Control of Microbial growth Dr. Hala Al Daghistani

Similar documents
Control of Microbial growth Dr. Hala Al Daghistani

The Control of Microbial Growth

The Control of Microbial Growth

M I C R O B I O L O G Y

Chapter 7. The Control of Microbial Growth

Chapter 7 Study Guide Control of Microbial Growth

The Control of Microbial Growth

Controlling Microbial Growth

Chapter 7: Control of Microbial Growth

Important Terminology

Foundations in Microbiology Seventh Edition. Talaro Chapter 11 Physical and Chemical Agents for Microbial Control

The Control of Microbial Growth

Chapter 8 Control of Microorganisms by Physical and Chemical Agents

Lecture Summary Microbial Control of Growth (CH5)

8. Scrubbing or immersing the skin in chemicals to reduce the numbers of microbes on the skin is: A. disinfection B. sterilization C. antisepsis D.

Important Terminology (pg )

Physical and Chemical Control of Microorganisms

Inhibiting Microbial Growth in vitro. CLS 212: Medical Microbiology Zeina Alkudmani

2054, Chap. 7, page 1

Control of microbial growth means "Preventing the growth of microbes. Preventing growth of undesirable microorganisms

Definitions. BIOL 3702: Chapter 8. Control of Microbes in the Environment. Mechanical Removal Methods. Pattern of Microbial Death

Physical and Chemical Agents for Microbial Control

Chapter 9. Controlling Microbial Growth in the Environment. Lecture prepared by M indy M iller-kittrell North Carolina State University

Microbial Growth and Aseptic Techniques

Inhibiting of Microbial Growth in vitro CLS 212

Chapter 9 Controlling Microbial Growth in the Environment.

Chapter 9 Controlling Microbial Growth in the Environment. 10/1/ MDufilho

Definitions. BIOL 3702: Chapter 8. Control of Microbes in the Environment. Mechanical Removal Methods. Pattern of Microbial Death

Chapter 11. Topics: Controlling Microorganisms. - Physical Control. - Chemical control

Sterilization, Disinfection and Antisepsis

1. # of organisms present- it is harder to kill a larger population of cells.

1)What are the four general considerations for effective microbial control? List and describe (8 pts)

AUTOCLAVE: steam pressure sterilizer

Chapter 9: Controlling Microbial Growth in the Environment

Physical and Chemical Control of Microbes. Muhammad Suleman Kamran Rasool Fatima Amjad Aysha Imtiaz BIOL 411

مادة االدوية املرحلة الثالثة أ.م.د. حسام الدين سامل

Controlling Microbes (Sterilization & Disinfection)

How antimicrobial agents work

Claire Kari Biosafety Specialist DEHS Biosafety October 2010

Sterilization and Disinfection

Microorganisms are the agents of contamination, infection. Hence it becomes necessary to remove them from materials and areas.

on ro ero la THE TERMINOLOGY OF MICROBIAL CONTROL THE RATE OF MICROBIAL DEATH ACTIONS OF MICROBIAL CONTROL AGENTS

2120 Lab. Week 11. Experiments 13,14,21. Kirby Bauer, TDT, Chemicals

Principles of Microbial Control Terminology of Microbial Control Death Rate Action of Anti-microbial agents

Controlling Microbial Growth in the Environment

Microbial Growth and The Control of Microbial Growth (Chapter 6 & 7)

Controlling Microbial Growth in the Environment

Controlling Microbial Growth in the Environment

Microbiology sheet (6)

The Control of Microorganisms LC D R B R I A N B E A R D E N, M S, P E

INTRODUCTION Sanitization sterilization Antibiotics Bactericidal Bacteriostatic Antiseptics disinfectants

Agent Mechanisms of Action Comments Surfactants. Membrane Disruption; increased penetration Denature proteins; Disrupts lipids

11.1 Controlling Microorganisms

Sterilization & Disinfection

DOWNLOAD PDF CONTROL OF MICROBES BY PHYSICAL AND CHEMICAL METHODS

Lab Exercise #4 Microbial Control Lab Exercise #4 Control of Microorganisms: Physical, Chemical and Chemotherapeutic

10/6/2015. Unit 4: Sterilization, Disinfection, & Antimicrobial Therapy (Chapters 12 & 13) Aseptic Principles. Brain Check. Aseptic Principles

Principle of Lab. Safety

Principles of Preservation

Control and Sterilization (see pages )

Guidelines for Selection and Use of Disinfectants

MICROBIOLOGICAL PROFILE

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS

Unit 4: Sterilization, Disinfection, & Antimicrobial Therapy (Chapters 12 & 13)

6/28/2016. Control of Microbial Growth. Method. Terminology. Disinfectants and Antiseptics

number Done by Corrected by Doctor Hamed Al Zoubi

Sterilization and Disinfection

10/2/2016. Control of Microbial Growth. Method. Terminology. Disinfectants and Antiseptics

20.106J Systems Microbiology Lecture 16 Prof. Schauer. Chapter 20

COLLEGE OF PHARMACY STERILE PRODUCTS PHT 434. Dr. Mohammad Javed Ansari, PhD. Contact info:

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS

Choosing an Effective Sanitizer

Antiseptics and Disinfectants

01/08/2018. Control of Microbial Growth. Methods. Terminology. Disinfectants and Antiseptics. Three approaches. Cleaning. Chemical.

Chapter 6: Microbial Growth

Physical)and)Chemical)Control) of)microbes) Chapter)9) ) Rela8ve)Resistance)of)Different)Microbial)Types)to) Microbial)Control)Agents) More resistant

Take-Home Quiz II. Summer 2005 Semester

Control of Micro-Organisms

Control of Microorganisms by Physical and Chemical Agents

CHAPTER-V STERILIZATION R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR.

Bio-Burden Reduction in Biological Laboratories

MICROBIAL GROWTH. Dr. Hala Al-Daghistani

Biosecurity Sanitation and Pest Control

METAL-POLYMER FUNGICIDAL- BIOCIDAL PROTECTION SYSTEMS. Orley Pinchuk. Thursday, March 23 Wood Protection 2006 New Orleans, Louisiana, USA

SANITATION CLEANING AND DISINFECTANTS

2/25/2013. Psychrotrophs Grow between 0 C and C Cause food spoilage Food Preservation Temperatures

Antimicrobial and Antibacterial Agents

Heat Sterilization. Module- 40 Lec- 40. Dr. Shishir Sinha Dept. of Chemical Engineering IIT Roorkee

Exercise 24-A MICROBIAL CONTROL METHODS (Effects Of Temperature, Ultra Violet Light, Disinfectants And Antiseptics)

HANDSAN MICROBIOLOGICAL PROFILE

Lec.5 Food Microbiology Dr. Jehan Abdul Sattar

Microbiology with Diseases by Body System Robert W. Bauman Third Edition

WHY IS THIS IMPORTANT?

Control of Microorganisms in the Environment and Antimicrobial Chemotherapy

FOOD PRODUCTION WATER SUPPLIES

LECTURE 4. MICROBIAL GROWTH

The Complete Solution for Clean Room Aerosol-Based Disinfection MINNCARE DRY FOG SYSTEM

Best Practices for Environmental Cleaning. MODULE 3 Cleaning Products and Tools

BIOL 270 Microbiology

Disinfection and sterilisation

Transcription:

Control of Microbial growth Dr. Hala Al Daghistani

Terminology Sepsis: Characterized by the presence of pathogenic microbes in living tissues or associated fluids. Asepsis: absence of significant contamination. Aseptic surgery techniques prevent microbial contamination of wounds. Antimicrobial chemicals, expected to destroy pathogens but not to achieve sterilization Disinfectant: used on objects (reduce the number of viable microorganisms) Antiseptic: used on living tissue, destroys or inhibits the growth of microorganisms Nosocomial Infection(Hospital Acquired Infection) an infection that is contracted from the environment or staff of a healthcare facility.

Sterilization: A defined process used to render a surface or product free from viable organisms, including bacterial spores. Biocide: A chemical or physical agent, usually broad spectrum, that inactivates microorganisms. Chemical biocides include hydrogen peroxide, alcohols, bleach, cycloheximide, and phenols physical biocides include heat and radiation. Fungicide, Sporicide, Germicide Sanitization: reduces microbial numbers to safe levels (e.g.: eating utensils) Bacteriostatic: Inhibits bacterial reproduction Bactericidal: Kills bacteria

Preservation: The prevention of multiplication of M.O. in formulated products, including pharmaceuticals and foods. Antibiotics: Naturally occurring and synthetically derived organic compounds that inhibit or destroy selective bacteria, generally at low concentrations.

Effectiveness of Antimicrobial Treatment Depends on Time it takes to kill a microbial population is proportional to number of microbes. Microbial species and life cycle phases (e.g.: endospores) have different susceptibilities to physical and chemical controls. Organic matter may interfere with heat treatments and chemical control agents. Exposure time: Longer exposure to lower heat produces same effect as shorter time at higher heat.

Actions of Microbial Control Agents Disruption of the Cell Membrane or cell Wall Damage to proteins (disruption of the tertiary structure of a protein or protein denaturation) Damage to nucleic acids (include ionizing radiations, ultraviolet light, and DNA-reactive chemicals( e.g. alkylating agents and other compounds that react covalently with purine and pyrimidine bases). Ultraviolet light, induces cross-linking between adjacent pyrimidines on one or the other of the two polynucleotide strands, forming pyrimidine dimers

Disruption of Free Sulfhydryl Groups Enzymes and coenzyme containing cysteine have side chains terminating in sulfhydryl groups. Such enzymes and coenzymes cannot function unless the sulfhydryl groups remain free and reduced. Oxidizing agents and heavy metals do widespread damage. Chemical Antagonism The interference by a chemical agent with the normal reaction between a specific enzyme and its substrate is known as chemical antagonism. The antagonist acts by combining with some part of the holoenzyme (the protein apoenzyme, the mineral activator, or the coenzyme), thereby preventing attachment of the normal substrate.

(e.g. carbon monoxide and cyanide combine with the iron atom in hemecontaining enzymes and prevent their function in respiration).

Physical Methods of Microbial Control Heat is very effective (fast and cheap). Thermal death point (TDP): Lowest temperature at which all cells in a culture are killed in 10 min. Thermal death time (TDT): Time to kill all cells in a culture Decimal Reduction Time (DRT): Minutes to kill 90% of a population at a given T.

A temperature of 100 C will kill all but not spore forms of bacteria within 2 3 minutes in laboratoryscale cultures. a temperature of 121 C, pressure of 15 lb/sq inches for 15 minutes is used to kill spores. Steam is generally used, both because bacteria are more quickly killed when moist and because steam provides a means for distributing heat to all parts of the sterilizing vessel.

For sterilizing materials that must remain dry, circulating hot air electric ovens are available. because heat is less effective on dry material, it is customary to apply a temperature of 160 170 C for 1 hour or more. Under these conditions ( excessive temperatures applied for long periods of time), heat acts by denaturing cell proteins and nucleic acids and by disrupting cell membranes.

Denatures proteins Moist Heat Sterilization Autoclave: Steam under pressure, Most dependable sterilization method Steam must directly contact material to be sterilized. All microorganisms even spore forming bacteria are killed at 121.5 C for 15 min. Prion destruction: 132 C for 4.5 hours

Pasteurization Significant number reduction (esp. spoilage and pathogenic organisms) does not sterilize! Historical goal: destruction of M. tuberculosis Classic holding method: 63 C for 30 min Flash pasteurization (HTST): 72 C for 15 sec. -Most common method. - Thermoduric organisms survive Ultra High Temperature (UHT): 140 C for < 1 sec. Technically not pasteurization because it sterilizes.

Dry heat sterilization kills by oxidation Flaming of loop Incineration of carcasses Anthrax Foot and mouth disease Bird flu Hot-air sterilization Equivalent treatments Hot-air 170 C, 2 hr Autoclave 121 C, 15 min

Filtration Air filtration using high efficiency particulate air (HEPA) filters. Effective to 0.3 m Membrane filters for fluids. Pore size for bacteria: 0.2 0.4 m Pore size for viruses: 0.01 m Fig 7.4

Low Temperature Slows enzymatic reactions inhibits microbial growth Freezing forms ice crystals that damage microbial cells lyophilization Various Other Methods High pressure in liquids denatures bacterial proteins and preserves flavor Desiccation prevents metabolism Osmotic pressure causes plasmolysis

Ionizing Radiation X-rays, -rays, electron beams production of free radicals and other highly reactive molecules Commonly used Cobalt-60 radioisotope Salmonella and Pseudomonas are particularly sensitive Sterilization of heat sensitive materials: drugs, vitamins, herbs, suture material

Nonionizing Radiation: UV light Most effective wave legnth ~ 260 nm Effect: thymine dimers Actively dividing organisms are more sensitive because thymine dimers cause....? Used to limit air and surface contamination. Use at close range to directly exposed microorganisms E.g.: germicidal lamps in our lab

Chemical Methods of Microbial Control Few chemical agents achieve sterility. Consider presence of organic matter, degree of contact with microorganisms, and temperature

Disk-diffusion Method Disk of filter paper is soaked with a chemical and placed on an inoculated agar plate; a zone of inhibition indicates effectiveness. Fig 7.6

Types of Disinfectants Phenol = carbolic acid (historic importance) Phenolics: Cresols (Lysol) - disinfectant Bisphenols Hexachlorophene (phisohex, prescription), hospitals, surgeries, nurseries Triclosan (toothpaste, antibacerial soaps, etc.) Fig 7.7 Phenol and derivatives disrupt plasma membranes (lipids!) and lipid rich cell walls (??) Remain active in presence of organic compoundsp

Halogens Chlorine Oxidizing agent Widely used as disinfectant Forms bleach (hypochlorous acid) when added to water. Broad spectrum, not sporicidal (pools, drinking water) Iodine More reactive, more germicidal. Alters protein synthesis and membranes. Tincture of iodine (solution with alcohol) wound antiseptic Iodophors combined with an organic molecule iodine detergent complex (e.g. Betadine ). Occasional skin sensitivity, partially inactivated by organic debris, poor sporicidal activity.

Alcohols Ethyl (60 80% solutions) and isopropyl alcohol Denature proteins, dissolve lipids No activity against spores and poorly effective against viruses and fungi Easily inactivated by organic debris Also used in hand sanitizers and cosmetics Table 7.6

Heavy Metals Oligodynamic action: toxic effect due to metal ions combining with sulfhydryl ( SH) and other groups proteins are denatured. Mercury (HgCl 2, Greeks & Romans for skin lesions); Thimerosal Copper against chlorophyll containing organisms Algicides Silver (AgNO 3 ): Antiseptic for eyes of newborns Zinc (ZnCl 2 ) in mouthwashes, ZnO in antifungal in paint

Surface Acting Ingredients / Surfactants Soaps and Detergents Major purpose of soap: Mechanical removal and use as wetting agent Definition of detergents Acidic-Anionic detergents Anion reacts with plasma membrane. Nontoxic, non-corrosive, and fast acting. Laundry soap, dairy industry. Cationic detergents Quarternary ammonium compounds (Quats). Strongly bactericidal against against wide range, but esp. Gram+ bacteria Soap Acid-anionic detergents Quarternary ammonium compounds (cationic detergents) Degerming Sanitizing Strongly bactericidal, denature proteins, disrupt plasma membrane

Chemical Food Preservatives Sulfur dioxide wine Organic acids Inhibit metabolism Sorbic acid, benzoic acid, and calcium propionate Control molds and bacteria in foods and cosmetics Sodium nitrate and nitrite prevents endospore germination. In meats. Conversion to nitrosamine (carcinogenic)

Aldehydes and Chemical Sterilants Aldehydes (alkylating agents) Inactivate proteins by cross-linking with functional groups ( NH 2, OH, COOH, SH) Glutaraldehyde: Sterilant for delicate surgical instruments (Kills S. aureus in 5, M. tuberculosis in 10 min) Formaldehyde: Virus inactivation for vaccines Chemical Sterilants for heat sensive material Denature proteins Ethylene oxide

Plasma Luminous gas with free radicals that destroy microbes Use: Tubular instruments, hands, etc.

Hydrogen Peroxide: Oxidizing agent Inactivated by catalase Not good for open wounds Good for inanimate objects; packaging for food industry (containers etc.) 3% solution (higher conc. available) Esp. effective against anaerobic bacteria (e.g.: Effervescent action, may be useful for wound cleansing through removal of tissue debris

Microbial Characteristics and Microbial Control Fig 7.11