OPTIMIZATION OF BIOLOGICAL TREATMENT OF DAIRY EFFLUENT USING RESPONSE SURFACE METHODOLOGY

Similar documents
Module 11 : Water Quality And Estimation Of Organic Content. Lecture 14 : Water Quality And Estimation Of Organic Content

Problems and profit with waste. Standard Grade Biology Biotechnology

FORMULATION OF BACTERIAL CONSORTIA AND STUDYING THEIR SYNERGISTIC EFFECT ON TREATMENT OF EFFLUENT

Process optimization by Placket-Burman Designs for the Production of Protease Enzyme from Bacillus Subtilis under Submerged Fermentation

FRACKING CHEMICAL. Luke Deasy Central Catholic High School Grade 9 1st Year in PJAS. Effect on Microbial Life. Tuesday, January 29, 13

CE 370. Wastewater Characteristics. Quality. Wastewater Quality. The degree of treatment depends on: Impurities come from:

Cell Growth and DNA Extraction- Technion igem HS

Document No. FTTS-FA-001. Specified Requirements of Antibacterial Textiles for General Use

Assessment of Water Quality of Three Different Aquatic Environments Over Three Seasons

Module 11 : Water Quality And Estimation Of Organic Content. Lecture 13 : Water Quality And Estimation Of Organic Content

Analysis of Glycerin Waste in A-Area Sanitary Treatment Facility Material(U)

PHYSICO-CHEMICAL ANALYSIS OF EFFLUENT FROM DAIRY INDUSTRY

3 8 COLIFORM BACTERIA AS INDICATOR ORGANISMS Laboratory tests for disease-producing bacteria, viruses, and protozoa are difficult to perform

Requirements for Growth

Characterization and Design of Sewage Treatment Plant in Bidar City

Lecture 7 Water Quality Monitoring: Estimation of fecal indicator bacteria

Industrial Waste Water Treatment. Unit 5

INS 099 Data Analysis Summer 2007

Test Method of Specified Requirements of Antibacterial Textiles for Medical Use FTTS-FA-002

UNIT - 2 STREAM QUALITY AND ITS SELF PURIFICATION PROCESS

Effects of Splenda on E.coli Survivorship. Noah Stickel Central Catholic High School Grade 9 First Year of PJAS

Effects of Environmental Factors on Nitrification Occurrence in Model Drinking Water Distribution Systems. Ng M.Y.

Role of Fungi Species in Colour Removal from Textile Industry Wastewater

IJMIE Volume 2, Issue 4 ISSN:

FARM MICROBIOLOGY 2008 PART 7: WATER & WASTEWATER MICROBIOLOGY. B. The water supply and the hydrologic cycle.

Lab Activity #14 - Bacteriological Examination Of Water and Milk (Adapted from Lab manual by Dr. Diehl)

Pr oject Summar y. Efficacy of cetylpyridinium chloride to reduce E. coli O157:H7 in commercial beef processing plants

BIODEGRADATION OF LAUNDRY WASTEWATER

USING NUMERICAL SIMULATION SOFTWARE FOR IMPROVING WASTEWATER TREATMENT EFFICIENCY

MICROBIOLOGICAL EXAMINATION OF NON-STERILE PRODUCTS: TEST FOR SPECIFIED MICRO-ORGANISMS Test for specified micro-organisms

TREATMENT OF DAIRY WASTE WATER BY MORINGA OLEIFERA AS NATURAL COAGULANT

QUESTIONNAIRE FOR GENERAL WTP REQUESTED DATA FOR THE WATER TREATMENT PLANT (WTP) - Application : groundwater (well pit); urban wastewater;

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB4789.

Client: Gloves In A Bottle Inc 3720 Park Place Montrose California CA UK Distributor: Abbliss Ltd 41, NN11 0TF

Module 1: Introduction to Wastewater Treatment Answer Key

Kit Information 4 Introduction. 4 Kit Contents, Storage, and Testing Conditions. 4 Principle. 5 Applicability. 5 Precautions: 5

Journal of Chemical and Pharmaceutical Research, 2014, 6(5): Research Article

Optimization of ethanol production from cheese whey powder by Kluyveromyces fragilis using factorial design and response surface methodology

Biotechnology : Unlocking the Mysterious of Life Seungwook Kim Chem. & Bio. Eng.

Ph.D. Environmental Engineering Candidate School of Civil Engineering, Universiti Sains Malaysia

ASSESSMENT OF PHYSICO-CHEMICAL PARAMETERS OF DAIRY WASTE WATER AND ISOLATION AND CHARACTERIZATION OF BACTERIAL STRAINS IN TERMS OF COD REDUCTION

3.2 Test for sterility

BEEF CATTLE FEEDLOTS: WASTE MANAGEMENT AND UTILISATION

Optimization of Operating Conditions for Sterilization of Aseptic Food Packaging Material

Acidity and Alkalinity:

Optimization of Succinic Acid from Fermentation Process by Using Immobiized Escherichia Coli Cells Via Anaerobic Fermentation

Experimental Investigation on Quality Assessment and Pollution Control of Kanampalayam Lake

Mineralization Of Diesel-Base Engine Oil By Fungi Isolated From Selected Workshops In Benin City, Nigeria

BOD/CBOD, TSS ph OPERATOR BASICS. Presented by: Marcy Bolek - Alloway

The Role of Bacteria in the Mineralization of Diesel-Base Engine Oil

Degradation assessment of low density polythene (LDP) and polythene (PP) by an indigenous isolate of Pseudomonas stutzeri

á62ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: TESTS FOR SPECIFIED MICROORGANISMS

Application of response surface methodology (RSM) in the treatment of final effluent from the sugar industry using Chitosan

Reduction of Ferric Compounds by Soil Bacteria

BOD/CBOD Seeding 101. Jeff Wasson SHL Lab Symposium September 28, Iowa s Environmental & Public Health Laboratory

Introduction. Microbiology. Anas Abu-Humaidan M.D. Ph.D. Lecture 3

The Biology of Composting

International Society of Beverage Technologists Beverage Production Seminar January 24-27, 2000 Wastewater Minimization and Treatment

RELATIONSHIPS BETWEEN INITIAL NUTRIENT CONCENTRATION ANDB TOTAL GROWTH1

STUDIES ON THE EFFECTS OF END PRODUCT INHIBITION OVER LACTIC ACID BACTERIA UNDER HIGH CELL DENSITY CULTIVATION PROCESS

International Journal of Advance Engineering and Research Development

AL-KAWTHER INDUSTRIES LTD

Basic knowledge of Wastewater

MICROBIAL DEGRADATION AND NUTRIENT OPTIMIZATION OF PULP AND PAPER INDUSTRY WASTE WATER.

Core Notes for Module 6 (Elective) of the Course Environmental Engineering Sustainable Development in Coastal Areas Mr M S Haider

Tannery Wastewater Treatment

Kluyveromyces Marxianus Biofilm in Cheese Whey Fermentation for Bioethanol Production

Lecture 3 CE 433. Excerpts from Lecture notes of Professor M. Ashraf Ali, BUET.

Respirometric BOD 5 determination of waste water polluted with organic or inorganic toxins or inhibitors. OxiTop pressure measuring heads

USE OF MICROBIAL BIOASSAY IN MONITORING SEWAGE TREATMENT PLANT

Kit Information 4 Introduction. 4 Kit Contents, Storage, and Testing Conditions. 4 Principle 4 Applicability. 5 Precautions Sample Preparation 6

GROWTH AND SURVIVAL OF PATHOGENIC E. COLI DURING CURDLING OF MILK

*Correspondence author:

Research Article PRODUCTION OF A THERMOSTABLE EXTRACELLULAR PROTEASE FROM THERMOPHILIC BACILLUS SPECIES

Homework Solution for Module 15 Waste Water Treatment Plants. 2. What is the difference between municipal and industrial wastewater?

3M Food. with 3M. TB Effective Date: Number: April 2, 2013 Supersedes: New Technology Products Originating.

Assoc. Prof. Kozet YAPSAKLI

2017 Annual Performance Report

Water Pollution and Water Quality (Nazaroff & Alvarez-Cohen, Sections 6.A and 6.B) (with additional materials)

Bioprotein Production from Oil Palm Empty Fruit Bunch by Aspergillus Niger

Suresh Chand Sharma* and Devendra Singh Hada**

Best Practice in Sewage and Effluent Treatment Technologies

Lesson Overview. Overview Continued. ENVSC 296: Lesson No. 9. Part I: Drinking Water. Lesson 9: Water & Wastewater January 31, 2005

Micro-organisms and Pollution Control 55. Comparative strengths of wastewaters from food-processing industries.

Kit Information 4 Introduction. 4 Kit Contents, Storage, and Testing Conditions. 4 Principle 4 Applicability. 5 Precautions Sample Preparation 6

Journal of Chemical and Pharmaceutical Research

International Journal of Pharma and Bio Sciences

Nexus Test Labs Pvt. Ltd., No. 29, 2 nd Floor, 3 rd Cross, Singaiahnapalya, Mahadevapura, Bangalore, Karnataka

ENVIRONMENTAL PARAMETERS OF GROWTH

Water Recycling and Reuse

INVITRO COMPATIBILITY EVALUATION FOR THE BIOCONVERSION OF DOMESTIC SOLID WASTES BY MIXED CULTURES OF MICRO-ORGANISMS

Studies on Polluting Parameters from Dairy Sector of Pune,Maharashtra (India)

Nutrient Cycling in an Aquatic Ecosystem

Influences of Copper Speciation on Toxicity to Microorganisms in Soils 1

Puritan Environmental Sampling Kit (ESK )

SOIL INCORPORATION OF COVERCROP BIOMASS: EFFECTS ON SOIL MICROORGANISMS AND NITROGEN LEVELS

Freshwater Biological Association. FBA Translation (New Series) No. 69

Wastewater Treatment and Recycling Prof. Manoj Kumar Tiwari School of Water Resources Indian Institute of Technology, Kharagpur

Little Cypress Bayou Special Study - Subwatershed 1.10

cholera and dysentery in the country [9, 10, 11, Fig 1].

Transcription:

Jr. of Industrial Pollution Control 33(1)(2017) pp 1106-1113 www.icontrolpollution.com Research Article OPTIMIZATION OF BIOLOGICAL TREATMENT OF DAIRY EFFLUENT USING RESPONSE SURFACE METHODOLOGY ASHA RANI GARG * AND ANKIT MAGOTRA Department of biotechnology, Punjabi University, India (Received 06 June, 2017; accepted 10 June, 2017) Key words: Environmental engineering, Milk production, Organic substance ABSTRACT The current and unexpected growth of the world's population warrants an increased production of high quality animal protein. With this increasing demand for dairy, there is growing pressure on natural resources, including freshwater and soil. Dairy industry generates strong wastewater characterized by high biological oxygen demand (BOD) and chemical oxygen demand (COD) due to their high organic content. With increasing social awareness about the environment, the dairy industry is forced to treat its effluent effectively and efficiently before disposal into the public drainage. Large amount of water used in dairy industry results in significant generation of effluent volume; hence the challenge of its disposal cannot be ignored. The present study was conducted to analyze the microbial properties of the effluent from Dairy Plant and biological treatment of dairy effluent using Kluyveromyces marxianus and optimization of various conditions using response surface methodology (RSM). It was observed that bacteria, yeast and fungal count was 3.9 106 cfu/ml, 5.3 105 cfu/ml and 4.5 104 cfu/ml respectively and also the RSM model was significant and four factors interact with each other positively. Comparison between actual and experimental value indicated there was conformation between predicted and experimental data. INTRODUCTION Milk production takes place all around the world. Global demand for dairy continues to increase in large part due to population growth, rising incomes, urbanization and westernization of diets in countries such as India and China. With this increasing demand for dairy there is a growing pressure on freshwater resources. WWF works with dairy farmers, industry groups and other stakeholders in various countries to conserve and protect natural resources. Dairy industries have shown tremendous growth in size and number in most countries of the world. Large quantity of wastewater produced from dairy industrial operations. The organic substance in wastes comes directly in same form or in degraded form. Sources of dairy wastewater are from receiving stations, boiling plant, cheese plant, butter and dried milk plant as well as from can washing plant. Dairy wastewater is organic in nature so when dairy wastewater directly discharged into river or stream then deficiency in oxygen level may get occur. Dairy effluent has high levels of chemical oxygen demand, biological oxygen demand, oil and grease, nitrogen and phosphorous content (Braio and Taveres, 2007). Disposal of untreated water is rapidly becoming a major economic and societal problem faced by dairy industry in many respects. In India dairy industry is one of the leading food industry. Total milk production in India was 146.3 million tones (2014-2015) and per capita availability of milk was 322 gm/day (Anonymous, 2014). The liquid waste influences the choice of the wastewater treatment, as specific biological systems have difficulties dealing with wastewater of varying organic loads. Majority of the wastewater treatment processes are multivariable and optimization through the classical method is inflexible, unreliable and time-consuming. Optimization plays a key role in environmental engineering parameters to optimize the system s performance. Thus, an alternative method which will be more effective and can be adapted for parameter optimization of various wastewater *Corresponding authors email: ashagarg03@gmail.com

1107 ASHA RANI GARG ET AL. treatment processes is favored. Response surface methodology (RSM) is one of the most efficient and widely used mathematical and statistical tools for system performance optimization. RSM was introduced in year 1951 by Box and Wilson using a second-degree polynomial model (Box and Wilson, 1951). RSM can be employed to optimize and analyze the effects of several independent factors on a treatment process to obtain the maximum output. The appraisal indicated that the usage of RSM in wastewater treatment process optimization, ultimately contributes to removal efficiency enhancement and operation cost reduction. Keeping all these points in view present study focused on to analyze the microbial properties and biological treatment of the effluent using Kluyveromyces marxianus and then optimization of various conditions using response surface methodology (RSM). MATERIALS AND METHODS Collection of sample The dairy effluent sample required for the experimental purpose was collected from Milk Plant. Before filling, sample bottle was rinsed two or three times with the water being collected and then transported immediately to the laboratory for analysis. Microbiological analysis The effluent sample was quantitatively and qualitatively analyzed for their micro flora following serial dilution technique. 1 ml of diluted sample was plated and incubated for taking bacterial, fungal and yeast counts. The bacterial count was taken using Nutrient Agar (NA) having composition Beef extract (3.0 g/l), Peptone (5.0 g/l), Sodium chloride (5.0 g/l), Agar (1.5 g/l) and ph 7.0 and fungal count was taken by plating the samples on Czapek Dox s media having composition Sucrose (30.0 g/l), Sodium nitrate (3.0 g/l), Magnesium sulphate (0.5 g/l), Potassium chloride (0.5 g/l), Ferrous sulphate (0.01 g/l), Potassium hydrogen phosphate (1.0 g/l), Agar (13.0 g/l), ph 7.3 and Yeast count was taken by plating the samples on Malt Extract Agar media having composition Malt extract (3.0 g/l), Yeast extract (3.0 g/l), Peptone (5.0 g/l), Glucose (10.0 g/l), Agar (20.0 g/l) and ph 7.0. Biological treatment Kluyveromyces marxianus MTCC 3772 used for the biological treatment of dairy effluent was procured from Institute of microbial technology (IMTECH) Chandigarh. The culture was revived in Malt yeast agar and incubates for 48 h at 25 C. For further use Malt yeast agar slants were made and stored at 4 C. Slants were sub cultured after every 30 days. To optimize the biological conditions RSM DESIGN EXPERT 8.0.2 was used. RSM is the response surface methodology, explores the relationships between several explanatory variables and one or more response variables. RSM can be used to evaluate the relative significance of several affecting factors even in the presence of complex interactions (Hounsa, et al., 1996). Statistical analysis was performed by design of experiments (DOE) with Design-Expert software. Design Expert is a program for design of experiments, statistical analysis, modeling and optimization. It offers a range of programs including full factorial and fractional factorial designs, response surface method, mixing and D-optimal designs. The Design- Expert was used to develop the experimental plan for RSM (Anonymous, 2006). The same software was also used to analyze the data collected. Design- Expert provided rotatable 3D plots to visualize the response surface. The design was made using four variables namely: Factor 1 (A): ph Factor 2 (B): Cell count (cells/ml) Factor 3 (C): Aeration (rpm) Factor 4 (D): Time period (h) Three responses were observed namely: Response 1: COD (mg/ml) Response 2: Cell count (cells/ml) Response 3: PH RSM was used to determine the interactive effect of these variables on the response. Level of each variable was chosen and a Central Composite Experimental Design and Quadratic mode was used for the four selected factors believed to influence the process and analysis was done by polynomial equation. Design expert software provided a list of 30 experiments given in Table 1. RESULTS AND DISCUSSION Microbiological analysis The effluent sample analyzed for the micro flora included bacteria, yeast and fungi and the result obtained is given in Table 2. The bacteria, yeast and fungal count was 3.9 10 6 cfu/ml, 5.3 10 5 cfu/ml and 4.5 10 4 cfu/ml respectively. Count of bacteria was higher than yeast and fungi. This is due to the

OPTIMIZATION OF BIOLOGICAL TREATMENT OF DAIRY EFFLUENT USING RESPONSE SURFACE METHODOLOGY 1108 Table 1. List of experiments designed by design expert 8.0.2 Std. Run Factor 1 ph Factor 2 Cell count cells/ml Factor 3 Aeration (rpm) Factor 4 (Time per h) Response 1 COD (mg/l) Response 2 Cell count (cells/ml) Response 3 ph 21 1 6.00 5.5 10 6 100 72.00 25 2 6.00 5.5 10 6 100 72.00 3 3 2.00 10 10 6 0 24.00 10 4 10.00 1 10 6 0 120.00 17 5 2.00 5.5 10 6 100 72.00 7 6 2.00 10 10 6 200 24.00 29 7 6.00 5.5 10 6 100 72.00 1 8 2.00 1 10 6 0 24.00 6 9 10.00 1 10 6 200 24.00 14 10 10.00 1 10 6 200 120.00 2 11 10.00 1 10 6 0 24.00 30 12 6.00 5.5 10 6 100 72.00 20 13 6.00 14.5 10 6 100 72.00 4 14 10.00 10 10 6 0 24.00 19 15 6.00 3.5 10 6 100 72.00 18 16 14.00 5.5 10 6 100 72.00 15 17 2.00 10 10 6 200 120.00 26 18 6.00 5.5 10 6 100 72.00 23 19 6.00 5.5 10 6 100 24.00 24 20 6.00 5.5 10 6 100 168.00 11 21 2.00 10 10 6 0 120.00 27 22 6.00 5.5 10 6 100 72.00 8 23 10.00 10 10 6 200 24.00 9 24 2.00 1 10 6 0 120.00 12 25 10.00 10 10 6 0 120.00 5 26 2.00 1 10 6 200 24.00 22 27 6.00 5.5 10 6 300 72.00 13 28 2.00 1 10 6 200 120.00 16 29 10.00 10 10 6 200 120.00 28 30 6.00 5.5 10 6 100 72.00 Table 2. Microbiological analysis of dairy effluent S. no Micro Flora Count (Cfu/Ml) 1. Bacteria 3.9 10 6 2. Yeast 5.3 10 5 3. Fungi 4.5 10 4 aerobic conditions of the effluent that favor the growth of bacterial micro flora. However, yeast and fungal micro flora also grow in dairy effluent due to its acidic ph that ranged between 6.2-7.2 which favor their growth. Milk contains all the ingredients that most bacteria need for their growth some of the diseases such as dysentery, diarrhea, tuberculosis, typhoid, food poisoning and cholera caused by these bacteria (Hashmi, et al., 2004). Optimization of conditions using RSM This design was constructed for four variables as ph, cell count, aeration and time and three responses as COD, cell count and ph and the result obtained by RSM is given in Table 3. Analysis of Variance (ANOVA) A wide range of statistical and diagnostic studies are obtainable from RSM. The Analysis of Variance (ANOVA) including sequential F-test, lack-of-fit test and other adequacy measures. ANOVA could also verify the efficiency of the developed model. ANOVA for response surface reduced quadratic model and polynomial equation is summarized in Table 4 for response 1 (COD), the analysis implies that model is significant and the four variables interact with each other positively. Value of Prob > F

1109 ASHA RANI GARG ET AL. Table 3. RSM design expert 8.0.2 to optimize treatment conditions Std. Run Factor 1 Factor 2 Cell count Factor 3 Factor 4 (Time Response Response 2 Cell Response 3 (ph) (cells/ml) Aeration (rpm) per h) 1COD (mg/l) count (cells/ml) (ph) 21 1 6.00 5.5 10 6 100 72.00 4000 4 10 6 4.45 25 2 6.00 5.5 10 6 100 72.00 2400 4 10 6 7.44 3 3 2.00 10 10 6 0 24.00 6000 0 1.92 10 4 10.00 1 10 6 0 120.00 2400 0 8.12 17 5 2.00 5.5 10 6 100 72.00 4800 4 10 6 2.00 7 6 2.00 10 10 6 200 24.00 4000 0 3.36 29 7 6.00 5.5 10 6 100 72.00 2400 4 10 6 7.44 1 8 2.00 1 10 6 0 24.00 6200 0 1.90 6 9 10.00 1 10 6 200 24.00 3200 0 5.78 14 10 10.00 1 10 6 200 120.00 2800 0 9.32 2 11 10.00 1 10 6 0 24.00 6000 0 4.43 30 12 6.00 5.5 10 6 100 72.00 2400 4 10 6 7.44 20 13 6.00 14.5 10 6 100 72.00 1600 12 10 6 7.88 4 14 10.00 10 10 6 0 24.00 5600 8 10 6 4.33 19 15 6.00 3.5 10 6 100 72.00 3200 4 10 6 7.86 18 16 14.00 5.5 10 6 100 72.00 4000 0 9.05 15 17 2.00 10 10 6 200 120.00 3600 0 3.45 26 18 6.00 5.5 10 6 100 72.00 2400 4 10 6 7.44 23 19 6.00 5.5 10 6 100 24.00 3600 4 10 6 7.82 24 20 6.00 5.5 10 6 100 168.00 1600 0 9.00 11 21 2.00 10 10 6 0 120.00 5600 0 1.82 27 22 6.00 5.5 10 6 100 72.00 2400 4 10 6 7.44 8 23 10.00 10 10 6 200 24.00 2400 8 10 6 6.67 9 24 2.00 1 10 6 0 120.00 5600 0 1.74 12 25 10.00 10 10 6 0 120.00 1760 4 10 6 8.29 5 26 2.00 1 10 6 200 24.00 4800 0 3.40 22 27 6.00 5.5 10 6 300 72.00 3200 4 10 6 8.49 13 28 2.00 1 10 6 200 120.00 3600 0 3.48 16 29 10.00 10 10 6 200 120.00 1600 4 10 6 9.24 28 30 6.00 5.5 10 6 100 72.00 2400 4 10 6 7.44 Table 4. ANOVA for response surface reduced quadratic model for COD Source Sum of squares df Mean Square F Value P value Prob > F Model 5.532E+007 8 6.915E+006 20.49 0.0001 A-pH 1.497E+007 1 1.497E+007 44.37 0.0001 B-Cell count 2.041E+006 1 2.041E+006 6.05 0.227 C-Aeration 1.181E+007 1 1.181E+007 35.00 0.0001 D-Time period 9.745E+006 1 9.745E+006 28.87 0.0001 AD 2.280E+006 1 2.280E+006 6.76 0.0167 CD 1.988E+006 1 1.988E+006 5.89 0.0243 A 2 1.044E+007 1 1.044E+007 30.93 0.0001 C 2 4.885E+006 1 4.885E+006 14.47 0.0010 Residual 7.088E+006 21 3.375E+005 Lack of Fit 4.588E+006 15 3.059E+005 0.73 0.7083 Pure Error 2.499E+006 6 4.165E+005 C or Total 6.241E+007 29 less than 0.0500 indicate model terms are significant. In this case A-pH, C-Aeration and D-Time period are significant model terms. Value greater than 0.0500 indicate the model terms are not significant. For response 1, B- Cell count is non-significant model term having value 0.227. The Model F-value of 20.49 implies the model is significant. Values of Prob > F less than 0.0500 indicate model terms are significant. In this case A, B, C, D, AD, CD, A2, C 2 are significant model terms. Lack of fit of 0.73 implies it is not

OPTIMIZATION OF BIOLOGICAL TREATMENT OF DAIRY EFFLUENT USING RESPONSE SURFACE METHODOLOGY 1110 significant. Non-significant lack of fit is good because we want the model to be fit. Final equation in terms of coded factors: COD= + 2693.64-896.18*A -319.46*B -828.88*C -682.55*D -377.50*A*D+352.50*C*D +812.31*A 2 +553.79*C 2 For response 2 (cell count) (Table 5), significant model terms are A-pH and B-Cell count. The Prob > F value for model term D-Time period is 0.6985, implies that it is non-significant model term for response 2. The Model F-value of 57.82 implies the model is significant. Values of Prob > F less than 0.0500 indicate model terms are significant. In this case A, B, AB, A 2, B 2 and D 2 are significant model terms. Lack of fit of 633.51 implies it is significant. Significant lack of fit is bad because we want the model to be fit. Final equation in terms of coded factors: Log 10 (Cell count+0.10)=+7.09 +1.65 *A +2.00*B -0.092*D + 1.94*A*B-2.77 *A 2-1.16*B 2-2.05*D 2 For response 3 (ph) (Table 6), the model value 0.0001 implies that model is significant and the significant model terms are A-pH, C-Aeration and D-Time period. The Model F-value of 26.25 implies the model is significant. Values of Prob > F less than 0.0500 indicate model terms are significant. In this case A, C, D, AD, A 2 are significant model terms. Lack of fit of 0.91 implies it is non-significant. Non-significant lack of fit is good because we want the model to be fit. Final equation in terms of coded factors: ph =+6.70 +2.56 *A +0.79*C +0.82*D +0.87*A*D -1.31*A 2 Response surface plots for three responses based on final model The fitted response surfaces plots for COD, ph and cell count based on the final model were obtained by holding two variables at their optimum level while varying the other two within their experimental range. The graphical representation provides a method to visualize the relation between the response and experimental levels of each variable. The effect of significant variables ph, Time period and Aeration on Response 1 (COD) shown in (Fig. 1 and 2) by keeping two variables at constant value and altering other two variables and observed that for response 1, interaction between Time period and ph is more significant than interaction between Time period and aeration. Response surface graph for Response 2 (cell count) shown in (Fig. 3) and observed that at constant aeration and time period, the interaction between two factors ph and cell count is more for response 2. Response surface plot for Response 3 (ph) shown in Table 5. ANOVA for response surface reduced quadratic model for cell count Source Sum of squares df Mean Square F Value P value Prob > F Model 416.06 7 59.44 57.82 0.0001 A-pH 50.80 1 50.80 49.42 0.0001 B-Cell count 68.72 1 68.72 66.84 0.0001 D-Time period 0.16 1 0.16 0.15 0.6985 AB 60.10 1 60.10 58.46 0.0001 A 2 121.59 1 121.59 118.27 0.0001 B 2 20.78 1 20.78 20.21 0.0002 D 2 66.67 1 66.67 64.86 0.0001 Residual 22.62 22 1.03 Lack of Fit 22.60 16 1.41 633.51 0.0001 Pure Error 0.013 6 2.230E-003 C or Total 438.67 29 Table 6. ANOVA for response surface reduced quadratic model for ph Source Sum of squares df Mean Square F Value P value Prob > F Model 168.32 5 33.66 26.25 0.0001 A-pH 122.74 1 122.74 95.69 0.0001 C-Aeration 12.20 1 12.20 9.51 0.0051 D-Time period 13.96 1 13.96 10.88 0.0030 AD 11.99 1 11.99 9.35 0.0054 A 2 27.95 1 27.95 21.79 0.0001 Residual 30.78 24 1.28 Lack of Fit 22.51 18 1.25 0.91 0.6011 Pure Error 8.27 6 1.38 C or Total 199.11 29

1111 ASHA RANI GARG ET AL. Fig. 1 Response surface plot showing the effect of time period and ph on response 1 COD. Fig. 2 Response surface plot showing the effect of time period and aeration on response 1 COD. (Fig. 4) and observed that at constant cell count and aeration, the two factors time period and ph interact with each other. Validation of the optimized conditions for dairy effluent RSM gives a large amount of knowledge from a small number of experimental runs. The interaction effect of the independent parameters on the response can be observed investigated via RSM. The model equation easily clarifies these effects for binary combination of the independent parameters. Moreover, the empirical model that related the response to the independent variables is utilized to obtain information about the process. Optimized conditions for the treatment of dairy effluent as predicted by the final quadratic model along with the corresponding observed values are given in Table 7.

OPTIMIZATION OF BIOLOGICAL TREATMENT OF DAIRY EFFLUENT USING RESPONSE SURFACE METHODOLOGY 1112 Fig. 3 Response surface plot showing the effect of cell count and ph on response 2 cell count. Fig. 4 Response surface plot showing the effect of ph and time period on response 3 ph. Table 7. Comparison of predicted value and experimental value Selected runs Predicted value Experimental value S. no ph Count Aeration COD Count COD Count Time(h) ph (cells/ml) (rpm) (mg/l) (cells/ml) (mg/l) cells/ml ph 1. 7.00 10 10 6 199.0 113.18 1582.79 10 10 6 8.90 1600 8 10 6 8.92 2. 7.58 10 10 6 115.49 115.49 1458.23 8 10 6 9.20 1450 8 10 6 9.25 Comparison of experimental and predicted values indicated that there was a conformation between the predicted and experimental data. СONCLUSION Dairy waste contains large number of impurities, which contributes towards water pollution. We

1113 ASHA RANI GARG ET AL. analyzed for microbial characteristics and biological treatment was done using Kluyveromyces marxianus and then biological conditions was optimized using response surface methodology (RSM). Analysis of Variance (ANOVA) for response surface quadratic model implies that model was significant and four factors interact with each other positively. Validation of the optimized treatment conditions predicted by final quadratic model was done and comparison between actual and experimental value indicated there was conformation between predicted and experimental data. The present study was carried out with the aim to explore, standardize and adopt suitable management techniques to overcome and reuse the valuable natural resources. So, RSM is definitely a useful and accommodating tool for the reducing operation cost that associated with optimization of wastewater treatment processes. REFERENCES Braio, V.B. and Granhem, Taveres, C.R. 2007. Effluent generation by the dairy industry: preventive attitude and opportunities. J. Chem. Eng. 24(4) : 487-497. Box, G.E.P. and Wilson, K.B. 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society Series. 131-145. Department of Animal Husbandry. 2014. Dairying and Fisheries, Ministry of Agriculture, Government of India. Design-Expert Software. Version 7 2006. User s Guide, Technical Manual. Stat-Ease Inc., Minneapolis, MN. Hounsa, C.G., Aubry, J.M. and Dubourguier, H.C. 1996. Application of factorial and Doehlert design for optimization of pectate lyase production by a recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 45 : 764-770. Hashmi, A.H. 2004. Approach to ensuring safety and hygiene in the dairy production chain in emerging dairy nations. Ind. J. Environ. Sci. 5 : 12-15.