NEW AIRCRAFT PRETREATMENT & WASH PRIMER SYSTEM. Angel Green Cortec Corporation 4119 White Bear Parkway White Bear Lake, MN

Similar documents
COMMERCIAL ITEM DESCRIPTION ELECTROCOATING PRIMER

Salt Spray Resistance

Table 2: Salt fog exposure testing Epoxy Salt fog exposure

TECHNICAL INFORMATION MEMORANDUM

Chromate-free inhibitor and non-chrome fuel tank coatings

TECHNICAL INFORMATION. texturepanels.com.au. Humidity

Performance of Chromate-Free Pretreatment Options for CARC Systems

Performance Validation of Thin-Film Sulfuric Acid Anodization (TFSAA) on Aluminum Alloys

Boris Miksic (President/CEO Cortec Corporation) Co-Autohors: Dr. Margarita Kharshan (V.P. of Cortec R&D), Ron Camp (Cortec Coating Chemist)

COMMERCIAL ITEM DESCRIPTION ZINC-RICH COATINGS

Low Volatile Organic Compound Containing Wash Primer for Letterkenny Army Depot

MILITARY SPECIFICATION CHEMICAL CONVERSION MATERIALS FOR COATING ALUMINUM AND ALUMINUM ALLOYS

MILITARY SPECIFICATION CHEMICAL CONVERSION MATERIALS FOR COATING ALUMINUM AND ALUMINUM ALLOYS

NACORR Rust & Corrosion Inhibitors

Valspar InspireME Coil and Extrusion Product Guide Specification Section Shop-Applied Coatings for Metal

Refer to Substrates & Surface Preparation.

Removable Coatings for up to One Year Service Life in the Oil and Gas Market. Markus Bieber Cortec Corporation 4119 White Bear Pkwy St.

AFRL-ML-WP-TP

All hollow metal doors and frames manufactured in North America are produced from the identical base cold rolled steel, which conforms to ASTM A366.

Product Data Sheet. Suitable for electrostatic spray Specific gravity g/cm³ Storage

Chromium Alternatives Qualification Testing. September 27, 2007

Refer to Substrates & Surface Preparation.

ITW- American Safety Technologies

AAMA Voluntary Specification, Performance Requirements and Test Procedures For Pigmented Organic Coatings on Aluminum Extrusions and Panels

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

UNCLASSIFIED NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND TECHNICAL REPORT

AAMA Voluntary Specification, Performance Requirements and Test Procedures for High Performance Organic Coatings on Aluminum Extrusions and

PPG Guide Specification

A Breakthrough in Metal Corrosion Protection Technology

A M E R I C A N A R C H I T E C T U R A L AAMA

EVALUATION OF PROTECTION SCHEMES FOR ULTRAHIGH-STRENGTH STEEL ALLOYS FOR LANDING GEAR APPLICATIONS

Interior/Exterior High Performance Coatings SPECIALTY ENDURA SERIES. Quality you know, Performance you can trust.

MINIMIZING POLLUTION FROM CHEMICAL PRETREATMENT PROCESSES

Elastocoat Protective Coatings APPLICATION GUIDE

Carboguard 890 PRODUCT DATA SHEET SELECTION & SPECIFICATION DATA. Generic Type. Cycloaliphatic Amine Epoxy

MODERN PACKAGING MATERIALS FOR ELECTRONIC EQUIPMENT: BIODEGRADABLE AND VAPOR PHASE CORROSION INHIBITOR TREATED

Environmentally Friendly Corrosion Protection in Cleaning Systems for United States Coast Guard Aircraft

BR 252 Water Based Bonding Primer

SECTION High Performance Coatings Field Applied Acrylic Urethanes (Solid Color, Pearl and Metallic Finishes)

Toxic Metal Reduction (TMR) IPR Cr (VI)-Free, Low VOC Alternatives for Spray-in-Place, Mixed Metal Pretreatment (TMR 12-01)

OVERVIEW OF CORROSION PROTECTION ALLOY MP-ACQ FASTENER COATING SYSTEM FOR USE IN ACQ-PRESSURE TREATED LUMBER

Concrete Floor Coating Challenges

Hex Chrome Free Coatings for Electronics NASA-DoD-OEM Joint Project

Material and Process. Specification

58 Series Polyurethane topcoat

PRODUCT GUIDE: ZINC-RICH COATINGS. Version:

Until recently, little research

Multifunctional UV (MUV) Coatings and Ce-based Materials

Corrosion Protection for Fisher Valves

Coating Performance Not as Simple as it would Appear

Alumigrip 10P8-11 VOC Compliant Epoxy Primer

Evaluation of Zn-rich Primers and Rust Converters for Corrosion Protection of Steel Leonardo Caseres

MAINCOTE 1100A Emulsion Advanced Resin for Industrial Coatings based on AVANSE Technology Platform

Aliphatic Acrylic-Polyester Polyurethane

Measured in accordance with ASTM D 2697.

Measured in accordance with ASTM D 2697.

Final Report on Alternative Chromate-Free Wash Primers

Corrosion and Thermal Insulation in Hot areas A New Approach

Full Description: Title of Innovation: Intelligent Green Conversion Nanocoating. Category: Coatings and linings

58 Series Polyurethane Topcoat

DETAIL SPECIFICATION CHEMICAL CONVERSION MATERIALS FOR COATING ALUMINUM AND ALUMINUM ALLOYS

Metal Framing Channels Overview

LURSAK: The new high performances axle protection

Ultraviolet Curable Powder Coatings With Robotic Curing for Aerospace Applications

Enhanced Corrosion Protection for the H-60 Helicopter

COATING SPECIFICATION ZINC RICH EPOXY PRIMER, EPOXY MASTIC COATING ON STEEL OR CAST IRON COATING SPECIFICATION: C3 ISSUE:2 DATE: OCTOBER 2016

Alumigrip 4400 Base Coat Solid and Effect Colors

Application Guidelines for Field-Applied Touch-up Paint Systems on Metal Panels

RECOMMENDED APPLICATION PROCEDURE FOR SOLID FILM LUBRICANTS & COATINGS

Number: 075K0013. Machined surfaces of incoming components must be masked before coating, unless otherwise directed by Engineering.

Chromadek is Iconic. What comes to mind when we mention Chromadek is often a roof colour, so the chances are it s. Copyright ArcelorMittal 07/03/2014

Joint Test Protocol: Environmentally Friendly Zirconium Oxide Pretreatment Demonstration

A Novel Approach to Corrosion Inhibitors for Coatings

Glosss. AkzoNobel Aerospace Coatings. Product Group. Alumigrip Base Coat on. base. Characteristics. Coat clear. coat system.

Control No. 17 Garson P. Shulman Alumitec Products Corp Del Am0 Blvd. Torrance, CA (3 10) FAX(3 10)

Qualification and Flight Test of Non-Chrome Primers for C-130 Aircraft

NDCEE. Cadmium and Hexavalent Chromium Free Electrical Connectors: A Synergistic Approach. National Defense Center for Energy and Environment

About Coil Coating. National Coil Coating Association

Greening DoD Surface Finishing Operations

PAINTS AND ENAMELS. Package the paint in new containers marked with the following information:

HIGHLAND DRY-FALL. COATINGS for PEAK PERFORMANCE. Courtesy of Astec Industries, Inc. HIGHLAND INTERNATIONAL

Aerodur HS Primer 37092

Testing Cadmium-free Coatings

Hexavalent Chromium Free Coatings Projects for Aerospace Applications

AkzoNobel Aerospace Coatings. Aerospace Sustainability trends. Visit KIVI NIRIA November 20th 2012

Environmental Projects for Aerospace Applications

Metaflex SP 1050 Pretreatment

Carboxane 950 Metallic

Packaging: Packaged in 5 gal. pails and 55 gal. steel drums. 260 gal. totes are available as a special order.

Imagine A World Without Corrosion. - Sue Wang, AnCatt

B. Shop Drawings: Include plans, elevations, sections, details, and attachments.

Application Guide HI-TEMP 1027 APPLICATION GUIDE. Number: AG-3001 Revision: Page 1 of Introduction. 2. Where to apply Hi-Temp 1027

ZONE 7 WATER AGENCY CWS 5 TURNOUT REPLACEMENT PROJECT # ADDENDUM NO. 3 April 02, 2019

DETAIL SPECIFICATION CHEMICAL CONVERSION COATINGS ON ALUMINUM AND ALUMINUM ALLOYS

Nathan Kofira Technical Development Manager

1/16 Single Broadcast Polymer Flooring System

ESA Frame Contract on Materials Testing Alternative pre-treatments to aluminium Replacements for Hexavalent Chromate Conversion Coatings

DEFENSE & CIVILIAN SPECIFICATIONS

Magnesium-Rich Coatings

Coil coating makes use of a simple, but effective

Transcription:

Paper No. 0 20 NEW AIRCRAFT PRETREATMENT & WASH PRIMER SYSTEM Angel Green Cortec Corporation 4119 White Bear Parkway White Bear Lake, MN 551 agreen@cortecvci.com ABSTRACT Today s Department of Defense is charged with the pursuit of environmentally preferable alternatives to products and processes traditionally used. The highly specialized coating process of the military aircraft is one area where such an initiative is underway. NASA, in coordination with the Tri-Services is actively seeking greener alternatives to chromate coatings. This paper will discuss the development of a non-toxic, non-hazardous, self-healing pretreatment as well as a low VOC, water based wash primer. After vigorous in house testing, it has been determined that these products will be included in the NASA study. The products will undergo both real world evaluations in a salt water environment, as well as in-depth laboratory testing. Key Words: Corrosion, aircraft, coating, pretreatment, wash primer INTRODUCTION Currently the Air Force uses a three step system containing a pretreatment, conversion coating/primer and a urethane topcoat. The replacement of hexavalent chrome [Cr (IV)] in the processing of aluminum for aviation and aerospace applications remains a goal of great significance within the aviation and aerospace community. Aluminum, being the major manufacturing material on structures and components in both the aircraft (military and commercial) and space flight arena, consequently, the processing and maintenance of this material against degradation and corrosion is of prime importance to the US Air Force and NASA in preserving our defense and space operations capabilities. 1 Key to the operability and preservation of aluminum has been the use of chromated systems (conversion coatings, primers and hard chromium plated). Hard chrome plating on components is done through an electrochemical process; the electrochemically adhered chrome provides barrier protection to the substrate by forming a dense self-healing oxide layer 20 by NACE International. Requests for permission to publish this manuscript in any form, in part or in whole, must be in writing to NACE International, Publications Division, 1440 South Creek Drive, Houston, Texas 7704. The material presented and the views expressed in this paper are solely those of the author(s) and are not necessarily endorsed by the Association. 1

on the surface. The electroplated chromium is chemically resistant to most compounds and offers excellent corrosion protection. Hard chrome plating also confers increased wear resistance and is most frequently used on landing gears, actuators, gearboxes, rotor heads and other high impact/wear components. Conversely, with applied coatings, the high corrosion resistance offered by chromated films is attributed to the presence of both hexavalent and trivalent chromium in the coating. The trivalent chromium is present as an insoluble hydrated oxide, whereas the hexavalent chromium imparts a self-healing character to the coating during oxidative (corrosive) attack. Hexavalent chrome coatings also play a critical role in supporting and enhancing the adhesion of the primer coating to the substrate. 1 OSHA studies have determined that hexavalent chrome poses significant medical risks to users. Hexavalent chromium is considered a potential lung carcinogen; studies of workers in the chromate production, plating, and pigment industries consistently show increased rates of lung cancer. In the interest of worker safety, as well as the cost and operational implications of new and pending environmental, safety and health regulations, both NASA and the US Department of Defense (DoD) continue to search for an alternative to hexavalent chrome in coatings plating applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety; while underlining that performance must be equal to or greater than existing systems. 1 The development of a non-toxic, non-hazardous, self-healing pretreatment as well as a low VOC, water-based wash primer will address OSHA and military concerns. The purpose of the pretreatment for aluminum is to allow for better adhesion of subsequent coatings to the aluminum substrate, while also providing corrosion protection. The wash primer also serves as an adhesion promoter for the topcoat and also provides another layer of corrosion protection. The new pretreatment and wash primer coating system had to pass 3000 hours of salt spray testing before the products where included in the NASA study. EXPERIMENTAL PROCEDURE Two pretreatments, a wash primer and a topcoat were developed as a fully non-chromated coating system, as a replacement for hexavalent chrome coatings in aircraft and aerospace applications. This paper will show the comparison of the currently available chrome free pretreatments to the developed chrome free pretreatments as well as a comparison of how the coating system compared to a currently available topcoat. The materials that were used and tested are listed below. Company A s pretreatment is a non-chromated metal preparation chemical. Company B s pretreatment is a chrome free conversion coating specifically formulated for treating aluminum. Company Company C s urethane topcoat is a currently available and used topcoat in the Aerospace and military industry. The developed products are pretreatment 3 & 4, which are non-chromated pretreatments for aluminum and other metals, the water-based wash primer, the water-based acrylic emulsion topcoat and the high solids moisture cured urethane. Materials Commercial Products Pretreatment 1 from Company A Pretreatment 2 from Company B Urethane Topcoat Company C 2

Developed Products Pretreatment 3 Water based wash primer Water based acrylic emulsion topcoat High solids moisture-cure urethane Substrate used 2024-T3 Aluminum 4x6 panels 220 grit sand paper used to roughen the surface of the aluminum panels Coating the Panels 1. The pretreatments were applied various different ways including dipping and scuffing the product on to the 2024-T3 aluminum. 2. The pretreated panels were then allowed to air dry in ambient conditions for 24 hours. 3. One set of panels was coated with the water-based wash primer at 0.5-1.0 dry mils (12.5-25 microns), while other panels were coated directly with the water-based acrylic emulsion topcoat, moisture-cure urethane or the urethane topcoat. 4. Then a selection of panels coated with the water-based wash primer was top-coated after of air drying in a ambient temperature for 1 hour or for 24 hours with the urethane topcoat. Test Panel Preparation 1. After all of the coated panels were allowed to air dry in ambient conditions the panels were then prepared for salt spray testing. 2. All of the exposed and uncoated surfaces were taped with packing tape. 3. A straight line scribe was made on the panel. 4. The panels were then placed in the salt spray chamber and were evaluated at various intervals in the salt spray chamber and the corrosion data was recorded, using the ASTM D1654 for evaluating coated specimens. Test Methods Used 1. ASTM D3359: Standard Test Methods for Measuring Adhesion by Tape Test 2. ASTM B117: Standard Test Method of Salt Spray (Fog) Testing 3. ASTM D714: Standard Test Method for Evaluating Degree of Blistering of Paint 4. ASTM D1654: Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments Adhesion Testing 1. The 3 step system panels (pretreatment, wash primer and topcoat) were checked for cross hatch adhesion after 120 hours of ambient air drying. 2. The panels were then cross hatched according to ASTM D3359 and then permacel tape was applied, rubbed with a pencil eraser and then the taped was ripped off. 3

3. The coatings were then evaluated for adhesion using the classifications from the ASTM D3359 in Table 1 shown below. TABLE 1 ASTM D3359 CLASSIFICATIONS Grade 5B 3B 2B 1B 0B Definition The edges of the cuts are completely smooth; none of the squares of the lattice is detached. Small flakes of the coating are detached at intersections; less than 5% of the area is affected Small flakes of the coating are detached along edges and at intersections of cuts. The area affected is 5 to 15% of the lattice. The coating has flaked along the edges and on parts of the squares. The area affected is 15 to 35% of the lattice. The coating has flaked along the edges of cuts in large ribbons and whole squares have detached. Area affected is 35 to 65% of the lattice. Flaking and detachment worse than Grade 1B. Salt Spray Testing 1. On the other panels, the exposed surfaces were taped with packaging tape and then scribed with a sharp scribing tool in a straight line for salt spray testing, ASTM B117. 2. The coatings were evaluated at various intervals for corrosion resistance using the classifications from the ASTM D714 and ASTM D1654 as defined below. Scribe Rating Blistering Rating ASTM D1654 ASTM D714 Rating # Millimeters D Dense 0 MD Medium Dense 9 0 0.5 M Medium 0.5 1.0 F Few 7 1.0 2.0 no blisters 6 2.0 3.0 smallest blister easily seen by the unaided eye 5 3.0 5.0 6, 4, 2 represents progressively larger sizes 4 5.0 7.0 3 7.0.0 2.0 13.0 1 13.0 16.0 0 over 16.0 4

RESULTS The following data shows the compatibility of the available pretreatments as well as the developed pretreatments with the water based wash primer. As stated earlier pretreatment 1 is company A s pretreatment and pretreatment 2 is company B s pretreatment. Pretreatments 3 & 4 are the developed products. The wash primer that was used is the developed product. Table 2 and Figures 1 and 2 show the results of the ASTM B117 salt spray testing that was required by NASA for the above mentioned products. The test concluded that the new wash primer was most compatible with Pretreatment 2, 3 and 4. Since the pretreatment and the wash primer passed the required 3000 hours of salt spray testing by NASA, it was determined to conduct further tests. The idea was to see if the new coating system could meet the 3000 hours of salt spray testing by taking out a step, such as eliminating the use of the wash primer. Table three discusses the results of just testing the pretreatment with the topcoat. TABLE 2 ASTM B117 Salt Spray Data of Panels coated With Pretreatments and the Water Based Wash Primer Products Pretreatment 1 and water based wash primer Pretreatment 2 and water based wash primer (Figure 1) Pretreatment 2 and water based wash primer (Figure 1) Pretreatment 3 and water based wash primer (Figure 2) Pretreatment 4 and water based wash primer (Figure 2) Pretreatment 4 and water based wash primer (Figure 2) DFT 0.45 mils (11.25 microns) 0.53 mils (13.25 microns) 0.6 mils (17 microns) 0.6 mils (15 microns) 0.57 mils (14.25 microns) 0.6 mils (15 microns) ASTM D1654 Scribe Rating 6 2300 hours 3044 hours 3044 hours 9 3044 hours 3044 hours 3044 hours ASTM D714 Blister Rating 5

Pretreatment 2 with water-based wash primer Pretreatment 2 with water-based wash primer Pretreatment 3 with water- based wash primer FIGURE 1 - Salt Spray Panels Pretreatment 4 with water-based wash primer Pretreatment 4 with water-based wash primer FIGURE 2 - Salt Spray Panels 6

The results listed in Table 3 showed that having just a pretreatment and a topcoat would pass the 3,000 hours of ASTM B117 salt spray testing. The results that were found was that company B s and the developed pretreatments with companies C s urethane topcoat passed the 3,000 hours of salt spray testing. Also the two developed pretreatments with the developed moisture cure urethane passed the required ASTM B117 3000 hours of salt spray testing as well. Since the aerospace industry currently uses a three coat system, we still needed to test and find out if the complete coating system would pass the 3,000 hours of salt spray testing. Table 4 will show the results of testing the complete coating system. Table 3 and Figures 3- show the results of the salt spray testing. Figures 3, 4, 7 and had the most corrosion resistance during this testing. TABLE 3 ASTM B117 Salt Spray Data Salt Spray Data of Panels tested for 3000 hours with Pretreatments and Topcoats Products Pretreatment 1 with urethane topcoat (Figure 3) Pretreatment 2 with urethane topcoat (Figure 3) Pretreatment 3 with urethane topcoat (Figure 4) Pretreatment 4 with urethane topcoat (Figure 4) Pretreatment 1 with water-based acrylic emulsion topcoat (Figure 5) Pretreatment 2 with water-based acrylic emulsion topcoat (Figure 5) Pretreatment 3 & water based acrylic emulsion topcoat (Figure 6) Pretreatment 4 & water based acrylic emulsion topcoat (Figure 6) Pretreatment 1 & moisture cure urethane (Figure 7) Pretreatment 2 & moisture cure urethane (Figure 7) Pretreatment 3 & moisture cure urethane (Figure ) Pretreatment 4 & moisture cure urethane (Figure ) DFT 1.7 mils (42.5 microns) 1.7 mils (42.5 microns) 1.7 mils (42.5 microns) 1.6 mils (40 microns) 1.1 mils (27.5 microns) 1.1 mils (27.5 microns) 1.0 mils (25 microns) 1.1 mils (27.5 microns) 2.5 mils (62.5 microns) 2.5 mils (62.5 microns) 2.2 mils (55 microns) 2.6 mils (65 microns) ASTM D1654 Scribe Rating ASTM D714 Blister Rating 7 #2 M #2 M #2 F #2 F #6 M 9+ #6 F 9+ 9+ #4 F #4 M #2 M 7

Pretreatment 1 with urethane topcoat Pretreatment 2 with FIGURE 3 - Salt Spray Panels Pretreatment 3 with urethane topcoat Pretreatment 4 with urethane topcoat FIGURE 4 - Salt Spray Panels

Pretreatment 1 with water-based acrylic emulsion topcoat Pretreatment 2 with water-based acrylic emulsion topcoat FIGURE 5 - Salt Spray Panels Pretreatment 3 with water-based acrylic emulsion topcoat Pretreatment 4 with water-based acrylic emulsion topcoat FIGURE 6 - Salt Spray Panels 9

Pretreatment 1 with moisture-cure urethane Pretreatment 2 with moisture-cure urethane FIGURE 7 - Salt Spray Panels Pretreatment 3 with moisture-cure urethane Pretreatment 4 with moisture-cure urethane FIGURE - Salt Spray Panels

In Table 4 all three components (the pretreatments, the developed wash primer and the topcoats) of the coating system were applied to the panels and then tested in salt spray until failure The developed pretreatment 3, with the developed water based wash primer along with company C's urethane topcoat proved to be the best coating system in this test and passed the required 3000 hours of salt spray testing required by NASA. Figure 9 and Table 4 and shows the results of ASTM D3359 adhesion and ASTM B117 salt spray testing. TABLE 4 ASTM B117 SALT SPRAY AND ASTM D3359 ADHESION DATA OF PANELS COATED WITH PRETREATMENTS, WATER-BASED WASH PRIMER AND URETHANE TOPCOAT Pretreatments Application Procedure Pretreatment 1 pre-scuffed, dipped 5 minutes, no rinse Pretreatment 1 scuffed on 2x, rinsed Pretreatment 2 Pre-scuffed, dipped 5 minutes, no rinse Pretreatment 2 scuffed on 2x, rinsed Pretreatment 3 Pre-scuffed, dipped 5 minutes, no rinse Pretreatment 3 scuffed on 2x, rinsed (Figure 9) Pretreatment 4 Pre-scuffed, dipped 5 minutes, no rinse Pretreatment 4 scuffed on 2x, rinsed Pretreatment 3 Smooth, dipped 5 minutes, no rinse Pretreatment 4 Smooth, dipped 5 minutes, no rinse Pretreatment 1 Prescuffed panel Dipped 5 minutes and rinsed Pretreatment 2 Prescuffed panel Dipped 5 minutes and rinsed Pretreatment 1 Smooth, dip, no rinse Pretreatment 2 Smooth, dip, no rinse Total DFT 3.5 mils (7.5 microns) 4.0 mils (0 microns) 3.0 mils (75 microns) 3.0 mils (75 microns) 3.6 mils (90 microns) 3.0 mils (75 microns) 3.4 mils (5 microns) 3.1 mils (77.5 microns) 3.6 mils (90 microns) 3.0 mils (75 microns) 4.3 mils (7.5 microns) 2. mils (70 microns) 4.0 mils (0 microns) 3.0 mils (75 microns) ASTM D3359 Adhesion rating 5B 5B- 5B- ASTM B117 Scribe rating and Hours 336 hours 336 hours 336 hours 7 3000 hours 7 336 hours 7 + 11

Pretreatment 4 with water-based wash primer and urethane topcoat FIGURE 9 - Salt Spray Panels CONCLUSIONS 1. Extensive formulation work has resulted in a pretreatment and wash primer that provides the needed corrosion protection requirements for NASA and the US Air force. 2. Laboratory measurements show that the formulated pretreatment and wash primer system with the existing urethane topcoat conforms to performance criteria for coating systems for aircraft, according to MIL-PRF-5541F. 3. The benefits of this new coating system is that it provides the same amount of corrosion protection for aluminum substrates as the currently used chrome based pretreatment systems. 4. Another benefit of the coating system is that the second step in the process, the wash primer may be able to be eliminated and a pretreatment and topcoat may be all that is needed to meet the aerospace industries requirements. 12

REFERENCES 1. Non-Chrome Coating Systems for Aerospace, Phase I, Rothgeb, Matt, NASA TEERM Principal Center. 2. ASTM D3359-93: Standard Test Methods for Measuring Adhesion by Tape Test 3. ASTM B117-5: Standard Test Method of Salt Spray (Fog) Testing 4. ASTM D714: Standard Test Method for Evaluating Degree of Blistering of Paint 5. ASTM D1654-79a: Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments 13