Effect of Ge incorporation on bandgap and photosensitivity of amorphous SiGe thin films *

Similar documents
Solid-Phase Synthesis of Mg2Si Thin Film on Sapphire substrate

Band-gap Engineering in Sputter Deposited Amorphous/Microcrystalline Sc x Ga 1-x N

Investigation of molybdenum-carbon films Mo C:H deposited using an electron cyclotron resonance chemical vapor deposition system

Amorphous Materials Exam II 180 min Exam

Band-gap Engineering in Sputter Deposited Amorphous/Microcrystalline Sc x Ga 1-x N

Polycrystalline and microcrystalline silicon

Low Thermal Budget NiSi Films on SiGe Alloys

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Synthesis and Characterization of DC Magnetron Sputtered ZnO Thin Films Under High Working Pressures

Fundamentals of X-ray diffraction and scattering

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers

Substrate Temperature Control of Narrow Band Gap Hydrogenated Amorphous Silicon Germanium for Solar Cells

Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells.

Microwave PECVD of Micro-Crystalline Silicon

Crystallization of Amorphous Silicon Thin Film. by Using a Thermal Plasma Jet. Hyun Seok Lee, Sooseok Choi, Sung Woo Kim, and Sang Hee Hong*

Deposition and characterization of sputtered ZnO films

EFFECT OF GROWTH TEMPERATURE ON THE CATALYST-FREE GROWTH OF LONG SILICON NANOWIRES USING RADIO FREQUENCY MAGNETRON SPUTTERING

Applications of Successive Ionic Layer Adsorption and Reaction (SILAR) Technique for CZTS Thin Film Solar Cells

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry

Optical parameter determination of ZrO 2 thin films prepared by sol gel dip coating

Method to obtain TEOS PECVD Silicon Oxide Thick Layers for Optoelectronics devices Application

Passivation of SiO 2 /Si Interfaces Using High-Pressure-H 2 O-Vapor Heating

Deposited by Sputtering of Sn and SnO 2

Structure and optical properties of M/ZnO (M=Au, Cu, Pt) nanocomposites

Influence of Annealing Temperature on the Properties of ITO Films Prepared by Electron Beam Evaporation and Ion-Assisted Deposition

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition

Modeling of Tandem solar cell a-si/a-sige using AMPS-1D program

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition

RightCopyright 2006 American Vacuum Soci

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

Amorphous Silicon Solar Cells

Ruthenium Oxide Films Prepared by Reactive Biased Target Sputtering

Supplimentary Information. Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride. Nanosheets

GROWTH AND CHARACTERIZATION OF NANOSTRUCTURED CdS THIN FILMS BY CHEMICAL BATH DEPOSITION TECHNIQUE

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties

Structural and Optical Properties of MnO 2 : Pb Nanocrystalline Thin Films Deposited By Chemical Spray Pyrolysis

Polycrystalline Silicon Produced by Joule-Heating Induced Crystallization

Access to the published version may require subscription. Published with permission from: Institute of Physics

Effect of Volume Spray Rate on Highly Conducting Spray Deposited Fluorine Doped SnO2 Thin Films

Simultaneous Reflection and Transmission Measurements of Scandium Oxide Thin Films in the Extreme Ultraviolet

BAND GAP SHIFT AND OPTICAL CHARACTERIZATION OF PVA-CAPPED PbO THIN FILMS: EFFECT OF THERMAL ANNEALING

Fabrication of the Amorphous Silicon Thin Layers in HIT Solar Cells

DEPOSITION OF CuInAlSe 2 FILMS USING CO-SPUTTERED PRECURSORS AND SELENIZATION

Chalcogenide Letters Vol. 13, No. 2, February 2016, p

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Study of The Structural and Optical Properties of Titanium dioxide Thin Films Prepared by RF Magnetron sputtering

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Chapter 3 Silicon Device Fabrication Technology

Optically Assisted Metal-Induced Crystallization of Thin Si Films for Low-Cost Solar Cells

Characterization of Polycrystalline SiC Films Grown by HW-CVD using Silicon Tetrafluoride

Two-dimensional Computer Modeling of Single Junction a-si:h Solar Cells

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING

Supporting Information

X-RAY DIFFRACTION CHARACTERIZATION OF MULTILAYER EPITAXIAL THIN FILMS DEPOSITED ON (0001) SAPPHIRE

ALD of Scandium Oxide from Tris(N,N -diisopropylacetamidinato)scandium and Water

Effects of lattice deformations on Raman spectra in β-fesi2 epitaxial films

A COMPARISON BETWEEN THIN-FILM TRANSISTORS DEPOSITED BY HOT-WIRE CHEMICAL VAPOR DEPOSITION AND PECVD. Meysam Zarchi, Shahrokh Ahangarani

Supplementary Information

AMORPHOUS SILICON DIOXIDE LAYER FOR HIGH EFFICIENCY CRYSTALLINE SOLAR CELLS

scattering study of phase separation at initially mixed HfO 2 -SiO

Synthesis and Characterization of Cadmium Sulfide Nanoparticles

EECS130 Integrated Circuit Devices

OPTICAL CHARACTERISTICS OF CARBON NITRIDE FILMS PREPARED BY HOLLOW CATHODE DISCHARGE *

Growth, Optical and Electrical Properties of zinc tris (thiourea) sulphate (ZTS) Single Crystals

Crystalline Silicon Solar Cells

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Determining Optical Constants of Selenium Thin Films using the Envelope Method

Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications

Supplementary Information

METAL BASED CHALCOGENIDE THIN FILMS FOR PHOTOVOLTAICS

ARTICLE IN PRESS. Journal of Crystal Growth

Amorphous Er 2 O 3 films for antireflection coatings

Thin Film Scattering: Epitaxial Layers

Preprint 29th EUPVSEC, September 22-26, 2014, Amsterdam

The Effect of Annealing Heat Treatment on Structural and Optical Properties of Ce-doped ZnO Thin Films

Magnetic Tunnel Junction Based on MgO Barrier Prepared by Natural Oxidation and Direct Sputtering Deposition

Carbon Black At-line Characterization. Using a Portable Raman Spectrometer

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Effect of deposition parameters on Structural and Optical Properties of ZnS Thin Films

CHAPTER 3. Experimental Results of Magnesium oxide (MgO) Thin Films

Previous Lecture. Vacuum & Plasma systems for. Dry etching

Oxygen defects created in CeO 2 irradiated with 200 MeV Au ions

Characterization of carbon nitride thin films deposited by microwave plasma chemical vapor deposition

All fabrication was performed on Si wafers with 285 nm of thermally grown oxide to

Hydrogenated Amorphous Silicon Nitride Thin Film as ARC for Solar Cell Applications

Optical Properties of Nanocrystalline Silicon Thin Films in Wider Regions of Wavelength

Oerlikon PVD production solutions for piezoelectric materials

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 29 Nov 2003

SUPPLEMENTARY INFORMATION

Influence of oxygen to argon ratio on the optical and structural properties of rf magnetron sputtered Ba 0.7 Sr 0.3 TiO 3 thin films.

Laser Annealing of Amorphous Ni-Ti Shape Memory Alloy Thin Films

Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides

SUBSTRATE EFFECT ON CRYSTALLINITY DEVELOPMENT IN THIN FILM NANOCRYSTALLINE SILION

Ultra-high material-quality silicon pillars on glass. IEEE Photovoltaic Specialists Conference Conference Record. Copyright IEEE.

Morphology of Thin Aluminum Film Grown by DC Magnetron Sputtering onto SiO 2 on Si(100) Substrate

Nanoparticle generation using sputtering plasmas

MRS spring meeting San Francisco, April 5-9, 1999, paper Y5.21 DIELECTRIC FUNCTION OF AlN GROWN ON Si (111) BY MBE

CHAPTER 4. SYNTHESIS OF ALUMINIUM SELENIDE (Al 2 Se 3 ) NANO PARTICLES, DEPOSITION AND CHARACTERIZATION

ITO. Crystal structure: Cubic, space group Ia3 No. 206, ci80, a = nm, Z = 16

Transcription:

Materials Sciences and Applications, 2011, *, ** doi:10.4236/msa.2011.***** Published Online ** 2011 (http://www.scirp.org/journal/msa) Effect of Ge incorporation on bandgap and photosensitivity of amorphous SiGe thin films * Gopal G. Pethuraja 1, Roger E. Welser 1, and Ashok K. Sood 1 ; Changwoo Lee 2, Nicholas J. Alexander 2, Harry Efstathiadis 2, and Pradeep Haldar 2 ; Jennifer L. Harvey 3 1 Magnolia Solar Inc., 54 Cummings Park, Suite 316, Woburn, MA 01801, 251 Fuller Road, CESTM-B250, Albany, NY 12203; 2 College of Nanoscale Science and Engineering (CNSE) 257 Fuller Road, Albany, NY 12203; 3 New York State Energy Research and Development Authority (NYSERDA), 17 Columbia Circle, Albany, NY 12203 Email: gpethuraja@magnoliasolar.com Received Month Day, Year (2011). ABSTRACT We investigated the structural and optical properties of amorphous-sige thin films synthesized via a low-cost, high-growth rate deposition method. Films were formed by e-beam evaporation of mixed pellets of Si and Ge. Film composition was varied by changing the weight ratio of Si and Ge pellets mixture. Films were amorphous with a composition uniform. Ge-rich films are in tensile stress, while Si-rich films are in compressive stress. As the Ge fraction increases (from 22 to 94 at.%), the optical bandgap decreases(from 1.7 to 0.9 ev) and the photosensitivity of the films extends into IR band of solar spectrum. By changing the weighted ratio of the evaporation source mixture, the bandgap and optical sensitivity of a-sige films can be easily tuned. Our studies prove that a-sige films are a tunable absorber. This can be used for photo-detector, photovoltaic and microelectronic applications to extend the spectral response. Keywords: a-si 1-x Ge x thin films, Structural properties, Optical properties, Compositional effect, Bandgap tuning. 1. Introduction (Heading 1) Amorphous silicon-germanium is one of the most promising thin film materials for photovoltaic, photo-detector and microelectronic applications. The incorporation of germanium into amorphous silicon leads to a reduction in band gap [[1],[2]] and in enhancement in the absorption coefficient at longer wavelengths [[3],[4]]. Such a bandgap reduction will be more pronounced if strains exist in the SiGe material. The Si-Ge binary system has a phase diagram which shows complete miscibility in solid state. So, SiGe alloy films with any compositional distribution from Si to Ge can be easily obtained [[5]]. The deposition of thin film solar cell structure on low cost and flexible substrates like plastic foil has necessitated the deposition of the thin films at relatively low temperature. Various low temperature schemes have been adapted to prepare a-si 1-x Ge x films. They include low-power radio frequency (RF), direct current, electron cyclotron resonance and very high frequency plasma-enhanced chemical vapor deposition [[6],[7]], and RF sputtering [[8]]. However, these methods yield low growth rate. For inexpensive photovoltaic (PV) devices, high growth rate is required for depositing 1 2 µm thick absorber layers. Evaporation is a low cost, high deposition rate method that yields high purity film. Eisele et. al.[[9]] reported properties of µc-sige films prepared by crystallization of e-beam evaporated SiGe films. As per our knowledge, for the first time, we report on the influence of Ge fraction in the electronic and optical properties of a-sige film prepared by an evaporation method. In this article, we show the feasibility of photosensitivity and bandgap tuning in a-sige thin film grown by an inexpensive physical vapor deposition method. 2. Experimental Procedure The a-sige samples studied in this work were deposited on oxide (SiO 2 /Si) Si wafers by e-beam evaporation method using an ATC Orion 8-E evaporation system. Fig. 1 shows the picture and schematic of the evaporation system used for the sample preparation. The substrates were cleaned using acetone, methanol, isopropanol and de-ionized water. The substrate temperature was 200 C. An E-beam power of 1.75 kw was used to

evaporate the source material of mixed pellets of silicon and germanium with appropriate weight ratio. Film composition variations were obtained by changing the weight ratio of Si-Ge mixture. Post deposition hydrogenation were carried out for 30 minutes at 200 C, 10 sccm H 2 flow, 100 mtorr pressure, and 50 watts RF plasma power. Rutherford back scattering (RBS) analysis was used to or coupled theta/2-theta axes motion. XRD patterns were collected using a Theta/2-theta scan. An Ellipsometer, Model TFProbe SE200BA, made by Angstrom Sun Technologies, Inc., was used to determine optical constants and absorption coefficient of the films. Raman spectroscopy of the films was carried out using a Renishaw invia confocal Raman spectrometer equipped with a research-grade Leica microscope, 20 objective (numerical aperture of 0.40), and WiRE 2.0 software. A 785-nm laser light was utilized for excitation. The laser power on the sample was about 115 mw. A Woollham Dual Rotating Compensator with a quartz tungsten halogen and deuterium lamp was used to measure transmission curves from 245 to 1200 nm. From this data the absorption coefficients (α) were determined using the equation: (1) where t is the film thickness, α the absorption coefficient, I T the intensity of transmitted light, and I o is the intensity of initial light. The optical bandgap is related to the absorption coefficient by: Figure 1: Silicon-Germanium thin film deposition system. (a) Image and (b) schematic of e-beam evaporation system that used to deposit thin film of Si 1-x Ge x at various compositions (x) by evaporating mixed materials of silicon and germanium with appropriate weight ratios. evaluate the film composition and uniformity. RBS analysis was done using a 1.5 MeV He + -ion beam, and two detectors positioned at scattering angles of 167 and 135, in the laboratory (IBM) geometry. The crystallographic structure of the film was analyzed by X-ray diffraction (XRD) and carried out using a Scintag X-ray diffractometer equipped with a Cu Kα X-ray source (λ=1.54 Å) and a horizontal wide-angle four-axis goniometer with stepping motors which allowed independent Where K is a constant, E g the optical bandgap, n is ½ for direct bandgap and h is the photon energy. Using the calculated absorption coefficients, plots of ( vs h produced [[10]]. The x-axis intercept of a liner fit to each plot was used to estimate the optical bandgap of films. It is important to note that these calculations do not account for possible interference effects from reflection, which is assumed to be minimal due to the low film thicknesses. 3. Results and Discussion All deposited films in this work were thoroughly characterized by RBS, XRD, Ellipsometer, Raman and optical spectroscopy. The as-deposited SiGe films have uniform composition as controlled by the source Si-Ge weight ratio. For illustration purposes, Fig. 2 shows the results of RBS measurements for two different samples deposited using two different mixtures of Si-Ge source materials with weight ratio 2:1 and 16:1. The yield tails at approximately channel 600, 550, and 350 corresponds to Si in the SiGe film, SiO 2 layer and Si wafer respectively, while the yield tails at approximately channel 850 corresponds to Ge in the SiGe film. The channel thickness and composition (x) are interdependent, and good fits can be obtained for Ge composition 85 and 32 at. %. Assuming a pure Ge channel with the bulk density, the thickness the two different composition films are 60 and 66 nm respectively. The uniformity of the film is evidenced by the symmetry of the Ge peak. (2)

Normalized Yield Si in Si wafer Oxygen Normalized Yield Oxygen Si in Si wafer Paper Title 60 50 40 Energy (MeV) 0.5 1.0 1.5 Simulation spectra Si-Ge weight ratio 2:1 C57354 SiGe_No7_6plus3_90mA_Dec.23.2009 85 at.% of Ge Raman spectroscopy observation also confirms the amorphous structure of these films. Fig. 4 shows a series of Raman spectra taken on Si 1-x Ge x films with x ranging from 0.32 to 0.95. Besides the Si substrate signal at 520 cm -1, Ge-Ge, Si-Ge and Si-Si vibrational peaks can be seen at about 300, 400 and 480 cm -1 respectively [[11]]. Transverse optic Ge-Ge mode (~300 30 20 10 Si in SiO 2 Si in Si 1-x Ge x Ge in Si 1-x Ge x 0 0 200 400 600 800 1000 Channel 50 40 Energy (MeV) 0.5 1.0 1.5 Simulation spectra Si-Ge weight ratio 16:1 C61406 SiGe_No.13 Simulation of Si-Ge/Si-O/Si 32 at.% of Ge Figure 3: Structural property. X-ray diffraction patterns of Si 1-x Ge x thin films with Ge fractions 0.32 (lower pattern) and 0.47 (upper pattern). The peak observed at 2θ theta value close to 70 attributed to the Si substrate. SiGe crystalline peaks are absent in these patterns. 30 20 10 Si in SiO 2 Si in Si 1-x Ge x Ge in Si 1-x Ge x 0 0 200 400 600 800 1000 Channel Figure 2: Compositional analysis. Rutherford backscattering spectra of Si1-xGex thin films produced by evaporating mixed material of silicon-germanium with weight ratios 2:1 (top) and 16:1 (bottom). The red line show the simulation spectra obtained for compositions 85 at. % (top) and 32 at.% (bottom) of Ge. All the films used in this study are amorphous. This is shown in Fig. 3. It shows the X-ray diffraction patterns of Si 1-x Ge x with x= 0.32 and 0.47. Except for a peak close to 2 theta angle of 70 degree, no crystalline phase has been observed, indicating amorphous structure of the films. The observed peak arises from the Si crystalline wafer. Similar results were observed for the entire set of films used in this study. Figure 4: Raman spectroscopy scan of a-si 1-x Ge x films with Ge fraction range from 0.38 to 0.94 (top to bottom spectra). The peaks at 300, 400 and 480 cm -1 corresponds to Ge-Ge, Si-Ge and Si-Si modes. Substrate signal observed at 520 cm -1. Strain induced peak shift and crystallinity dependent peak broadening is observed. cm -1 ) is observed in all samples. As the Ge concentration increases, the Ge-Ge optic mode peak intensity increases, accompanied with a reduced peak width, indicating improvement in film crystallinity, particularly in

the film with x = 0.94. Azuma et al. [[12]] reported a preferential growth orientation for Si 1-x Ge x crystal at x > 0.9. Observation of the Ge-Si band in all the films indicates the formation of SiGe in the film. As the Ge fraction increases, the intensity of Si-Ge peak intensity slightly decreases indicating a reduction in Si-Ge bonds, and the Ge-Ge optic mode peak shows red-shift towards higher wave-number while the Si-Ge peak shows a red-shift towards lower wave numbers. It is well known that strain in the SiGe films shift the peak without changing the full width half maxima of the peak [[13]]. The observed red-shift is due to the strain originated from the difference of the liner thermal expansion coefficient between SiGe layer with different composition of Ge (5.8 x 10-6 K -1 ), Si (2.6 x 10-6 K -1 ) and SiO 2 (3.25 x 10-6 K -1 ) [[11]]. The variation in thermal expansion co-efficient leads to tensile stress in Ge rich film and where λ is the wavelength of the light. The extinction coefficient is extracted from the spectroscopic ellipsometry measurements. Fig. 5 shows the calculated absorption coefficient of the Si 1-x Ge x film with x=0.22, 0.48 and 0.94. Also it shows a comparison between the absorption coefficient of a-si (solid circle) [[14]] and Si 0.52 Ge 0.48 (open circle) at 700 nm. It clearly shows that Ge incorporation systematically increases the absorption coefficient of the film. Similar result has been observed by C. Wang et al [[15]] on a-sige film, grown by very high frequency plasma enhanced chemical vapor deposition method. The absorption coefficient of a-sige is more than one order of magniture higher than a-si film Figure 6: Bandgap tuning. Optical bandgap of a-si 1-x Ge x thin film as a function of Ge fraction (x). As the Ge fraction increases, the bandgap of SiGe film decreases. Figure 5: Absorption coefficient spectra of a-si 1-x Ge x thin films with x = 0.22, 0.48 and 0.94. Absorption coefficient of a-si (solid circle) [[14]] is compared with a-si 0.52 Ge 0.48 (open circle) at wavelength 700 nm. Ge incorporation increases the absorption coefficient and extends its photosensitivity towards longer wavelengths. compressive stress in Si rich films. Hence, the incorporation of Ge influences the film crystallinity and strain. The presence of strain influences the bandgap of the Si- Ge film [[2]]. The optical absorption coefficient (α) of a-sige films with Ge fraction of 0.22, 0.48 and 0.94 was obtained from extinction coefficient (k) according to the relation: (3) at 700 nm. As the Ge fraction increases, photosensitivity of a-sige film extends into IR band of solar spectrum. The energy bandgap of the a-sige film decreases as the Ge fraction in a-sige film increases. This is shown in Fig. 6. It shows the calculated optical bandgap as a function of Ge fraction. The bandgap various from 1.7 to 0.92 ev for Ge fraction from 0.22 to 0.94 at.%. The amorphous nature of the film provides a wider window of bandgap energy and direct bandgap characteristics. The presence of strain in the film also contributes to changes in the bandgap energy. Hence, bandgap and photo-sensitivity of a-sige films can be easily tuned by changing Si and Ge weight ratio of the evaporation source material mixture. 4. Summary Amorphous SiGe films have been fabricated by e-beam evaporation in an ultra high vacuum chamber. The influence of the Ge fraction on the structural, optical and bandgap properties of the film was investigated. For the entire range of Ge fractions, the SiGe films are amorphous, although the film with Ge fraction about 0.9 shows some sign of improvement in Ge crystallinity.

The Ge rich films are in tensile stress and the Si rich films are in compressive stress. As the Ge fraction in the a-sige film increases, the absorption coefficient increases and the bandgap decreases systematically and its photosensitivity extends into IR band of the solar spectrum. Our study proves that the a-sige films are a tunable absorber layer, suitable for wider spectrum optoelectronic device applications such as photo-detector and photovoltaic devices. 5. Acknowledgements The authors would like to thank NYSERDA for supporting the SiGe development program for solar cell applications. 6. References [1] D.V. Lang, R. People, J.C. Bean, A.M. Sergent, Measurement of the band gap of Ge x Si 1-x /Si strained-layer heterostructures, Appl. Phys. Lett. Vol 47, No. 12, 1985, pp. 1333-1335. [2] N. Usami, T. Ichitsubo, T. Ujihara, T. Takahashi, K. Fujiwara, G. Sazaki, and K. Nakajima, Influence of the elastic strain on the band structure of ellipsoidal SiGe coherenty embedded in the Si matrix, J. Appl. Phys. Vol 94, No. 2, 2003, pp. 916-920. [3] R. Braunstein, A.R. Moore, and F. Herman, Intrinsic optical absorption in germanium-silicon alloys, Phys. Rev. Vol. 109, No. 3, 1958, pp. 695-710. [4] K.H. Jun, J.K. Rath, and R.E.I. Schropp, Enhanced light-absorption and photo-sensitivity in amorphous silicon germanium/amorphous silicon multilayer, Sol. Energy Mater. Sol. Cells. Vol. 74, No. 1-4, 2002, pp. 357-363. [5] K. Nakajima, K. Fujiwara, W. Pan, N. Usami, and T. Shishido, Growth and properties of SiGe multicrystals with microscopic compositional distribution and their applications for high-efficiency solar cells, J. Cryst. Growth, Vol. 275, No. 1-2, 2005, pp. e455-e460. [6] E. Maruyama, S. Okamoto, A. Terakawa, W. Shinohara, M. Tanaka, and S. Kiyama, Towards stabilized 10% efficiency of large-area (>5000 cm 2 ) a-si/a-sige tandem solar cells using high-rate deposition, Sol. Energy Mater. Sol. Cells, Vol. 71, No. 1-4, 2002, pp. 339-349. [7] P. Wickboldt, D. Pang, W. Paul, J.H. Chen, F. Zhong, C.-C. Chen, J.D. Cohen, and D.L. Williamson, High performance glow discharge a-si 1-x Ge x :H of large x, J. Appl. Phys. Vol 81, No. 9, 1997, pp. 6252-6267. [8] M. Serenyi, J. Betko, A. Nemcsics, N.Q. Khanh, D.K. Basa, and M. Morvic, Study on the RF sputtered hydrogenated amorphous silicon-germanium thin films, Microelectron. Reliab. Vol. 45, No. 7-8, 2005, pp. 1252-1256. [9] C. Eisele, M. Berger, M. Nerding, H.P. Strunk, C.E. Nebel, and M. Stutzmann, Laser-crystallized microcrystalline SiGe alloy for thin film solar cells, Thin Sold Films, Vol. 427, 2003, pp. 176-180. [10] D. Dwyer, R. Sun, H. Efstathiadis, and P. Haldar, Characterization of chemical bath deposited buffer layers for thin film solar cell applications, Phys. Status Solidi A, Vol 207, No. 10, 2010, pp 2272-2278. [11] C.-Y. Tsao, Z. Liu, X. Hao, and M.A. Green, In situ growth of Ge-rich poly-sige:h thin films on glass by RF magnetron sputtering for photovoltaic applications, Appl. Surf. Sci. Vol. 257, No. 9, 2011, pp. 4354-4359. [12] Y. Azuma, N. Usami, K. Fujiwara, T. Ujihara, and K. Nakajima, A simple approach to determine preferential growth orientation using multiple seed crystals with random orientations and its utilization for seed optimization to restrain polycrystallization of SiGe bulk crystal, J. Cryst. Growth, Vol. 276, No. 3-4, 2005, pp. 393-400. [13] W.K. Choi, L.K. The, L.K. Bera, and W.K. Chim, Microstructural characterization of rf sputtered polycrystalline silicon germanium films, J Appl. Phys., Vol. 91, No. 1, 2002, pp. 444-449. [14] M.K. Bhan, L.K. Malhotra, and C. Kashyap, Electrical and optical properties of hydrogenated amorphous silicon germnanium (a-si 1-x Ge x :H) films prepared by reactive ion beam sputtering, J. Appl. Phys. Vol. 66, No. 6, 1989, pp.2528-2537. [15] C.-C. Wang, C.-Y. Liu, S.-Y. Lien, K.-W. Weng, J.-J. Huang, C.-F. Chen, and D.-S. Wuu, Curr. Hydrogenated amorphous silicon-germanium thin films with a narrow band gap for silicon-based solar cells, Appl. Phys. Vol. 11, No.1, 2011, pp. S50-S53.