Capillary Electrophoresis in Quality Control PART II: CE-SDS: Method Development and Robustness

Similar documents
Assay of IgG Purity and Heterogeneity using High-Resolution Sodium Dodecyl Sulfate Capillary Gel Electrophoresis

Simplifying CE-SDS Data Processing

The Importance of Temperature Control in Capillary Electrophoresis of Carbohydrates

Repeatability of C100ht Biologics Analyzer, for High Throughput Glycan Screening

IgG Purity/Heterogeneity and SDS-MW Assays with High- Speed Separation Method and High Throughput Tray Setup

Application Note. Biopharm. Author. Abstract. Christian Wenz Agilent Technologies, Inc. Waldbronn, Germany

LabChip GXII: Antibody Analysis

Separation of Recombinant Human Erythropoietin (rhepo) using the European Pharmacopoeia Method on the PA 800 plus Pharmaceutical Analysis System

High-Throughput Glycan Screening to Remove Biopharmaceutical Development Bottlenecks

Improving the Detection Limits for Highly Basic Neuropeptides Using CESI-MS

Impurity Detection with a New Light Emitting Diode Induced Fluorescence Detector Coupled to the Agilent 7100 Capillary Electrophoresis System

Capillary Electrophoresis of Proteins

Rediscover the Strengths of Your PA 800 Plus - A Multi-Attribute Protein Analyzer

Unified Workflow for Monoclonal Antibody Charge Heterogeneity, Purity, and Molecular Weight Analysis

Automating the C100ht Biologics Analyzer Sample Preparation on a Biomek i5 Liquid Handler Platform

Automated and Quantitative Analysis of Biologics

Automated and quantitative analysis of biologics

Analysis of Monoclonal Antibody Charge Variants by Capillary Zone Electrophoresis

Assessing Glycosimilarity of Biotherapeutics

Answers, Simple and Streamlined. Solutions for Biotherapeutic Intact Mass Analysis

Optimization Approaches in the Routine Analysis of Monoclonal Antibodies by Capillary Electrophoresis

Analysis of Protein Biopharmaceuticals

An Industry Perspective on Established Conditions in the Analytical Control System. Christof Finkler, F. Hoffmann-La Roche

SDS-CGE Method Development for Purified Protein Vaccine Antigens

HT Pico Protein Express LabChip Kit, Frequently Asked Questions

deltadot ANTIBODY ANALYSIS Application Note: Antibodies using LABEL FREE INTRINSIC IMAGING LONDON United Kingdom

Table 1: CE-MS: Unexploited Opportunities in Process Development?

OptiFlow Quant Solution for High-Sensitivity Quantitation

"VUPNBUFE BOE RVBOUJUBUJWF

Automated and quantitative

Detecting Challenging Post Translational Modifications (PTMs) using CESI-MS

ACCURACY THE FIRST TIME. Bring Your Esoteric Assays In-House Routinely SCIEX DIAGNOSTICS MASS SPECTROMETERS

Knock! Knock! Who s there? Maurice Who? SungAe Suhr Park, Mee Ko, Eleanor Le, Janice Chen Amgen Inc.

CSE Separation of Cancer Cell Lysate

Fully Automated C100HT Biologics Analyzer Sample Preparation on a Biomek i5 Multichannel Workstation

Capillary Electrophoresis Sodium Hexadecyl Sulfate (CE-SHS): A Novel Approach to Evaluate the Purity of Therapeutic Proteins

More Samples. Better Decisions Faster.

Chapter 2 Coated Capillaries for CE-MS of Therapeutic Protein

Optimization of cief to Resolve Challenging MAb Samples of Clinical Immunodiagnostic Relevance

Comparison of Different Brands of Carrier Ampholytes for Monoclonal Antibody Charge Heterogeneity Analysis by Capillary Isoelectric Focusing

E VA L U AT I O N O F N E W T E C H N O L O GY F O R T H E Q U A L I T Y C O N T R O L L A B O R ATO R I E S JEFF SCHNEIDERHEINZE, PH.D.

Streamlined and Complete LC-MS Workflow for MAM

ACCURACY THE FIRST TIME. Reliable testing with performance, productivity and value combined AB SCIEX 3200MD SERIES MASS SPECTROMETERS

Validation of Analytical Methods used for the Characterization, Physicochemical and Functional Analysis and of Biopharmaceuticals.

HPCE-5 2. A Revolution in Capillary Electrophoresis. High Performance Capillary Electrophoresis

Application Note. Authors. Abstract. Biopharmaceuticals

A Sub-picogram Quantification Method for Desmopressin in Plasma using the SCIEX Triple Quad 6500 System

Made for Routine Food, Environment, and Forensic Testing. The X500R QTOF System

Pharmacokinetic Analysis of the mab Adalimumab by ELISA and Hybrid LBA/LC/MS: A Comparison Study

Application Note. Abstract. Author. Biopharmaceutical

CE as an analytical tool in industrial biotechnology. David Goodall, CSO, Paraytec Ltd. 14 November Act P x

Tony Mire-Sluis Vice President, Corporate, Product and Device Quality Amgen Inc

This is not unique to CE. It took for instance about 25 years for HPLC to establish itself properly in the pharmaceutical industry.

E-Coli Cell Lysate By High Performance Capillary Electrophoresis

Microfluidic Assays for High Throughput Screening of Protein Quality in Bioprocess Development

High-resolution Analysis of Charge Heterogeneity in Monoclonal Antibodies Using ph-gradient Cation Exchange Chromatography

Isotopic Resolution of Chromatographically Separated IdeS Subunits Using the X500B QTOF System

Developing Robust and Efficient IEX Methods for Charge Variant Analysis of Biotherapeutics Using ACQUITY UPLC H-Class System and Auto Blend Plus

A Comprehensive Workflow to Optimize and Execute Protein Aggregate Studies

quantitate host cell DNA with high sensitivity and throughput resdnaseq Host Cell DNA Quantitation Systems: CHO, E.

A Robust cief Method: Intermediate Precision for the ph 5-7 Range

Separation of Native Monoclonal Antibodies and Identification of Charge Variants:

Rapid UHPLC Analysis of Reduced Monoclonal Antibodies using an Agilent ZORBAX Rapid Resolution High Definition (RRHD) 300SB-C8 Column

APPLICATION INFORMATION

autoflex max Practical Power, Maximum Utility Innovation with Integrity MALDI-TOF MS

Improving Sensitivity in Bioanalysis using Trap-and-Elute MicroLC-MS

Validation of a Dual Wavelength Size Exclusion HPLC Method with Improved Sensitivity to Detect Aggregates of a Monoclonal Antibody Biotherapeutic

See More, Much More Clearly

ichemistry SOLUTIONS Integrated chemistries to boost mass spectrometry workflows

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment

Applications. Capillary Electrophoresis. Cell Lysate Analysis. Analysis of E. Coli Lysate. Technology

Maximizing Chromatographic Resolution of Peptide Maps using UPLC with Tandem Columns

Precise Characterization of Intact Monoclonal Antibodies by the Agilent 6545XT AdvanceBio LC/Q-TOF

Biochromatography Bring more Zen into your life and laboratory

Separate and Quantify Rituximab Aggregates and Fragments with High-Resolution SEC

Case Study on Application of Analytical Life Cycle Management and Risk Management

One-stop cief and CE-SDS. One-day method dev. Results in a snap. FDA, PDQ.

TECHNICAL INFORMATION

Fast Glycan Sequencing Using a Fully Automated Carbohydrate Sequencer

Lecture 5: 8/31. CHAPTER 5 Techniques in Protein Biochemistry

IgG Purity and Heterogeneity Assay Kit For the PA 800 Plus Pharmaceutical Analysis System. Application Guide

Chromatography column for therapeutic protein analysis

Application Note. Biopharma. Authors. Abstract. James Martosella, Phu Duong Agilent Technologies, Inc Centreville Rd Wilmington, DE 19808

Disulfide Linkage Analysis of IgG1 using an Agilent 1260 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column

Quantitative analysis of PCR fragments with the Agilent 2100 Bioanalyzer. Application Note. Odilo Mueller. Abstract

Peptide Mapping: A Quality by Design (QbD) Approach

Journal of Chemical and Pharmaceutical Research, 2017, 9(3): Research Article

High Levels of Sensitivity and Robustness for Complex and Demanding Matrices SCIEX TRIPLE QUAD 5500 SYSTEM

Challenges in peptide mapping mass spectrometry of biopharmaceuticals

Subject Index. chromatography step, 125-

PA 800 plus Catalog. Systems/Software

MicroSEQ TM ID Rapid Microbial Identification System:

Charge Heterogeneity Analysis of Rituximab Innovator and Biosimilar mabs

The Simple Western Approach to Vaccine and Clinical Protein Research

Monoclonal Antibody Analysis on a Reversed-Phase C4 Polymer Monolith Column

Understanding the Effects of Common Mobile Phase Additives on the Performance of Size Exclusion Chromatography

Supplementary Material. The MIAPE-GE glossary (MIAPE-GE version 1.4).

Biotherapeutic Method Development Guide

Subject Index. See for options on how to legitimately share published articles.

NISTmAb characterization with a high-performance RP chromatography column

Transcription:

Capillary Electrophoresis in Quality Control PART II: CE-SDS: Method Development and Robustness Chantal Felten *1 and Oscar Salas Solano 2 1 Alpine Analytical Acadamy, Whistler, British Columbia 2 Seattle Genetics, Bothell, WA * Corresponding Author Abstract Capillary electrophoresis sodium dodecyl sulfate (CE-SDS), is the modern equivalent of the slabgel sizing technique SDS- PAGE. Common uses of SDS-PAGE include monitoring of manufacturing consistency and apparent molecular weight. Although used frequently, SDS-PAGE is a poor technique for quantitative protein purity due to inherent sample preparation artifacts, migration time and staining variability. With greater reproducibility and online detection capability, CE-SDS has not only been able to overcome some of the apparent drawbacks of SDS-PAGE, 1 but it also matches, and in some instances, surpasses techniques such as high performance liquid chromatography (HPLC) in resolution and reproducibility. In the biopharmaceutical industry today, CE-SDS is applied at all stages of the pharmaceutical development process, including high-throughput process development, 2 structural isoform analysis, 3 carbohydrate occupancy, 4 and more common molecular size variant analysis for characterization and release. 5 Part II of Applications of CE in Quality Control is focused on method development and robustness approaches for CE-SDS. This article has been divided into 3 subsections: I) Method Purpose; II) Key method development aspects; and III) Critical robustness studies. Method Purpose As with any analytical methodology, it is critical to define the purpose of the method on the control system prior to initiating development. CE-SDS can serve a variety of purposes during the pharmaceutical development process so the specific requirements should be considered prior to initiating development. For example, a CE-SDS method used for protein titer determination in process optimization has different requirements than CE-SDS for identity or for purity. The purpose of the method will guide initial method development. In order to develop a CE-SDS method for purity on a Drug Substance/Drug Product control system, you will first need to establish what level of detection and quantitation sensitivity is desired. The desired quantitation sensitivity will determine whether to use UV or Laser Induced Fluorescence (LIF) detection. LIF detection offers the benefit of about a 100-fold increase in sensitivity, yet it also requires additional sample manipulation. In common purity determination, i.e. lot-to-lot purity with respect to size variants, UV detection, which is comparable to Comassie stained SDS-PAGE, is likely to be sufficient. Some organizations, however, choose to use CE-SDS for both protein purity and as a complementary method for detection of potential host cell impurities. In this case, additional sensitivity may be required to detect minute amounts of foreign protein matter that may be present. Finally, a decision needs to be made with respect to sample preparation, for example whether a sample is reduced or nonreduced. For the non-reduced analysis, the native protein is treated with SDS prior to separation to mask the protein native charges. For reduced analysis, the sample is treated with SDS, and either dithiothreitol (DDT) or beta-mercaptoethanol (BME) to reduce the native protein structure. Recombinant monoclonal antibodies (rhumab, r-mab), which represent the majority of currently approved biopharmaceuticals, will be reduced to glycosylated heavy chain (HC), non glycosylated heavy chain (NGHC) and light chain (LC). Both non-reduced and reduced offer advantages on a QC system. Specifically for r-mab, the reduced form can allow for monitoring of the heavy chain glycosylation occupancy. If product degradation or stability is your primary goal, you may need to consider analyzing the non-reduced samples, which offer a much higher aptitude for detecting an increase in fragmentation. Often, companies will choose to develop both reduced and non-reduced CE-SDS methods for characterization and opt to use CE-SDS reduced for its ability to quantitate the non-glycosylated heavy chain (NGHC) for bulk release, yet apply non-reduced CE-SDS for stability monitoring. p1

Figure 1 illustrates key aspects for consideration when developing a CE-SDS method. Detector UV: Sensitivity generally not a key factor Identity Most important: reproducibility for comparison to a reference material Resolution must be sufficient to ensure specificity Reduced versus non-reduced depends on specificity needs Detector UV: Sensitivity generally not a key factor Purpose of the Assay? MW Content Critical to select correct MW ladder If Markers are run separately, reproducibility must be considered Generally run non-reduced Detector UV: Sensitivity generally not a key factor Resolution must be sufficient to ensure specificity Specificity and Accuracy/Reproducibility critical (i.e. corrected peak area) Sample prep. artifacts (i.e. induced fragmentation) should be minimized Purity Detector: UV or LIF, depends on required LOQ Reduced or non-reduced: depends on peaks of interest Resolution generally critical Accuracy/Reproducibility critical (i.e. % CPA) Sample prep. artifacts (i.e. induced fragmentation) should be avoided Figure 1. Purpose-driven critical method properties for CE-SDS. Key Method Development Aspects Protein analysis by CE-SDS relies on separation of SDS-labeled protein variants by a sieving matrix (i.e. polymer) in a constant electric field, with the following critical method parameters: SDS labeling technique, sieving matrix, and electrophoretic conditions. For the purpose of this article, we will work through the critical steps in the development of a CE-SDS purity method for bulk drug substance. In this example, the method shall be used to monitor lot-to-lot consistency on release and degradation on stability. As previously discussed, this will require development of a reduced method for lot-to-lot consistency and a non-reduced method for increased ability to detect new degradation products. Because fragments are generally not immunogenic, we do not require the detection power of LIF, and thus, will focus on UV development. Once the detection system has been selected, the next step is to consider the type of sample to be analyzed and the required MW range for separation. It is critical to choose the appropriate separation medium to achieve resolution in the desired range. CE-SDS uses linear or slightly branched polymers such as linear polyacrylamide, polyethylene oxide, polyethylene glycol, dextran, and pullulan as the sieving matrix. 6-7 In comparison to cross-linked polyacrylamide gel matrices, these polymers add great flexibility to CE-SDS since they are water-soluble and replaceable after each CE analysis, resulting in enhanced overall precision and robustness. It should be noted that optimizing gel composition is quite a challenging task, and although an option, one should first consider commercial sources with defined MW separation ranges to ensure reproducible gel separation performance. Commercial gel matrices routinely have adequate separation efficiency ranging from 10kD - 225KD. While these gel formulations are often optimized for antibody separation, they do prove to have adequate resolution for a wide variety of proteins. It is recommended to choose a suitable commercial gel matrix and to first focus on the development of sample preparation p2

steps. Once this parameter has been optimized, additional gel matrices can be evaluated to fine-tune resolution, if needed. The most difficult aspect of CE-SDS method development is the reproducibility of the sample preparation protocol. CE- SDS requires the formation of SDS-protein complexes prior to electrophoretic separation. Traditional sample preparation conditions include heat treatment at elevated temperatures (e.g. 90º C for up to 10 min). In the case of non-reduced rmabs, this could lead to sample preparation artifacts in the form of thermally induced fragmentation attributed to disulfide reduction and exchange reaction.4 It has been reported that high ph conditions during heat treatment also enhanced the fragmentation of SDS-rMAb complexes, and thus affected sample stability.4 These artifacts significantly altered the true representation of the size heterogeneity of a protein and also increased the variability of quantitative CE-SDS methodologies of non-reduced samples. The desired application will determine the required reproducibility of the sample preparation method. If the assay is primarily used to establish protein identity, then some variability in the fragmentation pattern may be acceptable. However, if the application is quantitative in determination of size distribution for purity/stability, then achieving reproducible SDS-labeling with minimal artifact creation is a key aspect of development. Figure 2. Corrected percent peak area of intact antibody vs. heating time at several incubation temperatures: ( ) 45, ( ) 60, ( ) 70, and ( ) 90 C. (A) no IAM, (B) IAM. Error bars are shown at the 95% confidence interval (n =3). Electrophoretic conditions were as follows: SCIEX PA 800 Series instrument with LIF detection, effective length 10.2 cm, total length 31.2 cm, 50-μm i.d., 375-μm o.d. uncoated fused silica capillary; both anode and cathode buffers were the SCIEX CE-SDS polymer solution. The samples were injected at a constant electric field of 160 V/cm for 20 seconds and electrophoresed at 480 V/cm (32.5 μa). Reprinted with author s permission from Reference 4. Antibodies are especially vulnerable to heat-induced fragmentation, as described by Salas, et al. Thermally induced fragmentation of non-reduced rmabs, can be greatly reduced through systematic optimization of the sample preparation conditions prior to CE-SDS analysis. 4 This includes optimization of sample incubation buffers, incubation time and incubation temperature. Due to the fragile nature of the hinge region present in rmab molecules, subjecting samples to heat treatment with SBS labeling, can lead to an increase in fragmentation. Figure 2 shows the impact of both time and temperature on the measured rmab fragmentation levels upon increased exposure to heat. The molecule can be stabilized against heat-induced degradation through the inclusion of an alkylation step. Using 40 mm iodoacetamide (IAM) during heat treatment of the nonreduced rmab sample, combined with optimization of incubation temperature and time (70 C for 5 minutes, in the presence of SDS), Salas, et al., were able to significantly suppress the extent of thermally-induced fragmentation (Figure 2B, 3). p3

Figure 3. Expanded view of CE-SDS separations of non-reduced labeled-rmab samples in the presence of different alkylating agents. The inset show the full scale view of the electropherograms. Electrophoretic conditions were as follows: SCIEX PA 800 Series instrument with LIF detection, effective length 10.2 cm, total length 31.2 cm, 50-μm i.d., 375-μm o.d. uncoated fused silica capillary; both anode and cathode buffers were the SCIEX CE-SDS polymer solution. The samples were injected at a constant electric field of 160 V/cm for 20 seconds and electrophoresed at 480 V/cm (32.5 μa). Reprinted with authors permission from Reference 4. The quantitative studies of their work also demonstrated that utilizing an 85 mm citratephosphate, 1% SDS sample buffers at ph levels of 6.5, further decreased the induced fragmentation of non-reduced rmab samples and improved sample stability. A significant decrease of the corrected peak areas corresponding to the rmab fragments was observed for a sample treated with the optimized sample preparation scheme compared to the rmab control sample. The control sample was prepared by traditional sample preparation conditions that included using a 1% SDS, 100 mm Tris-HCl buffer ph 9.0 as CE-SDS sample buffer and incubated the sample at 90º C for 5 minutes. The corrected percent peak area (%CPA) of the intact antibody increased from 90.0% in the control sample to 98.5 % in the sample containing 40 mm IAM, reconstituted in 86 mm citrate-phophate ph 6.5 and incubated at 70º C for 5 minutes. The addition of the alkylating agent to reduced rmab samples showed no benefit, as the sample was fully fragmented into HC, LC and NGHC as part of the reduction step. The most crucial part of developing a reduced CESDS method will be optimizing the reduction to ensure complete dissociation of existing di-sulfides. Both DDT and BME are adequate reduction agents for concurrent use during the SDS sample treatment. The amount of reducing agent required as well as the time/temperature needed to achieve complete reduction will be dependent on the nature of the protein to be analyzed and should be optimized for each sample. It should be noted that DDT must be handled with proper care as it degrades easily, (i.e. store as a dried powder in a desiccator and prepare fresh reduction solution). p4

Lastly, electrophoretic analysis parameters need to be established. As the resolution is predominantly defined by the selection of the sieving matrix, key aspects of optimization should focus on sample injection and detection. As discussed earlier, we chose to use UV detection as a technique. As CE uses online detection, the sensitivity of the assay is directly proportional to the diameter of the capillary, thus favoring large bore capillaries. In contrast, when using the same separation matrix, increased capillary dimension will also induce higher currents creating heat that will negatively affect your sieving matrix and negatively impact resolution and/or robustness. It is a fine balance between robust sample analysis and highest sensitivity. If using a commercially available sieving matrix, it is best to follow the manufacturer s recommendation for capillary dimensions. CE-SDS predominantly uses electrokinetic injection. Pressure injection is not recommended, as the injection process will reduce overall separation length by replacing the sieving matrix with sample solution. Additionally, due to the resistance of the sieving matrix, pressure injections tend to lack reproducibility. Finally, it should be noted that although concentration of SDS in the SDS sample buffer is not crucial with respect to complex formation, as long as it is in excess of the sample, it can significantly affect your separation. Electrokinetic injections are biased and small, and charged compounds present in the sample will be preferentially injected. Increasing sensitivity can be accomplished by maintaining salt concentration, i.e. SDS concentration in the SDS sample buffer, at a minimal level. Commonly, 1% of SDS is used for CE-SDS reduced and non-reduced labeling of rhumabs. Although not discussed in detail in this review, if fluorescence labeling is desired, several excellent application papers have been published which describe the development and optimization of the rhumab/protein labeling prior to SDS treatment. 4,8 Critical Robustness Studies Robustness is an integral part of establishing a new method, as it will allow you to define operating ranges for the critical method parameters. Additionally if well planned and performed in a GMP compliant manner, robustness data can be used for future discrepancy resolution and can also serve as supporting documentation for method changes. If method development was carried out systematically or, even better, using a design of experiment (DOE) approach, one should already have defined the method s main critical parameters. The common contenders here are: incubation time/ temperature; reagent expiration dating; electrokinetic injection parameters; sample concentration; sieving matrix lot-to-lot variability; SDS labeling buffer composition, and sample stability. Additionally, one should evaluate alternate instruments, not only by focusing on the CE instrument, but also by taking into account instrumentation used during the sample preparation, such as a water-bath used for SDS incubation. Heating of the samples can vary significantly depending on number of samples and type of heating used. For example, water bath and plate heaters may show significantly different heating profiles for any given sample. To facilitate future method transfers to external laboratories, it is beneficial to study the impact of multiple heating elements in sample preparation. Similarly, it is important to study different sample vials as well. As the method is in use, analysts may need to vary from the specified hardware (e.g. water bath, sample vials, PD 10 buffer exchange column vendors, DDT sources, etc) if the substitute hardware was covered in robustness. The data can be used to supplement a justification and allow for the deviation from the final procedure. To facilitate and speed-up robustness, one can choose to run multivariant DOE studies, which offer multiple benefits over single-variable experiments. When performing robustness experiments, it is critical to also establish a method s precision at target, as it allows for comparison of method variability when critical parameters are varied. Target is defined as the mid-point, or set-point for a critical parameter. Precision of the method can be measured by evaluating relative migration times and/or % corrected peak area (%CPA) for peaks of interest. It is recommended to analyze at least one target sample at the beginning and at the end of the analysis sequence to confirm daily suitability of the overall system. Additionally, it is recommended to perform a sample preparation repeatability study, using an n=6 at target to evaluate general method precision. This can be done as a separate study, or as part of a larger DOE robustness study, using additional target data points. During development, crude ranges should have been established for all critical parameters, indicating when the method will fail. The goal of robustness is to establish workable ranges for all the critical parameters, i.e. for robustness studies, ranges should at minimum cover the desired final method range, and if possible, cover a larger range to allow for possible reagent/instrument changes as necessary. Finally, the target data points collected during robustness can be used to support quantitative system suitability criteria. p5

Conclusion In the end, CE-SDS development and robustness is no different than any other analytical method development and robustness study. You must define the purpose of the method as it will guide you in selecting your development goals, i.e. desired resolution and/or sensitivity. Once the purpose is defined, a systematic method development can be performed. Many excellent application papers with preselected critical method parameters have been published on the development of robust and sensitive CE-SDS separations of proteins and rmabs, thus facilitating the development process. Once initial critical method parameters have been set, robustness can be initiated to confirm the method s working range to document the impact of minor variability to the method s precision and accuracy. Post robustness, the next step in the lifecycle of a GMP method will be the process of method validation. In the next article, we will discuss the necessary validation documentation and experiments required for a method used during the release of a commercial drug product. Reference 1. Hunt, G., Moorhouse, K. G., Chen, A. B., J. Chromatogr. A 1996, 744, 295 301. 2. Rustandi R., Washabaugh M., Wang Y.; Electrophoresis 2008, 29, 3612 3620. 3. Guo A., Han M., Martinez T., Ketchem, R. et al.; Electrophoresis 2008, 29, 2550 2556. 4. Salas-Solano, O., Tomlinson, B., Du, S., Parker, M. et al.; Anal. Chem. 2006, 78, 6583 6594. 5. Good D., Cummins-Bitz S., Fields R., Nunnally B.; Methods in Molecular Biology, vol. 276: Capillary Electrophoresis of Proteins and Peptides Edited by: M. A. Strege and A. L. Lagu Humana Press Inc., Totowa, NJ. 6. Nakatani, M., Shibukawa, A., and Nakagawa, T. (1994). J. Chromatogr. A 672, 213 218. 7. Benedek, K., and Guttman, A. (1994). J. Chromatogr. A 680, 375 381. 8. Michels D., Brady L., Guo A., Balland A.; Anal. Chem. 2007, 79, 5963-5971. Who is SCIEX? SCIEX company s global leadership and worldclass service and support in the capillary electrophoresis and liquid chromatography-mass spectrometry industry have made it a trusted partner to thousands of the scientists and lab analysts worldwide who are focused on basic research, drug discovery and development, food and environmental testing, forensics and clinical research. Contact Us: sciex.com/contact-us For Research Use Only. Not for use in diagnostic procedures. 2018 AB SCIEX. SCIEX is part of AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX is being used under license. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. Publication number: RUO-MKT-02-6960-A 01/2018 Headquarters 500 Old Connecticut Path, Framingham, MA 01701, USA Phone 508-383-7800 sciex.com International Sales For our office locations please call the division headquarters or refer to our website at sciex.com/offices