Consider the Strip-Tillage Alternative

Similar documents
Strip-tillage Successes, watch-outs based on soil type, soil drainage, and climate

Resources Conservation Practices Tillage, Manure Management and Water Quality

Tillage Management and Soil Organic Matter

IS FALL TILLAGE FOLLOWING SOYBEAN HARVEST NECESSARY? 1/

Unit E: Basic Principles of Soil Science. Lesson 8: Employing Conservation Tillage Practices

Animal, Plant & Soil Science. D2-4 Conservation Tillage Practices

Estimated Costs of Crop Production in Iowa 2003

Estimated Costs of Crop Production in Iowa 2001

Estimated Costs of Crop Production in Iowa 2006

Estimated Costs of Crop Production in Iowa 2002

Estimated Costs of Crop. Production in Iowa File A1-20 The estimated costs of corn, corn silage, soybeans, Ag Decision Maker

Estimated Costs of Crop. Production in Iowa File A1-20 The estimated costs of corn, corn silage, soybeans, Ag Decision Maker

The estimated costs of corn, corn silage, soybeans,

The estimated costs of corn, corn silage, soybeans,

Tillage Equipment. Pocket Identification Guide. Tillage Systems- Primary Tillage- Secondary Tillage- Fertilizer/Manure- Combination Tools- Other-

November 2008 Issue # Using Strip-tillage as an Option for Row Crop Production in Wisconsin. Richard Wolkowski, Tom Cox, and Jim Leverich 1/

The estimated costs of corn, corn silage, soybeans,

The estimated costs of corn, corn silage,

CONSERVATION TILLAGE CORN AND FORAGE CROPS. Jeff Mitchell and Carol Frate 1 ABSTRACT INTRODUCTION

Vertical Tillage: Does it Help the Transition to No-till?

2016 Iowa Farm. Custom Rate Survey File A3-10 Many Iowa farmers hire custom machine work. Ag Decision Maker. Average Charge. Median Charge Range

Conservation Practices for Landlords There is growing concern over the possible

Agronomic and soil quality trends after five years of different tillage and crop rotations across Iowa

RESIDUE MANAGEMENT CHOICES

LAND PREPARATION. For most crop plants, such a seedbed is one in which the surface soil is loose and free of clods (Fig. 6-18).

Direct Seeding Systems: Terms, Definitions and Explanations

Produced by Virginia Cooperative Extension, Virginia Tech, 2018

SOLUTIONS. Developing Whole-Farm Nutrient Plans for Feedlots. For Open Feedlot Operators

Tillage and Seedbed Preparation

Getting the Most out of Your Nitrogen Fertilization in Corn Brent Bean 1 and Mark McFarland 2

November 2003 Issue # TILLAGE MANAGEMENT FOR MANURED CROPLAND

Many Iowa farmers hire some custom machine work

Integrating Technologies to Enhance the Simplicity of Strip Tillage Systems

Tillage Practices and Sugar Beet Yields 1

LECTURE - 5 TILLAGE - OBJECTIVES AND TYPES. FURROW TERMINOLOGY AND METHODS OF PLOUGHING. FIELD CAPACITY AND FIELD EFFICIENCY TILLAGE Mechanical

Calibration and uniformity of solid manure spreaders

Optimizing Strip-Till and No-Till Systems for Corn in the Biofuel Era

Optimizing Strip-Till and No-Till Systems for Corn in the Biofuel Era

Making rational adjustments to phosphorus, potassium, and lime application rates when crop prices are low and producers want to cut inputs

Cornell Soil Health Train the Trainer Workshop. Cornell University, August 5-8, 2015

Conservation Tillage Tomato Production at Sano Farm Firebaugh, CA Alan Sano and Jesse Sanchez December 27, 2009

BEST MANAGEMENT PRACTICES. Sandeep Kumar and Kurtis Reitsma

Conservation Seeding Practices. John Nowatzki Extension Ag Machine Systems Specialist

AGRONOMY 375 Exam II Key November 2, 2018

Reduced Tillage Demonstration Projects

Cotton Cultural Practices and Fertility Management 1

PRECISION TILLAGE System

WET WEATHER WOES. Corn

Conservation Practices. Conservation Choices. These five icons will show the benefits each practice offers... 6/4/2014

Till Planting On Ridges

The estimated costs of corn, corn silage,

Many Iowa farmers hire some custom machine

Ohio State University Extension Agriculture & Natural Resources

This report summarizes estimated costs of improving

With rising energy costs, input costs and

Ohio Farm Custom Rates 2014 Barry Ward, Leader, Production Business Management Department of Agricultural, Environmental and Development Economics

CORN BEST MANAGEMENT PRACTICES APPENDIX A. Corn Planting Guide

13. COTTON PRODUCTION WITH CONSERVATION TILLAGE. Cotton and Soil Conservation

High tunnels, also referred to as hoop houses,

The Amity Single Disc Drill is the best in the industry for productivity, accuracy, simplicity, and versatility.

The estimated costs of corn, corn silage,

Guidelines for Safe Rates of Fertilizer Placed with the Seed

Natural Resources Conservation Service

T H E L E A D I N G E D G E

Agronomy 375 Key - Exam I February 15, 2013

T H E L E A D I N G E D G E

Introduction... 2 Asparagus... 4 Basil... 5 Beans, Speciality Green... 6 Carrots... 7 Eggplant... 8 Garlic... 9 Greens, Salad Peas, Snow...

Starter Fertilizer for Corn in Vermont

href=" 1d3227ea7bfd4d1085ec1738dce6dd611d">Pr esentation<

6000 STRIP-TILL EQUIPMENT. The Complete Strip-Till Solution. The Right EQUIPMENT, The Right TIME

SoilFacts. Soil testing is the only way to determine the. Starter Phosphorus Fertilizer and Additives in NC Soils: Use, Placement, and Plant Response

CONSERVATION TILLAGE / SEEDING EQUIPMENT

Strip Cat. Strip Tillage Brochure

Drilled Soybeans in Missouri

Strip Till Systems for Burley Tobacco in Tennessee

Seeding Soybeans in Narrow Rows E.S. Oplinger

Ohio Farm Custom Rates 2014 Barry Ward, Leader, Production Business Management Department of Agricultural, Environmental and Development Economics

FIELD CROP MANAGEMENT How to address concerns identified in your Environmental Farm Plan Worksheet #19

MSU Extension Publication Archive. Scroll down to view the publication.

THE SCIENCE OF SEEDING

FACTSheet. Custom Work Charges in Maryland 2015

Custom Rates and Machine Rental Rates Used on Illinois Farms, 1968

13. COTTON PRODUCTION WITH CONSERVATION TILLAGE

~ ERNST. lmj SEEDS PLANTING GUIDE. I I (800)

Tillage. Conservation. Seeding Equipment. Conservation tillage seeder. Introduction AE-1351

Tillage. Farming today requires producers to employ best. Conservation/Reduced. Best Management Practices for

APPENDIX D. PARAMETER VALUES FOR MAJOR AGRICULTURAL CROPS AND TILLAGE OPERATIONS

Chris Thoreau March 3, 2012

WISCONSIN CORN AND SOYBEAN RESPONSES TO FERTILIZER PLACEMENT IN CONSERVATION TILLAGE SYSTEMS 1/ Richard P. Wolkowski 2/

Soil Compaction. By: Kelly Patches Soils 401 April 8, 2009

LESSION - 17 TRACTOR AND IMPLEMENT SELECTION FOR DIFFERENT AGRICULTURAL OPERATIONS

Conservation Tillage for Corn in Alabama

3.3 Soil Cultivation and Tillage

Agriculture and Society: Part II. PA E & E Standards 4.4

IN-LINE RIPPER ECOLO-TIL 2500 IN-LINE RIPPER

FERTILITY PLACEMENT FOR CONSERVATION TILLAGE SYSTEMS DICK WOLKOWSKI DEPARTMENT OF SOIL SCIENCE UW-MADISON

Conservation Tillage in Vegetable Production

Degradation of the resource Fertility loss Organic matter Tilth degradation. Water quality Sediment Nutrients

Successful Opening, Closing The Seed Slot With No-Till Planters And Drills

G Estimating Percent Residue Cover Using the Calculation Method

Transcription:

Consider the Strip-Tillage Alternative Strip-tillage, which creates a soil environment that enhances seed germination, is a new alternative to no-till in areas where poorly drained soils are dominant. Where soil moisture conditions Conservation Quiz 1. How much of the field is tilled with strip-tillage? 2. What is the minimum level of soybean residue cover recommended prior to strip-tilling? 3. What types of equipment can be used for strip-tillage? (Answers located on page 3.) are suitable, strip-tillage creates narrow-width tilled strips, traditionally in the fall, to increase early spring soil evaporation and soil temperature in the top 2 inches. This is particularly effective in poorly drained wet soils, where slightly raised soil strips are created by normally available farm equipment such as anhydrous knives, disks, coulters, tool bars or manure injection equipment. Both fertilizer application and strip-tillage can be performed in one operation. The basic requirements for strip-tillage to be effective are accuracy in matching tillage equipment on the tool bar with the planter and placement of seeds in the tilled zones.

Consider the Strip-Tillage Alternative Concept of Strip-tillage Traditionally, in the fall, anhydrous ammonia injection knives, fluted coulters, or other tool attachments are used to create residue-free strips and tilled zones that are approximately 6 inches wide and 4 to 8 inches deep. In the spring, seeds are planted directly in the same strips. Fertilizers may be incorporated while tilling these strips. This concept is similar to another system, zone-till, with one exception. In zone-till, multiple fluted coulters create a zone that is approximately 1 to 2 inches deep and 8 inches wide and free of residue. These coulters operate at shallow depths to avoid creating void pockets below the seed. Another variation involves making a deep vertical slit with a thin profi le knife centered in the middle of an 8-inch tilled zone. Zone-till can be achieved by using a planter equipped with fluted coulters. Coulters may be operated 2 or 3 inches to 6 inches deep if the soil is dry. Farmers in southeastern states with particularly compacted soils have used in-row sub-soiling with planter-mounted shanks in each row to create a tilled zone 12 inches deep. Seeds are then planted in the disturbed zone directly behind the shanks. This system is different from the above two systems in that it is often used with the full width conventional tillage system. Studies have shown corn is more susceptible to delayed germination or disease in cool soil temperatures when soil is poorly drained and there is high no-till residue cover. Other studies show that by removing residue over the row or disturbing a narrow zone (6 to 8 inches wide) the seedbed warms up more rapidly. This can help corn in the early part of the growing season; in some cases corn grain yield improved over no-till simply due to improved soil temperature. Recently it was found that removing residue or strip-tilling to create a residuefree zone improves corn germination due to increased soil temperature at the top 2 inches. Many producers are currently using planter attachments that move no-till residue away from the row during planting. This assists in more rapid warming of the soil and combats slow germination caused by cold and residue-covered soils. Topography is important to consider before using strip-tillage. In areas where the soil slope is steep or on highly erodible land (HEL), strip-tillage may not be the best choice. The disturbance of soil and removal of crop residue can create a significant water erosion problem in the row on steep slopes. It is recommended that after soybeans, at least 70 percent residue should be on the surface before strip-tilling. Striptillage is recommended on relatively flat land with poorly drained soils, where soil temperatures tend to be cold. Equipment Every tillage practice requires specific equipment to achieve the intended results. For most farmers, strip-tillage equipment is readily available with slight modifications. The main components can include but are not limited to anhydrous ammonia applicator knives or other subsurface fertilizer injection systems, rototillers, in-row chisels, row cleaners, double-discs, and planters equipped with fluted coulters. A few adjustments may be needed. For example, an adjustment may be needed to ensure a good match between the striptillage devices and the planter. Another consideration is to ensure consistent tilledzone depth and width (for example, 8 to 9 inches deep and 6 to 8 inches wide). The most common implement for strip-tillage systems consists of a heavy tool bar to which row markers, coulters, knives, and covering disks are attached (Fig. 1). With anhydrous applicators or other fertilizer injection knives, consider moving the knife positions out of the wheel tracks to avoid planting in compacted soil. This is especially advisable if strip-tillage is conducted in the early spring. The knives, coulters, and covering disks must be located on the tool bar to exactly match the planter size (e.g., 8-row, 30-inches, or 12-row, 30-inches). The front coulters must be large enough to help cut into corn residue without getting plugged. The knives, which can be used for anhydrous application, must be located exactly behind the coulters, where they can open an area 6 to 8 inches wide and 8 to 9 inches deep. Strip-tillage also can include fertilizer application attachments. The integration of tillage and nutrient or fertilizer application equipment makes strip-tillage more appealing and challenging at the same time. A typical strip-tillage set consists of a dry fertilizer cart and an anhydrous ammonia tank hitched to the tillage toolbar (Fig. 2). Adequate horsepower for the 2

Fig. 1: Coulter, fertilizer injection knives, and covering disks on striptiller. Fig. 2: Complete fall strip-tillage equipment system. Fig. 3: Fall-tilled strips before planting. Fig. 4: Strip-tilled field after planting corn. *Adapted and modified from Conservation Tillage Systems and Management, MWPS-45, Page 195, 2nd Ed., 2000. depth of tillage and the load resistance created by fertilizer equipment is critical. Depending on tillage depth and speed, 20 to 30 horsepower per knife may be required to ensure satisfactory performance. Inadequate horsepower will compromise the efficiency and performance of the system. Timing The timing of strip-tillage is critical to achieve the system s objectives. Traditionally, strip-tillage is conducted in the fall to maximize the benefits of creating the tilled zone before spring planting. Soils are generally drier after harvest than in the spring. Soil conditions are more suitable for striptillage when soil moisture is at or below field capacity, minimizing soil compaction. Fall strip-tillage dries and warms the soil ahead of spring planting, preparing a more uniform seedbed and improving seed-tosoil contact. Strip-tillage in the fall has its limitations, as well. This is particularly true now since fall application of nitrogen is being discouraged in many areas. If soils are wet under the heavy residue, tillage tools used to prepare a strip for seed placement can compact soil and forms clods. Wet soils in the spring can cling to the depth gauge wheels on the planter, inhibiting uniform seed depth. Labor needed to complete fall tillage may directly compete with labor required for harvest, so consider the number of hours available for fall tillage after harvest. Another challenge is the precision of planting in the tilled strips (Figs. 3 and 4). Strip-Tillage and Soil Environment In general, tillage significantly affects soil environment by altering the soil s physical properties such as soil structure, compaction, aggregate stability, hydraulic properties, and thermal properties. The degree to which the tillage affects or improves these properties depends on the intensity of the tillage system. The changes in soil properties will cause changes in the soil environment where crop production can be used as an indicator. Allowing soil to dry in the tilled zone before planting helps the planter s soil-engaging components (seed opener, depth wheels, closing wheels) establish proper seed depth without excessively compacting soil. Strip-tillage can have a significant impact on soil temperature, particularly in poorly drained soils and when soil moisture conditions remain relatively near field capacity. The improvement in soil temperature can be limited by excessive wet weather conditions. Studies show that strip-tillage improved soil temperature in the top 2 inches by more than 2 F over no-till in central Iowa. Cool temperatures, soil-borne diseases such as Pythium damping-off, Fusarium root rot, Phomopsis seed decay, brown stem rot, and sudden death syndrome can cause problems for Iowa soybeans. Fungal pathogens of these diseases infect soybean seeds or seedlings when soil temperatures are low and moisture is high. These dis- Quiz Answers: 1. 20-25% of soil surface is tilled. 2. At least 70% residue cover should be on the soil surface. 3. Anhydrous ammonia injection knives, rototillers, in-row chisels, row cleaners, double-discs, fluted coulters. 3

Table. 1: Typical field operations advantages and disadvantages for selected tillage systems.* System Typical Field Major Advantages Major Disadvantages Operations Moldboard Fall or spring plow; Suited for poorly Major soil erosion. plow one or two spring drained soils. Excell- High soil moisture diskings or field ent incorporation. loss. Medium to cultivations; plant; Well-tilled seedbed. high labor and fuel cultivate. requirements. Chisel plow Fall chisel; one or Less erosion than Little erosion contwo spring diskings from cleanly tilled trol. High soil moisor field cultivations; systems and less wind ture loss. Medium to plant; cultivate. erosion than fall plow high labor and fuel or fall disk because requirements. of rough surface. Well adapted to poorly drained soils. Good to excellent incorporation. Disk Fall or spring disk; Less erosion than from Light eroision conspring disk and/or cleanly tilled systems. trol. High soil moisfield cultivate; plant; Well adapted for lighter ture loss. cultivate. to medium textured, well-drained soils. Good to excellent incorporation. Ridge-till Chop stalks; Excellent erosion con- No incorporation. plant on ridges; trol if on contour. Narrow row soycultivate for weed Well adapted to beans and small control and to re- wide range of soils. grains not well suited. build ridges. Ridges warm up No forage crops. and dry out quickly. Machinery modifi- Low fuel and cations required. labor costs. Strip-till Fall strip-till; spray: Clears residue from row Cost of preplant plant row crops on area to allow preplant operation. Strips cleared strips; post- soil warming and dry- may dry too much, emergent spray as ing. Injection of nut- crust, or erode withneeded. rients directly into row out residue. Potential areas. Well suited for for nitrogen fertilizer poorly drained soils. losses. No-till Spray; plant into Maximum erosion No incorporation. undisturbed surface; control. Soil moisture Increased depenpost-emergent spray conservation. Minimum dence on herbias needed. fuel and labor costs. cides. Some limitations with poorly drained soils, especially with heavy residue. Slow soil warming. *Adapted and modified from Conservation Tillage Systems and Management, MWPS-45, Page 190, 2nd Ed., 2000. eases are especially problematic in earlyplanted soybean fields. Recent increases in soybean disease problems in Iowa are in part associated with the increased use of early planting. Strip-tillage warms soils in the seed zone or bed quickly and promotes fast germination and growth of seedlings, reducing disease risk. Comparison of Strip-Tillage to Other Tillage Systems Strip-tillage creates soil conditions similar to ridge tillage because it clears soils in the tilled row prior to planting. However, the strip-tillage row zone is flat to slightly elevated, eliminating the problems that can occur with ridge-till when machinery crosses ridges as well as the need to rebuild ridges with row-crop cultivation. The performance of strip-tillage as compared to conventional and conservation tillage systems still needs evaluation, because it is relatively new. However, some research shows that strip-tillage on sandy loam soils provided yields similar to fall moldboard plowing and higher than no-till. On silt loam and clay loam soils, strip-tillage yield was intermediate to fall moldboard plowing and no-till systems. The research also showed that the yield of corn following crops with high residue such as corn, small grains, or hay increased by as much as 10 percent when a 6-inch band of corn residue was cleared from the row s area using planter-mounted furrowers. The choice of fall strip-tillage is better suited to corn after small grains, alfalfa, red clover, or corn planted into cold, wet soils. The advantage of strip-tillage over other tillage systems is summarized in Table 1. 4

Table. 2: Typical field operations for various tillage systems.* Tillage System Field Operation No. of Field Trips Strip-tillage Strip preparation with application 2 of fertilizer; plant No tillage Apply N; plant; apply P and K 2-3 with the planter; (maybe fall broadcast P and K) Ridge tillage Apply N; plant; cultivate (apply 3-5 liquid N); cultivate to prepare ridge; (maybe fall broadcast P and K) One-pass tillage Knife-in N; broadcast P and K; 4 field cultivate; plant Conventional tillage Broadcast P and K; chisel plow; 5 knife in N; field cultivate; plant *Adapted and modified from Conservation Tillage Systems and Management, MWPS-45, Page 198, 2nd Ed., 2000. Fig. 5: Strip-tilling with an anhydrous ammonia knife and covering discs. Strip-tillage after row crops is more adaptable if the row spacing is similar to the previous row crop spacing. In addition, using similar row spacing will help to control wheel traffic within the inter-rows. (See Iowa State University Extension Publication PM-1901b, Understanding and Managing Soil Compaction. ) Economic Considerations The economic value of strip-tillage is very much limited to the input associated with tillage operations. Strip-tillage has few field operations (till/fertilizer application, planting, weed control, harvest) similar to no-till (Table 2). There may be a significant difference in power and fuel required per acre, however, depending on the depth of tillage and fertilizer incorporation. Tractor power and energy requirements to pull subsurface injection knives are greater than for shallow stirring of soil with a no-till planter following broadcast fertilizer application. The yield under strip-tillage has a very limited advantage over no-till, depending on the weather conditions and soil moisture status. The improvement in yield under strip-tillage is due to the combined effect of both nutrient placement and soil conditions of the tilled zone. Many studies showed a small increase in corn yield over no-till. If strip-tillage is conducted in the fall, conflicting labor requirements between harvest and fall tillage can make labor scarce and thus more costly and valuable. In addition, the precision of locating rows in the same fall-tilled strips during the following spring planting is very important to achieve the benefit of strip-tillage. Potential Benefits/Concerns Strip-tillage is best suited to poorly drained, wet, cold soils where seed germination is delayed. This tillage system helps dry and warm soils in the spring, easing planter operation and promoting germination. Enhanced efficiency is another potential benefit when manure injection is incorporated into the tillage operation, reducing passes over the field. Because most farmers already have the strip tillage equipment accessible (such as in-row chisels and ammonia applicator knives), specialized equipment may not need to be purchased. These benefits must be weighed against a variety of potential concerns. For instance, strip-tillage can induce erosion, particularly in highly erodible soils. Strip-tillage also can contribute to soil compaction between tilled zones. Nitrogen fertilizer application in the spring can be problematic due to the potential effect on seed germination. In the fall, farmers must consider whether there is enough labor to manage both the harvest and strip tillage. Tractor horsepower also must be considered when the tillage depth and load resistance are increased. Strip-tillage, when carefully considered and evaluated, can be a viable alternative to farmers in particular circumstances. 5

Consider the Strip-Tillage Alternative Resources Conservation Practices: Consider the Strip-Tillage Alternative is published by Iowa State University Extension, with funding support from the USDA Natural Resources Conservation Service through Cooperative Agreement No. 74-6114-0-2. Prepared by Mahdi M. Al-Kaisi, Assistant Professor, Department of Agronomy, and Mark Hanna, Extension Agricultural Engineer, Department of Agricultural and Biosystems Engineering. Edited by Tracy S. Petersen. Design by Jill Koch, CedarLeaf Design. Visit the ISU Deparment of Agronomy Web site at http://www.agron.iastate.edu/ and the ISU Deparment of Agricultural and Biosystems Engineering Web site at http://www.ae.iastate.edu/.... and justice for all The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Many materials can be made available in alternative formats for ADA clients. To file a complaint of discrimination, write USDA, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call 202-720-5964. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture. Jack M. Payne, director, Cooperative Extension Service, Iowa State University of Science and Technology, Ames, Iowa. File: Agronomy 8-1 PM 1901c Reviewed May 2008