3M TM Dyneon TM Fluoropolymers. Additive Manufacturing with fully fluorinated polymers. The technology at a glance.

Similar documents
3M TM Dyneon TM Fluoroelastomers. Reducing efforts to accelerate efficiency. Primer free bonding for innovative lightweight solutions.

3M Dyneon Fluoropolymers. Dyneon solutions. for the Chemical Processing Industry

3M Dynamar. Technical Information. Elastomer Additive FC Typical Properties (Data not for specification purposes) Introduction

3M TM Dyneon TM Fluoropolymers. Inventing. Tomorrow

3M TM Dyneon TM Fluoropolymers. Up-Cycling. Closing the loop.

3M TM Dyneon TM Fluoropolymers. Supporting the energy and e-mobility demands of the future. Alternative Energy: Storage and Conversion.

Versatile solutions for unique challenges.

Adding value to complex geometries.

Innovative. and Sustainable. Coating Solutions. 3M Dyneon PTFE Dispersions 3M Dyneon PFA, FEP and THV Fluoroplastic Dispersions 3M Dyneon PFA Powder

Inherent strength for outstanding capabilities.

Stress-Strain Behavior

3M Boron Nitride Cooling Fillers For thermally conductive and electrically insulating plastics and adhesives. The next level of thermal management.

D y n a m a r. The Effects of Processing Aids on the Hot-Tack Properties of LLDPE Blown Films. Polymer Processing Additives

th TMS Annual Meeting & Exhibition, REWAS 2016 Symposium, February 14 18, 2016, Nashville, Tennessee

Dyneon TM Polytetrafluoroethylene. Product. Comparison Guide. a 3M company

Dyneon Fluorothermoplastic Product Comparison Guide. More. Options. More. Answers

Styrolux Styrene-Butadiene Copolymer (SBC) Mechanical and Optical Properties

Material data sheet. EOS StainlessSteel PH1 for EOSINT M 270. Description, application

Kiwi Tooling. Suppliers of high performance tooling board. We source products from Europe and the USA, stocking sheets in 50, 75 & 100mm thicknesses.

Dynamar TM Polymer Processing Additives (PPA s)

PLASTIC PIPE TERMS & DEFINITIONS

Advanced Materials. A new step forward in composites mass production


SPECIALTIES LARGE FORMAT ADDITIVE MANUFACTURING

SPECIALTIES LARGE FORMAT ADDITIVE MANUFACTURING

Daikin Polyflon PTFE Products

Solef & Hylar PVDF. Polyvinylidene fluoride Typical properties

more freedom KetaSpire PEEK /

Moldmaking with 3D Prints

ISO 9001:2008 Company. FluoroFoam eptfe from Poly Fluoro Ltd.

Clear Perfluoroelastomer System PFE 300Z

Additive Manufacturing in the Nuclear Industry

INFLUENCE OF HOT MELT ADHESIVE CONTAMINANTS ON THE MECHANICAL PROPERTIES OF RECOMPOUNDED THERMOPLASTICS

3M Dyneon Fluoropolymers. Product Information. Dyneon solutions. for the Chemical Processing Industry

Material data sheet. EOS StainlessSteel PH1 for EOS M 290. Description, application

ITEM 435 ELASTOMERIC MATERIALS

FR Division

Effect of Hydrocarbon Solutions on Polymer Concrete

TECHNICAL SPECIFICATION

FR Division

MECHANICAL AND ADHESIVE PROPERTIES OF ARAMID/NYLON INSERT INJECTION MOLDING COMPOSITES

Translucent Perfluoroelastomer System PFE 301Z

Effect of fiber interval on tensile strength of fiber reinforced plastics in multi-fiber fragmentation test

(e.g. polymer concrete, mineral casting etc. combined with binders such as vinyl ester, phenolic resin etc.)

Additive Manufacturing Technology

UNIPRENE. Shaping a New World of Opportunities THERMOPLASTIC ELASTOMER DIVISION

NEOFLON TM PFA Coating Powder

Tecnoflon BR 9151 Base Resistant

Specialists in P.T.F.E

Case Report Glass-lined high pressure reactors for the process industry Potentials of 3D-Printing in plant and equipment

Computer Aided Engineering for Metal Die Casting Process

3 Major 3d printing process and technology introduction

THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM

Title: The Influence of Using Fluoropolymer Processing Additives to Improve the Extrusion Characteristics of LDPE/LLDPE Resin Blends

for improved compounding optimizing processing performance

Finite Element Analysis of Additively Manufactured Products

Tecnoflon PL 455 Handling and safety Basic characteristics of the raw polymer are as follows: Property Typical Value Unit Test Method

Material data sheet. EOS NickelAlloy HX. Description, application

Dryflex TPV. Thermoplastic Vulcanisate Compounds

Polymers for the Asphalt Industry

WHITE PAPER THE EFFECTS OF PROCESSING ON THERMOPLASTICS QUADRANT S SHAPE DATA APPROACH. Find us

Hot curing epoxy matrix system based on Araldite CY 179 MA / Hardener HY 917 / Accelerator DY 070

EOS Aluminium AlSi10Mg

Characterization of Physical Properties of Roadware Clear Repair Product

More. with 3M Glass Bubbles. High-strength additives for reduced part weight, improved dimensional stability, enhanced processing and much more.

- Grade Selection Guide -

Calcium Carbonate in Blown HDPE Film

PEarlene* SiPP MB05. Technical Data Sheet

PERMANENCE English SI Metric. Specific Gravity D 792 Molding Shrinkage 1/8 in (3.2 mm) section in/in

Dyneon Fluoroplastics. Product Comparison Guide

ADDITIVE MANUFACTURING IN PRINTED CIRCUIT BOARD ASSEMBLY PROCESSES

Parker Engineered Materials Group Elastomers 101

Dryflex CS. TPEs with optimised compression set

Additive Manufacturing. Build on our experience

YOUR PARTNER FOR. fluoropolymer products

EFFECT OF VOLUME FRACTION EPOXY-HOLLOW GLASS MICROSPHERES AND CURING TEMPERATURE VARIATION ON COMPRESSIVE PROPERTIES OF COMPOSITES

Additive Manufacturing Challenges Ahead

Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber

Large plastic pipe technology. Large diameter pressure pipe. up to DN/ID 5000 mm

Ultra High Molecular Weight Polyethylene (UHMWPE)

Scotch-Weld Metal Bonder Acrylic Adhesive DP8407NS Gray

Fundamentals of Manufacturing. EXAM 2 Dec 6, 2008 Name Open Book, (~75 min.) You are allowed a 5x7 card, a calculator and a pencil. Show all work.

Metal Laser Melting. Efficient, toolless manufacture even of

CHALLENGES AND OPPORTUNITIES FOR ADDITIVE MANUFACTURING IN THE AUTOMOTIVE INDUSTRY. Paul J. Wolcott Ph.D. Body SMT Innovation

C h e m R e s i st R O T A T IO NA L SINT ER L INING

APPLICATION Additive in polypropylene-compatible systems. TYPICAL PROPERTIES DESCRIPTION

Effect of section thickness and build orientation on tensile properties and material characteristics of Laser Sintered nylon-12 parts

IPC Qualification and Performance Specification for Organic Multichip Module (MCM-L) Mounting and Interconnecting Structures IPC-6015

Conception, Design and Development of a Test Bench for the Automotive Industry Intercoolers

Ultra High Molecular Weight Polyethylene (UHMWPE)

Material data sheet. EOS Aluminium AlSi10Mg. Description

A Study on Injection Moulding of Two Different Pottery Bodies

POLYPROPYLENE REINFORCED WITH RECYCLE POLYETHYLENE TEREPHTHALATE AS AN ALTERNATIVE MATERIAL FOR NEW PLASTIC PRODUCT

High Modulus Carbon Fibres in Super-Structural Compounds

MATERIAL SPECIFICATION FOR BEARINGS - ELASTOMERIC PLAIN AND STEEL LAMINATED

Comparison of Material Properties and Microstructure of Specimens Built Using the 3D Systems Vanguard HS and Vanguard HiQ+HS SLS Systems

High Melt Strength Polypropylene

Araldite CY 179* / Aradur 917 / Accelerator DY 070

Isostatic Graphite Overview

Fine cut Granular Modified PTFE

Transcription:

3M TM Dyneon TM Fluoropolymers Additive Manufacturing with fully fluorinated polymers. The technology at a glance.

Introduction 03 3M pioneers 3D printing with PTFE. Additive Manufacturing is particularly exciting for PTFE (Polytetrafluoroethylene) applications and is aimed at the Automotive, Chemical Processing, Medical equipment as well as Energy and Aerospace markets. The new development, which complements fluoropolymer processing, allows 3D printing as an additional and differentiated way of processing PTFE. 3M has selected stereolithography, also known as Vat Polymerization, as the Additive Manufacturing process method. Stereolithography involves the curing of a photosensitive material by selectively delivering energy to specific regions. The printed parts show many properties similar to those produced by traditional processing techniques. Some properties may be even superior.

04 Benefits Benefits of 3D printing New design capabilities New geometric flexibility can lead to improved designs and potential weight reduction Adds function to design Faster response to customer inquiries Enables on demand supply of customized products Enhanced product development cycle Accelerates and improves design iteration Eliminates the need for prototype tooling Reduces unit cost and lead time of small lot sizes Cost savings opportunities Eliminates initial tooling and tooling maintenance costs Reduces assembly steps via printing integrated assemblies Generates less waste Reduces inventories by printing spare parts on demand

Density 05 Density of 3D printed PTFE parts Stereolithography is the selected Additive Manufac tu ring process method for PTFE and other fully fluorinated polymers. Density may be regarded as one of the most significant PTFE properties. Density data allows for conclusions about processing conditions, like cooling rate after sintering, and about certain properties, like flex life or permeability, which all affect the quality of a PTFE part. 3M printed PTFE parts up to approximately 1.4 mm thickness. The samples show density values of 2.12 to 2.17g/cm³ which is within the typical range of conven tionally processed material. Density range of printed PTFE parts Density range of PTFE parts produced by conventional technologies 2.12 2.19 Density in g/cm 3* * Density measurements were performed by teh displacement method referring to ASTM D792-13 Visualization under the microscope The PTFE parts printed by 3M were analyzed by SEM. No voids are visible in either cross sectional SEM picture, printed or machined. Cross section of a 3D printed PTFE part (freeze fractured) Cross section of a machined PTFE part (freeze fractured)

06 Surface Properties Surface finish of printed PTFE parts Additive Manufacturing (AM) is a process that creates three-dimensional objects directly from digital information, avoiding the use of tooling. Typical tool marks generated during machining are replaced by layered steps using this technology. As a result, parts produced by certain AM techniques can show smooth surfaces. This difference is demonstrated by a microscopical comparison of printed and machined PTFE parts with dome-shaped features. Microscopy of the 2mm dome-shape example below illustrates a superior surface finish produced with stereolithography, using tailor-made PTFE formulations. It further shows minimal layer step formations that can be noticeable in many additive manufactured articles. Certain applications in the food and pharmaceutical as well as semiconductor industries may benefit from this technology. Those requiring low roughness and low surface adhesion are of specific interest. This is because cross-contamination and microbial growth may be minimized and subsequent cleaning processes may be streamlined. This may translate into increased efficiency and service life of the PTFE part. Visualization under the microscope Top view of a printed PTFE part* with dome-shaped features. *(as produced in 3M labs) Top view of a machined PTFE part* with dome-shaped features. *(as produced by an external machine shop)

Surface Properties 07 Surface finish of printed PTFE parts These parts printed by stereolithography not only provide a good surface finish, but also have high dimensional resolution. Therefore, fine PTFE structures of less than 1 mm in di men sion can be achieved. Furthermore, the design flexibility offered by AM techniques can be maximized, particularly benefitting miniaturized technical parts, light weight structures and applications requiring parts with a high level of detail. Top view of a small printed PTFE cogwheel*. *(as produced in 3M labs)

08 Mechanical Properties Mechanical Properties In order to meet the demands of an application, the design of the part must consider both material and processing to ensure reliability. Selection of material and processing method involves comparison of many parameters including mechanical strength. Two characteristics related to the material s mechanical strength are tensile strength and elongation at break, which are often part of the initial screening for specific applications. Average tensile and elongation values of 3D printed PTFE structures are shown in the figure below. The 3D printed part simulated a sintered die cut PTFE specimen. The part was then tested in build plane (parallel to printed layers). 23 MPa 240 % Average tensile strength at break Average elongation at break Data is not for specification. Tensile specimen based on ASTM D1708 (thickness: 1.5 mm) tested at 12.7 mm per minute extension at room temperature. Tensile testing. Measurement based on a dog-bone, punched from horizontal printed sheet (ASTM D1708) Tensile and elongation properties are influenced by the polymer, process conditions, and to the degree to which the part is optimally formed. Due to its unique nature, PTFE is not melt processible, which is why PTFE is not injection molded or extruded. A critical step to achieve mechanical integrity in the finished part is fusion of the PTFE particles. While not intended to exactly replicate existing PTFE processing technology, 3D printed part test results show that this process can be a viable option for a wide range of applications. The next step is to print some parts to benchmark and evaluate potential uses. Processing and performance from this benchmarking will help optimize the process and performance of this emerging technology.

Mechanical Properties 09 Mechanical Properties In order to meet the demands of an application, both material and processing methods must be taken into consideration when designing a part. Selection of material and processing methods involves comparison of many parameters including yield strength. The yield strength is significant as once the part is stressed beyond its yield point it becomes permanently deformed. Many plastic parts need to operate below their yield point to maintain elasticity and to retain their original shape. The yield point can be approximated by defining an offset yield strength, which is the stress at which a specific plastic deformation occurs. For PTFE, the stress at which 10% permanent deformation occurs (also called the offset ) is often used, as no clear yield point appears for PTFE over the course of the stress-strain curve. Tensile testing. Measurement based on a dog-bone, punched from horizontal printed sheet (ASTM D1708)

10 Mechanical Properties Mechanical Properties In the figure below, the average offset yield strength of a sintered 3D printed PTFE structure simulating a test specimen is compared to a sintered die cut PTFE test specimen, which is manufactured using traditional PTFE processing. The 3D printed part was tested in the build plane (parallel to printed layers). Offset yield strength of 3D printed structures: Yield strength range of printed PTFE parts at 10 % offset 8 to 12 MPa Yield strength range of skived PTFE film at 10 % offset 5 10 10 to 12 MPa Offset yield strength in MPa Data is not for specification. Tensile specimen based on ASTM D1708 (thickness: 1.5 mm) tested at 12.7 mm per minute extension at room temperature. While not intended to exactly replicate existing PTFE processing technology, comparing this 3D printed specimen against the traditionally produced specimen demonstrates similar performance in the direction parallel to the printed layers. This further supports that this process can be a viable option for a wide range of applications. The next step is to print some parts to benchmark and evaluate potential uses. This benchmarking will help optimize the process and performance of this emerging technology.

Technical Information and Test Data Technical information, test data, and advice provided by Dyneon personnel are based on information and tests we believe are reliable and are intended for persons with knowledge and technical skills sufficient to analyse test types and conditions, and to handle and use raw polymers and related compounding ingredients. No license under any Dyneon or third party intellectual rights is granted or implied by virtue of this information. General recommendations on health and safety in processing, on work hygiene and on measures to be taken in the event of accident are detailed in our material safety data sheets. You will find further notes on the safe handling of fluoropoly mers in the brochure Guide for the safe handling of Fluoropolymers Resins by PlasticsEurope, Box 3, B-1160 Brussels, Tel. +32 (2) 676 17 32. Important Notice All Information which is presented here is based on our current best knowledge and is intended to present general notes and data for 3D printed PTFE articles. All data relate to the current formulation and current processing technique. The formulation and process to print 3D printed PTFE articles is under development and is not commercial yet. Thus, product properties, features and processing technology are not standardized yet, may change during development and cannot be warranted. Please note that 3M does not make a statement about the commercial availability of this product. The present edition replaces all previous versions. Please make sure and inquire if in doubt whether you have the latest edition. Where to go for more information? Dyneon Customer Service Europe Phone: 00 800 395 366 27 Fax: 00 800 396 366 39 Italy Phone: 800 791 018 Fax: 800 781 019 3M Advanced Materials Division 6744 33rd Street North Oakdale, MN 55128 USA Phone: +1 800 810 8499 Fax: +1 800 635 8051 Technical Service Fluoropolymers Dyneon GmbH Industrieparkstr. 1 84508 Burgkirchen Germany Phone: +49 (0) 8679 7 4709 Fax: +49 (0) 8679 7 5037 dyneon.europe@mmm.com www.dyneon.eu www.dyneon.eu/3d-printing Dyneon GmbH 3M Advanced Materials Division Carl-Schurz-Straße 1 41453 Neuss Phone: +49 (0) 2131 14 2265 Fax: +49 (0) 2131 14 3857 www.dyneon.eu 3M and Dyneon are trademarks of 3M Company. 10/2017 All rights reserved. Dyneon 2017 3D201710EN