flow = the amount of water flowing (measured in cubic feet per second or cfs) Efficiency = How well the turbine and generator convert the power of falling water into electric power. This can range from 60% (0.60) for older, poorly maintained hydroplants to 90% (0.90) for newer, well maintained plants. 11.8 = Index that converts units of feet and seconds into kilowatts

As an example, let s see how much power can be generated by the power plant at Roosevelt Dam, the uppermost dam on the Salt River in Arizona. Although the dam itself is 357 feet high, the head (distance the water falls) is 235 feet. The typical flow rate is 2200 cfs. Let s say the turbine and generator are 80% efficient. Power = (Head) x (Flow) x (Efficiency) 11.8 Power = 235ft. x 2200 cfs x.80 11.8

Power = 517,000 x.80 11.8 Power = 413,600 11.8 Power = 35,051 kilowatts (kw) Roosevelt s generator is actually rated at a capacity of 36,000 kw.

High-head Hydropower Tall dams are sometimes referred to as high-head hydropower systems. That is, the height from which water falls is relatively high.

Low-head Hydropower Many smaller hydropower systems are considered lowhead because the height from which the water falls is fairly low. Low-head hydropower systems are generally less than 20 feet high.

Environmental Considerations High-head hydropower systems can produce a tremendous amount of power. However, large hydropower facilities, while essentially pollution-free to operate, still have undesirable effects on the environment.

Installation of new large hydropower projects today is very controversial because of their negative environmental impacts. These include: ü upstream flooding ü declining fish populations ü decreased water quality and flow ü reduced quality of upstream and downstream environments Glen Canyon June 1962 Glen Canyon June 1964

Low-head and Low Impact Hydropower Scientists today are seeking ways to develop hydropower plants that have less impact on the environment. One way is through low-head hydropower. Low-head hydropower projects are usually low impact as well that is, they have fewer negative effects on the environment. Example of a low-head, low impact hydropower system.

Low Impact Hydropower A hydropower project is considered low impact if it considers these environmental factors: river flow water quality watershed protection fish passage and protection threatened and endangered species protection cultural resource protection recreation facilities recommended for removal

Because the water cycle is continuous, hydropower is a renewable energy source.

The future of hydropower lies in technologies that are also environmental friendly. end part one

R e n e w a b l e E n e r g y E d u c a t i o n Unit 3: Low Impact Hydroelectric Power L e s s o n 1 INTRODUCTION TO HYDROELECTRIC POWER P a r t T w o

Part One Review How a Hydropower System Works Flowing water is directed at a turbine which (inside the generator) spins a magnet inside coils of copper wire. This produces an electric current.

Part One Review Flow Rate and Head The amount of electricity produced depends upon the amount of water flowing (flow rate) and the height from which water falls (head). There are high-head and low-head hydropower systems. Low-head hydropower systems are generally less than 20 feet high. In addition to being high- or low-head, there is a variety of different types and sizes of hydropower facilities!

Types of Hydropower Facilities The two primary types of hydropower facilities are the impoundment system (or dam) and the run-of-the-river system.

Impoundment System An impoundment is simply a dam that holds water in a reservoir. The water is released when needed through a penstock, to drive the turbine. This illustration shows the parts of a standard hydroelectric dam. Most large, high-head hydropower facilities use impoundments.

Run-of-the-River Hydropower System A run-of-the-river system uses the river s natural flow and requires little or no impoundment. It may involve a diversion of a portion of the stream through a canal or penstock, or it may involve placement of a turbine right in the stream channel. Run-of-the-river systems are often low-head.

Hydropower Plants Also Vary in Size There are large power plants that produce hundreds of megawatts of electricity and serve thousands of families. There are also small and micro hydropower plants that individuals can operate for their own energy needs. The Department of Energy classifies power plants by how much energy they are able to produce.

Large Hydropower A large hydropower facility has the capacity to produce more than 30,000 kilowatts (kw) of electricity. The majority of hydropower systems in the U.S. fit in this category. Large hydropower systems typically require a dam.

Small Hydropower Small hydropower facilities can produce 100 30,000 kilowatts (kw) of electricity. Small hydropower facilities may involve a small dam, or be a diversion of the main stream, or be a run-of-the-river system.

Micro Hydropower Micro hydropower plants have the capacity to produce 100 kilowatts (kw) or less. Micro-hydro facilities typically use a run-of-the-river system.

Hydropower in Arizona For a primarily desert state, Arizona has a surprising number of hydroelectric facilities. The largest of our hydroelectric dams are on the mighty Colorado River. There are also four dams with hydroelectric facilities on the Salt River.

Colorado River Hydroelectric Dams Glen Canyon Dam Height: 710 ft. Head: 583 ft. Flow: 33,200 cfs combined Capacity: 1.3 million kw (total from 8 generators) Hoover Dam Height: 726 ft. Head: 576 ft. Flow: NA Capacity: 2.1 million kw (total from 19 generators)

Lower Colorado River Hydroelectric Dams Davis Dam Height: 200 feet Head: 140 feet Flow: 31,000 cfs total Capacity: 240,000 kw (total capacity from 5 generators) Parker Dam Height: 320 feet Head: 80 feet Flow: 22,000 cfs total Capacity: 120,000 kw (total capacity from 4 generators)

Salt River Hydroelectric Dams Stewart Mountain Mormon Flat Horse Mesa Theodore Roosevelt Height: 357 ft. Head: 235 ft. Flow: 2200 cfs Capacity: 36,000 kw Height: 212 ft. Head: 110 ft. Flow: 2200 cfs Capacity: 13,000 kw Height: 224 ft. Head: 130 ft. Flow: Unit 1-1200 cfs Unit 2-6500 cfs Capacity: Unit 1-10,000 kw Unit 2-60,000 kw Height: 305 ft. Head: 260 ft. Flow: Units 1-3 - 600 cfs ea. Unit 4-6500 cfs Capacity: Units 1-3 10,000 kw ea. Unit 4-115,000 kw

All of the previous hydropower facilities are considered high-head. And except for Stewart Mountain Dam (which produces only 13,000 kw), all are considered large hydropower projects. It is important to note that all of Arizona s dams also serve the role of water storage and flood control as well as hydropower.

The dams on the Salt River play a tremendous role in delivering water to the Phoenix area. A series of nine canals with an additional 924 miles of lateral ditches deliver water from the Salt River throughout the Valley for domestic and irrigation uses.

With all that water flowing around the Valley is there potential for hydroelectric power generation?

Hydropower in the Valley Yes! There are three small hydropower facilities in the Phoenix metro area, taking advantage of the power of water! These are the Crosscut Hydroelectric Plant, the South Consolidated Hydroelectric Unit, and Arizona Falls. At each of these sites there is enough water, and a change in elevation, giving enough flow and head to generate hydroelectric power.

South Consolidated Hydroelectric Unit constructed in 1981 on the South Canal 35 foot drop 1,400 kw capacity Crosscut Hydroelectric Plant began commercial operation in 1915 on the Crosscut Canal 116 foot drop 3,000 kw capacity

Arizona Falls, a low-head hydropower system, is the Valley s newest hydroelectric generation station. An exciting example of a low impact, renewable energy source, Arizona Falls is open to the public as a place to experience water and its contribution to our energy and water needs.

Arizona Falls, located on the Arizona Canal, is also an interesting historical site. First constructed in 1902, it was the Valley s first hydropower plant. The falls attracted numerous visitors and were a place to picnic and have parties. The original power plant was dismantled in 1950. The site was recently restored for both recreation and energy.

How much electricity does Arizona Falls generate? The falls are 19 feet high and the average flow rate is 550 cfs. Let s assume the turbine and generator are 90% efficient. Let s use the equation: Power = (Head) x (Flow) x (Efficiency) 11.8 Power = 19 feet x 550cfs x.90 11.8

Power = 19 feet x 550cfs x.90 11.8 Power = 9405 11.8 Power = 797 kw (The generator s capacity is actually rated at 820 kw.)

Because water delivery is the first priority, electricity produced at Arizona Falls is used mainly to supplement high electricity demands in the summer.

Hydropower is an important renewable energy source world wide...

Even here in our desert home, we can experience new, renewable technologies with the power of water!