Chapter 2 Portland Cement Clinker

Similar documents
Concrete Technology. 1- Neville, AM and Brooks J.J." Concrete Technology" Second Edition, 2010.

Concrete Technology. Brief Recap

Variation of Feed Chemical Composition and Its Effect on Clinker Formation Simulation Process

How to Read a Portland Cement Mill Test Report

raw sinter mix ignition hood direction of strand wind main electrostatic wind boxes wind legs gas flow Fig. 1 Schematic of a typical sinter plant

CHARACTERISATION OF THE REACTIVITY OF CEMENT CONSTITUENTS

Chapter 10, Phase Transformations

Presented at the14th International Congress on the Chemistry of Cement. Beijing, China. October 2015

MSE 352 Engineering Ceramics II

Kinetics of Recovery of Alumina from Coal Fly Ash through Fusion with Sodium Hydroxide

Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore

Fully Integrated Simulation of a Cement Plant with a Carbon Capture Ca-looping Process

Utilization of Coal Slurry Waste as an Alternative Raw Material in Portland Cement Clinker Production

Phosphorous Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka

Asbestos case studies 1: Water pipes made of asbestos cement. Erzsébet Tóth (Eötvös L. University, Budapest)

Influence of Raw Materials Ratio and Sintering Temperature on the Properties of the Refractory Mullite-Corundum Ceramics

DEVELOPMENT OF BLENDED CEMENT FROM ACTIVATED AND SINTERED FLY ASH

Module: 5 Lecture: 24

CEMENT MANUFACTURING PROCESS

Chapter 9 Phase Diagrams. Dr. Feras Fraige

IRON REDOX EQUILIBRIUM AND DIFFUSIVITY IN MIXED ALKALI-ALKALINE EARTH-SILICA GLASS MELTS

Particle Size and Shape Analysis in CEMENT INDUSTRY.

Oxidation of Iron, Silicon and Manganese

MATHEMATICAL MODELLING OF THE CEMENT CLINKER BURNING PROCESS

Lecture 14: Rate of Nucleation

FROM QUARRY TO STRENGTHS: HOW COMPOSITION OF RAW MEAL AFFECTS CLINKER QUALITY AND CEMENT ADDITIVES FORMULATION

MAE 212: Spring 2001 Lecture 14 PHASE DIAGRAMS AND EQUILIBRIUM MICROSTRUCTURES N. Zabaras

Pyrometallurgy of iron is still the most important pyrometallurgical process economically.

Effect of Nano-Sized Fe 2 O 3 on Microstructure and Hydration Resistance of MgO-CaO Refractories

Analysis of some properties of model system from low-melting illite clay and fibrous mineral wool waste

A study on the production processes of granulated iron

THE ROLE OF CEMENT DUST IN BASALT-DE-ALUMINATED KAOLIN BRICKS

4. STRENGTH APPROXIMATION. 4.1 The European Standard EN 206 and strength aspects

Scientific Background for Processing of Aluminum

PROTECTING REFRACTORIES AGAINST CORUNDUM GROWTH IN ALUMINUM TREATMENT FURNACES. C. Allaire and M. Guermazi

General Principle of Isolation of Elements (NCERT)

Feasibility of Calcined Marl as an Alternative Pozzolanic Material

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements

Numerical modelling of the solidification of ductile iron

Exploring the Chemical Properties and Performance Results of Sustainable Solidia Cement and Solidia Concrete

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons.

Optical microscopy of cement clinker. Clinker Microscopy The Ono Method Examination of polished sections

INFLUENCES OF SURPLUS SO 3 IN FBC ASH ON FORMATION OF BELITE-RICH SULFOALUMINATE CLINKER

Effects of Cement Type and Fly Ash on the Sulfate Attack Using ASTM C 1012

UNIVERSITY OF PRETORIA DEPARTMENT OF MATERIALS SCIENCE AND METALLURGICAL ENGINEERING

SP2 Report on. Service Model of Calcareous Aggregate Cement Based on Field Test. Author and Chief Investigator: M. Valix

Beginning of the Industry. Portland, Blended, and Other Hydraulic Cements

Eco-concrete: preliminary studies for concretes based on hydraulic lime

THE INFLUENCE OF TRIETANOLAMINE (TEA) ON CHARACTERISTICS OF FRESH AND HARDENED MORTARS CONTAINING LIMESTONE POWDER

VITRIFIED BOTTOM ASH SLAG FROM MUNICIPAL SOLID WASTE INCINERATORS - PHASE RELATIONS OF CaO-SiO 2 -Na 2 O OXIDE SYSTEM

Metals are generally ductile because the structure consists of close-packed layers of

Ettringite revisited. Fred Glasser University of Aberdeen Old Aberdeen, Scotland UK

CIVIL ENGINEERING. For. UPSC Engineering Services Examination, GATE, State Engineering Service Examination & Public Sector Examination.

Al2O3-MgO system: magnesia and spinel Magnesia

ANALYSIS OF HETEROGENEOUS NUCLEATION IN DUCTILE IRON

Four Principal Families of Limes and Cements. Natural Hydraulic Limes. Pure Lime. Natural. Cement. Portland. Cement HIGH TEMPERATURE FIRING (1450 C)

Recycled Alumina from Aluminium Salt Slag: Origins & Applications. Howard Epstein

Metallurgy and lining life in basic oxygen converters

Table of Contents. Preface...

Performance of Carbon-Neutral Rice Hull Ash as a Supplementary Cementitious Material In Portland Cement Concrete

Diffusional Transformations in Solids

MODELLING A CEMENT MANUFACTURING PROCESS TO STUDY POSSIBLE IMPACTS OF ALTERNATIVE FUELS. Abstract

MSE 352 Engineering Ceramics II

Thermal analysis in eco-concrete research

Historical mortars. Hanzlicek, Perna (IRSM AS, Prague) Ertl (Czech Development Agency S.A., Prague)

Bin Level Indication Applications in Cement Production and Concrete Batching Plants

EVALUATION REPORT OF HESS PUMICE

DISSOLUTION RATE OF PURE CaO AND INDUSTRIAL LIME IN CONVERTER SLAGS*

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System

PREPARATION OF GEOPOLYMER USING FLY ASH AND RICE HUSK SILICA AS RAW MATERIALS

Mineral-based secondary binders, utilization, and considerations in mix design. Exercise 5

Ceramic Processing Research

Quality improvers for optimization of blended cements performances P.D Arcangelo 1, S.Bhome 2, M.Magistri 1

WELL MATERIALS AGEING IN A S-CO 2 STORAGE

INVESTIGATIONONS ON USE OF JAROSITE AS SET CONTROLLER IN CEMENT

The Study of Method for Complex Processing Turgay Sub-Standard Aluminum-Containing Raw Materials

Techno-Economic Study of CO 2 Capture from a Cement Plant

Blast Furnace Regions Iron Making Furnace

A COUPLED TRANSPORT-REACTION MODEL FOR SIMULATING AUTOGENOUS SELF-HEALING IN CEMENTITIOUS MATERIALS PART II: VALIDATION

A Short Study to Test the Compliance of Various Pakistani Ordinary Portland Cements with ASTM Composition Standards

Well Stimulation and Sand Production Management (PGE 489 ) Sandstone Acidizing. By Dr. Mohammed A. Khamis

Slags in Production of Manganese Alloys

Mould fluxes for steelmaking - composition design and characterisation of properties. Research Institute, Stockholm

MULLITE AND OTHER ALUMINO- SILICATE REFRACTORIES VIS-À-VIS ALUMINA - SILICA (AL2O3 - SIO2) BINARY PHASE DIAGRAM

Energy Saving Measures in. Cement Industry

Uncertainty Impact of the Effective Diffusion Coefficient on the Concrete Chemical Degradation

Hydration of low ph cements

Optimisation of Blended Cements Performances by the use of Grinding Aids

Recycle of wastes of clay brick industry for producing. Eco- cement. A. M Amin. Prof.of Technology of building material industry,

Research Article Calculation of the C 3 A Percentage in High Sulfur Clinker

Available online at ScienceDirect. Procedia Engineering 151 (2016 ) 26 33

Q. 1 Q. 5 carry one mark each.

Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

Optimization Of Silica Fume, Fly Ash And Cement Mixes For High Performance Concrete

STUDIES ON STABILIZATION OF EXAPANSIVE SOIL USING CEMENT AND FLYASH


Use of recycled glass as a raw material in the manufacture of Portland cement

USING OF LIBYAN CALCINED CLAY AS REPLACEMENT

VCAS White Pozzolans

MgO modification of slag from stainless steelmaking

Transcription:

Chapter Portland Cement Clinker.1 Portland Cement Clinker Burning The main goal of the clinkering process is to produce the material of designed phase composition, which is called Portland cement clinker. Under the action of high temperature, parallel to the clinker phases formation, underwent the process of sintering and nodulization of material in the rotary kiln. It is of high technological importance, having the decisive influence on the rate of material transport and also on the quantity of dust carry off with gases in the kiln and in the cooler, then having its effect on heat consumption and kiln capacity. Raw mix, composed of limestone, marl and small addition of iron corrective component is transformed, as the effect of several complicated reactions, in clinker containing from 55 to 65 % C 3 S, 15 5 % C S, 8 1 % C 3 A and 8 1 % C (A, F). It is convenient to follow the advancement of clinkering process by determining the free calcium oxide in the raw mix, called frequently free lime. The content of this component on the beginning is increasing quickly, as a result of calcium carbonate decomposition, and then is gradually decreasing (Fig..1), as the new compounds are formed with silica, alumina and iron. In the process formation two stages can be distinguish: at the range of lower temperature to about 1300 C, when the reactions proceed, as a rule, in the solid state, in the presence of very low quantities of the liquid phase, and at higher temperature, at which it is already about 5 % of the melt. It is assumed that the dicalcium silicate 1 and calcium aluminate and ferrite are formed principally as the result of reactions in the solid state. However, tricalcium silicate is formed by crystallization from the liquid phase. The solid state reactions of CaC with SiO, Al and Fe was the object of numerous, systematic studies [1 4]. They belong to the reactions of solid phases with the formation of products interlayer between substrates. In the case of pressed sandwiches of CaO and silica as the first product the CaO SiO is formed and then in CaO tablet 3CaO SiO and in the SiO tablet rankinite 3CaO SiO 1 Dicalcium silicate is the orthosilicate with formula Ca [SiO 4 ], and tricalcium silicate orthosilicate with formula Ca 3 [SiO 4 ]O. W. Kurdowski, Cement and Concrete Chemistry, DOI 10.1007/978-94-007-7945-7_, Springer Science+Business Media B.V. 014 1

Portland Cement Clinker Fig..1 Combination of lime during raw mix clinkering 60 50 CaO content, % 40 30 0 10 CaO as CaC CaO free CaO in new compounds 0 800 900 1000 1100 100 1300 1400 1500 burning temperature, C 1 CaO CaO CaO SiO 3CaO SiO CaO SiO SiO CaO 3CaO SiO CaO SiO 3 4 3CaO SiO CaO SiO SiO CaO SiO 3CaO SiO CaO SiO 3CaO SiO SiO SiO Fig.. The sequence of phases formation during the reaction of CaO with SiO with molar ratio of substrates 1:1, 1 4 increase of the reaction time (Fig...). The change of products phase composition of the reaction versus time are shown in Fig..3 [3]. The kinetic of this reaction was studied by Jander [3], which assumed that its rate is governing by the diffusion of one substrate (CaO) through the layer of the product formed to the surface of second substrate (SiO ). Under different simplifying assumptions, using first Fick s law, Jander derived the formula y = kt (.1)

.1 Portland Cement Clinker Burning 3 Fig..3 The content of products in the function of CaO with SiO reaction time in the mixture with molar ratio 1:1 (after [3]); a in dry air at 1000 C, b in moist air at 1000 C, c in dry air at 100 C content of formed silicates, % 40 30 0 10 CaO SiO 3CaO SiO CaO SiO a 8 16 4 3 40 48 time, h content of formed silicates, % 80 60 40 0 3CaO SiO CaO SiO CaO SiO b 4 6 8 10 time, h 80 CaO SiO content of formed silicates, % 60 40 0 CaO SiO 3CaO SiO c 4 8 1 16 0 4 time, h in which y was the product layer thickness, k rate constant, t time. The layer thickness can be easily replaced by degree of transformation: α= 4 4 πr π ( r y ) 3 3 4 3 π r 3 3 3 (.) where r is the radius of substrate grain (SiO ), covered with product layer. After introducing to the proceeding formula the expression is given

4 Portland Cement Clinker y, µm 300 1400 C 1370 C 00 1310 C 150 C 100 100 C 1100 C 0 3 6 9 t, h ½ 1 Fig..4 The rate of product layer growing in relation to heating time in the mixtures: CaO + + SiO full line and CaO + Al broken line (diagrammatic) ( ) 13 / 1 1 α = k/r t (.3) in which α is the degree of transformation after time t, k rate constant, r radius of reacting grains. The degree of transformation can be followed by free calcium oxide determination in the raw mixture. The experimental results for different time of reaction, put 1/3 on the diagram of relation 1 ( 1 α) for time give the straight lines, which coefficient of inclination is increasing with temperature. Weisweiler et al. [5] studied the reaction advancement on the frontier of two tightly bordered tablets of CaO and SiO, prepared by hot pressing. Samples heated at the temperature range 1000 1450 C gave the analogous to earlier established products sequence. However, simultaneously the glass formation of the approximate formula CS was found, at the temperature higher than 1300 C. The product layers have thus the sequence: C/C S/CS/ CS /S. The glass is formed as a result of calcium diffusion to the lattice of cristobalite or tridymite, in connection with polymorphic transformation of SiO. The rate of multiphase layer growing ( y) in the function of reaction time ( t) is well described by the Jander s formula y = kt (Fig..4). Deja [6] researching the influence of different calcium silicates on the rate of tricalcium silicate formation found that it is the highest in the case of C S, and the slowest, when one of the substrate is a chain silicate. Also in the case two components mixtures, calcium carbonate or oxide with iron (III) oxide, in which ferrite are formed, and three components mix: CaO + Al + Fe, in which alumina ferrites are formed, Jander s formula is well satisfied.

.1 Portland Cement Clinker Burning 5 C/A 1 C 1 A 7 0.5 1 CA CA 0.5 1.00 y, µm Fig..5 Phase composition of reaction zone in corundum pulley [(after 9)]; 1 pulley heated in powdered CaO at 1370 C, pulley heated second time at the same temperature after removing CaO 1.50 CA 6 First aluminate formed in the mixture CaO + Al is the monocalcium aluminate CaO Al. At the temperature about 900 C C 1 A 7 appears, which is transformed in C 3 A at the temperature higher than 100 C, in practice close to 1300 C. The studies of reaction rate in the mixture CaO + Al with molar ratio 3:1, in which Ca 3 Al O 6 is the final product, have shown that the Ginstling Brounsteins [7] formula is better fulfilled than Jander s equation: (1 α) 3 (1 α) /3 = ( / ) k r t (.4) Also in the case of this mixture the interpretation of the results is complicated, because apart of C 3 A other phases appear among the products, namely: CA, C 1 A 7, CA and even CA 6. This complicated phase composition of reacting mixture is showing that the mobile component is CaO and the product layers onto Al grains are formed. The mechanism of reaction in the solid state of the mixtures CaO with SiO or Al was studied by many authors and all have confirmed the much higher mobility of the calcium ions than the others [5, 8, 9]. Also Rouanet [9], studying the phase composition of the reaction layer, formed in the corundum pulley immersed in powdered CaO, showed in Fig..5 confirmed it. However, the XRD examination of the powder around the Al pulley, has shown the presence of thin layer of C 3 A, which confirms the alumina ions diffusion in the opposite direction to calcium ions [9]. For the reason of low diffusion coefficients of silicon and aluminium the rate of reaction is determined by the calcium ions diffusion and oxygen, the last probably through the gaseous phase. Such mechanism of this process is confirmed by frequently observed in industrial mixtures the thin layers of Ca [SiO 4 ] on quartz grains. On the Fig..6 this layer, found by Moore [(after 10)], is shown in the specimen of the material sampled in industrial rotary kiln.

6 Portland Cement Clinker Fig..6 The layer of C S on quartz grain. (After [10]) Fig..7 The Komatsu s model of reaction in the solid state A A r A B r B product The kinetic models of Jander and Ginstling were developed by Komatsu [11]. He had assumed that the reaction starts in the places of intergranular contact (Fig..7). The fundamental role in the reaction has the number of these contacts, thus the fineness of the mixture. If the number of contacts is constant in time, the formula derived by Komatsu is reduced to Jander s equation, in which, however, the k constant is the function not only of the temperature but also the ratio of grains sizes r A and r B of both components as well as the content ratio of these components in the mixture.

.1 Portland Cement Clinker Burning 7 The equations of reaction constant rate between the substrates A and B are the following: when A/B > 1 k=k 0 1 m ax + ax 1 (.5) when A/B < 1 m 1 k=k0 1+ ax (.6) where: A/B is the molar ratio of the substrates in the mixtures, a = r 3 B ρ B /(r3 A ρ A ) mass ratio of single grain B to the grain A: r A, r B, ρ A, ρ B grains diameters and densities of the components A and B, x mass ratio of component A to the mass of component B. The experimental results in the coordinate system log k log[ax/(1 + ax)] and log k log[1/(1 + ax)] should lay on two straight lines of inclination equal m 1 and m. Both lines should intersect in point k 0 if the mechanism of reaction is the same for both concentration ranges. Practical application of Komatsu s equation can be found in the paper of Haber and Ziółkowski [1]. From kinetic reason the composition of reacting mixtures is frequently very complicated and far from equilibrium. It should be reminded that the thermodynamic permits to determine the equilibrium phase composition of reaction mixture: this state has the lowest free enthalpy. This principle permits to find a priori the direction of reaction course or permits to determine the phases stability in determined thermodynamic conditions. The change of free enthalpy can be found from the Gibbs Helmholtz s equation [13]: G = H T S + C 0 0 0 T 98 98 T 98 p (.7) The standard enthalpy data ( H 0 ), standard entropy ( 0 98 S ) and molal heat capacity ( C p 98 ) of substrates and products can be found in the tables [13] or on the Internet. Their changes as the result of reaction can be calculated as the sum of enthalpy (entropy) of products diminished by the sum of enthalpy (entropy) of substrates: 0 H98 = H 0 98 ( of products) H 0 98 ( of substrates) (.8) If there is no molal heat capacity as a function of temperature we can use the simplified formula: C p = a + bt + ct. The example of calculated values for the mixture CaO + SiO is shown in Fig..8 [13]. However, the lack of some precise thermodynamic data is for the present the limitation of this method. The reaction kinetic of models mixtures, of the composition close to industrial one and at the temperature corresponding to the real production processes, thus in

8 Portland Cement Clinker Fig..8 ΔG 0 of the reaction of CaO with SiO in the function of temperature for the mixture CaO + SiO. (After [13]) 160 140 C S G, kj/mol 10 100 80 C 3 S C 3 S CS 300 500 700 900 1100 1300 1500 1700 1900 T, K the case of important content of liquid phase, was also studied. The liquid phase plays the main role in the formation process of tricalcium silicate. Kondo and Choi [14] have shown that the rate of CaO and Ca [SiO 4 ] dissolution in the melt and crystallization of Ca 3 [SiO 4 ]O can be presented with the relation analogical to Jander s formula, in which the volumetric diffusion in the solid state was replaced by dissolution. It is as follows: 1/3 α = 1 (1 ) D c t = kt r (.9) In this equation D is the diffusion coefficient, Δc the concentration difference in diffusion layer, r the radius of dissolving grains, and the remaining symbols as in Jander s equation. The diffusion coefficient can be calculated from the equation: RT D= 6πηδN (.10) where: η melt viscosity, δ the radius of the particles under diffusion (the authors adopted 40 pm for Si 4+ ), R gas constant, T temperature, N Avogadro s constant. The simple formula for the calculation of free CaO in the clinkering process by Johansen [15] was given; he admitted that the limiting of the process rate factor is diffusion: γd c t + βα α = 3 d 1 r 0 /3 (1 ) 1 (.11)

.1 Portland Cement Clinker Burning 9 where: α is the degree of CaO transformation, β coefficient dependent of sample composition and porosity, γ volume fraction of liquid phase content in surface layer of the tablet, D effective, two dimensional coefficient of CaO diffusion, Δc CaO concentration gradient in the reaction layer, d 1 density of CaO, t time, r 0 the radius of CaO grains. Applying this model Johansen calculated that at temperature of 1500 C and heating time of 0 min the CaO grains of 80 µm diameter will react, which are corresponding to calcite grains equal 10 µm. It is in accordance with earlier Heilmann [16] research. On the base of experiments with the sandwiches (C + C 3 S) and (C 3 S + C S) Johansen and Christensen [17] applied the simpler formula, which gives the possibility to eliminate the grains diameter. The formula is: x = kt (.1) simultaneously k = D m β ch (.13) and 1 1 H= + C C C C 1 a b (.14) In these formula x is the layer thickness of C 3 S + C + melt or C 3 S + C S + melt, k rate constant, t time, D m effective, two dimensional coefficient of CaO diffusion, with the simultaneous diffusion SiO + Al etc. in opposite direction, in the melt, β mass content of the melt in the C 3 S layer, Δc concentration difference of CaO (mass fraction) in the melt in equilibrium with C 3 S + C or C S + C 3 S, C 1, C mass shares CaO in two, C a, C b mass shares of CaO in C 3 S layer on the surface of sandwich I C 3 S and of sandwich II C 3 S. The sequence of phases appearing in the mixtures composed of natural raw materials was also examined. In the mixture of calcium carbonate with quartz and clay minerals first reactions are the dehydroxylation of the latters. The kaolinite dehydroxylation at the temperature close to 450 C is transforming in metakaolinite, which has, in disturbed form, the structure of initial mineral [18]. It is presenting high reactivity with calcium carbonate and the reaction of these components will start at this range of temperatures. For these reasons the mixture of marl with kaolinite produce C 3 S at 1100 C and with illite even at 1000 C [19]. The calcium carbonate starts to react with quartz at temperatures close to 600 C, and it is probably linked with the increase of SiO reactivity, caused by its polymorphic transformation at 573 C. It is so called Hedvall s effect [0]. As the first phase calcium disilicate is formed. At the almost the same temperature the mono calcium aluminate and ferrite Ca [Fe O 5 ] will be formed. Some authors mention the CF appearing [1]. At the temperature range 600 700 C the decarbonisation of calcium carbonate is beginning too. The reaction rate very low at the temperatures from 600 to 800 C,

30 Portland Cement Clinker is gradually increasing, and many experimental works have confirmed the validity of Arrhenius equation []: E a k = Aexp RT (.15) where: k reaction rate constant, E a apparent activation energy, R gas constant, T absolute temperature, A constant (lattice elements oscillation frequency). During the reaction in the solid state the decomposition processes and polymorphic transformations of mineral components, which cause the lowering of apparent activation energy of reaction, are very important. The processes of clay minerals dehydroxylation, calcium carbonate decomposition, which cause the formation of phases in statu nascendi, frequently amorphous with different structural disorganisations, belong to them. For this primarily reason the rate of temperature rise is important. Low rate of heating, favouring the processes of crystallization and recrystallization, the decrease of reactivity of these phases is causing, for example of calcium oxide, formed of CaC decarbonisation, which causes the general rate decrease of clinkering process. The aluminate C 1 A 7 begins to appear at the temperature 800 1000 C, which then is transformed in C 3 A at the temperature range 1000 100 C. It should be underlined that in practise the large differences of temperature of individual phases appearing can be observed, which is understandable if the numerous changeable factors influencing these heterogeneous processes will be considered. There are principally: grains sizes, degree of raw meal homogenisation and presence of impurities. On Fig..9 the ranges of different phases appearance, according to the literature, are presented. Gehlenite is an intermediate phase formed at the temperature range of 800 100 C by some authors is mentioned. Starting from the temperature 950 1000 C the formation of ferrites C (A, F) can be observed. The mixtures of natural raw materials contain always low quantity of alkalis, sulphates and chlorides, which eutectics of melting temperature lower than 700 C is formed [3]. The liquid phase formation highly increases the rate of reactions, accelerating diffusion of several orders of magnitude. Higher amounts of liquid phase start to appear at the temperature of about 100 C and are linked with the eutectic CF CF, and then at about 180 C. The last one corresponds to eutectic C S C 1 A 7 C (A, F). Clinker s melt is corresponding to the invariable point C 3 S C S C 3 A C 4 AF, thus with the phases richer in lime, but poorer in alumina, which melting temperature is 1338 C. MgO and R O lower the appearing of the liquid phase to 160 C [4]. The content of clinker melt is increasing with temperature, and its viscosity is decreasing. The content of liquid phase at chosen temperature (compare with Sect..) can be calculated from corresponding multicomponent systems. Lea and Parker [4] gave the simplified formulae, which permit the content of liquid phase calculation: liquid phase content at 1340 C = 6.1y + a + b (for A/F > 1.38) liquid phase content at 1340 C = 8.5x 5.y + a + b (for A/F < 1.38) liquid phase content at 1400 C =.95x +.y + a + b liquid phase content at 1450 C = 3.0x +.5y + a + b

http://www.springer.com/978-94-007-7944-0