'Tips and Tricks' for Biopharmaceutical Characterization using SEC

Similar documents
2012 Waters Corporation 1

Analysis of biomolecules by SEC and Ion-Exchange UPLC

R R Innovation Way P/N SECKIT-7830 Newark, DE 19711, USA Tel: Fax: Website: Published in November 2013

Developing Quantitative UPLC Assays with UV

BioHPLC columns. Tim Rice Biocolumn Technical Specialist

Size Exclusion BioHPLC columns Ion Exchange BioHPLC columns

Agilent AdvanceBio SEC Columns for Aggregate Analysis: Instrument Compatibility

Size Exclusion BioHPLC Columns

4/4/2013. BioHPLC columns. Paul Dinsmoor Biocolumn Technical Specialist. April 23-25, Size Exclusion BioHPLC Columns

Understanding the Effects of Common Mobile Phase Additives on the Performance of Size Exclusion Chromatography

A Comprehensive Workflow to Optimize and Execute Protein Aggregate Studies

Mobile Phase Optimization in SEC Method Development

Charged Surface Hybrid C18 for High Resolution LC and LC/MS Peptide Separations

Protein-Pak Hi Res HIC Column and HIC Protein Standard

ProSEC 300S. Protein Characterization columns

Dedicated UPLC Chemistries for BioTherapeutics Joe Walsh WITS BioPharm Session 2016

Separate and Quantify Rituximab Aggregates and Fragments with High-Resolution SEC

Method Development Considerations for Reversed-Phase Protein Separations

TSK-GEL BioAssist Series Ion Exchange Columns

Columns for Biomolecules BioLC Column Lines

Multiple Detector Approaches to Protein Aggregation by SEC

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS

ION EXCHANGE KIT FOR MAB SEPARATIONS

High Throughput Sub-4 Minute Separation of Antibodies using Size Exclusion Chromatography

mabs and ADCs analysis by RP

Higher Order mab Aggregate Analysis using New Innovative SEC Technology

Overview of Waters Solutions for Biopharmaceutical Analysis and Characterization

MassPREP On-Line Desalting Cartridge

Fast Agilent HPLC for Large Biomolecules

H-Class & H-Class Bio AutoBlend and AutoBlend plus. Jean-Michel Plankeele May Waters Corporation 1

Application Note. Authors. Abstract. Biopharmaceuticals

NISTmAb characterization with a high-performance RP chromatography column

Size-Exclusion Chromatography (SEC) Optimization Guide

Discovery BIO Wide Pore

ACQUITY UPLC Protein BEH SEC Columns and Standards

High-throughput and Sensitive Size Exclusion Chromatography (SEC) of Biologics Using Agilent AdvanceBio SEC Columns

CHARACTERIZATION & PURIFICATION

Mass Spectrometry Analysis of Liquid Chromatography Fractions using Ettan LC MS System

Thermo Scientific. MAbPac HIC-10. Product Manual. P/N: June Part of Thermo Fisher Scientific

High-resolution Analysis of Charge Heterogeneity in Monoclonal Antibodies Using ph-gradient Cation Exchange Chromatography

Lifetime stability of size exclusion chromatography columns for protein aggregate analysis

Thermo Scientific MAbPac HIC Columns. Novel Hydrophobic Interaction HPLC Columns. Designed for Monoclonal Antibody Analysis

Biotherapeutic Method Development Guide

Physical Stability of a Silica- Based Size Exclusion Column for Antibody Analysis

Biotherapeutic Method Development Guide

Developing Robust and Efficient IEX Methods for Charge Variant Analysis of Biotherapeutics Using ACQUITY UPLC H-Class System and Auto Blend Plus

Choosing the Right Calibration for the Agilent Bio SEC-3 Column

Application of Agilent AdvanceBio Desalting-RP Cartridges for LC/MS Analysis of mabs A One- and Two-dimensional LC/MS Study

The New Standard in High Resolution Size Exclusion

Proteins. Patrick Boyce Biopharmaceutical Marketing Manager Waters Corporation 1

MAbPac RP Column. High-performance reverse phase chromatography column for monoclonal antibody analysis

A universal chromatography method for aggregate analysis of monoclonal antibodies

Development of Analysis Methods for Therapeutic Monoclonal Antibodies Using Innovative Superficially Porous Particle Biocolumns

Chromatography column for therapeutic protein analysis

Gradient Elution. Slide 2

Separation of Recombinant Human Erythropoietin (repo) Using Agilent Bio SEC-3

TOYOPEARL GigaCap Series

Size exclusion chromatography for Biomolecule analysis: A "How to" Guide

Phenyl Membrane Adsorber for Bioprocessing

AdvanceBio HIC: a Hydrophobic HPLC Column for Monoclonal Antibody (mab) Variant Analysis

mab and ADC Analysis Shanhua Lin, Ph.D. The world leader in serving science

Optimizing Protein Separations with Agilent Weak Cation-Exchange Columns

Data File. HiLoad Superdex 30 prep grade HiLoad Superdex 75 prep grade HiLoad Superdex 200 prep grade. Pre-packed gel filtration columns

Validation of a Dual Wavelength Size Exclusion HPLC Method with Improved Sensitivity to Detect Aggregates of a Monoclonal Antibody Biotherapeutic

Disulfide Linkage Analysis of IgG1 using an Agilent 1260 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column

columns P r o P a c H I C C o l u m n S o l u t i o n s f o r P r o t e i n A n a l y s i s

Fast mass transfer Fast separations High throughput and improved productivity Long column lifetime Outstanding reproducibility Low carryover

Sean M. McCarthy and Martin Gilar Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION

Characterization of a fusion protein under native and denaturing conditions with maxis II

Phenyl Membrane Adsorber for Bioprocessing

Column for High Performance,High-Binding Capacity Ion Exchange Chromatography:TSKgel SuperQ-5PW and Its Applications

Chromatographic Workflows for Biopharmaceutical Characterization

Martin Gilar Waters Corporation, Milford, MA, U.S. Origins of synthetic oligonucleotides impurities. Lab-scale isolation options

Advanced Characterization of Antibody Drug Conjugates (ADCs) by Liquid Chromatography and Mass Spectrometry (LC/MS) John Gebler, Ph.D.

AdvanceBio Peptide Mapping

Superdex 200 Increase columns

Superdex 200 Increase columns

Rapid UHPLC Analysis of Reduced Monoclonal Antibodies using an Agilent ZORBAX Rapid Resolution High Definition (RRHD) 300SB-C8 Column

Fast protein separations with ion exchange columns

EAG.COM MATERIALS SCIENCES APPLICATION NOTE. By J. Tompkins 1, T. Spurgeon 1, R. Tobias 1, J. Anders 1, E. Butler-Roberts 2, and M.

The Agilent 1260 Infinity BioInert Quaternary Pump. Scope of a low-pressure mixing UHPLC pump with Bio-Inert Capabilities

Faster Separations Using Agilent Weak Cation Exchange Columns

Characterize mab Charge Variants by Cation-Exchange Chromatography

Charge Heterogeneity Analysis of Rituximab Innovator and Biosimilar mabs

PLRP-S Polymeric Reversed-Phase Column for LC/MS Separation of mabs and ADC

Agilent Prep LC Columns for Small Molecules and Biomolecules MAINTAIN RAPID, RELIABLE SEPARATIONS AS YOU SCALE-UP

Zwitterion Chromatography ZIC

for Acclaim Carbamate Column

2015 CATALOG. Discover the Advantages of HALO and HALO BioClass Fused-Core Columns

HIC as a Complementary, Confirmatory Tool to SEC for the Analysis of mab Aggregates

Nonionic Polymer Enhancement of Aggregate Removal in Ion Exchange

Application Note. Biopharma. Authors. Abstract. James Martosella, Phu Duong Agilent Technologies, Inc Centreville Rd Wilmington, DE 19808

BioPro SmartSep. Benefits of using BioPro SmartSep. Product information

Characterization of mab aggregation using a Cary 60 UV-Vis Spectrophotometer and the Agilent 1260 Infinity LC system

Reversed-phase Separation of Intact Monoclonal Antibodies Using Agilent ZORBAX Rapid Resolution High Definition 300SB-C8 1.

Maximizing Chromatographic Resolution of Peptide Maps using UPLC with Tandem Columns

mab Titer Analysis with the Agilent Bio-Monolith Protein A Column

Agilent Technologies April 20,

Agilent 1260 Infinity Bio-inert Quaternary LC System. Infinitely better for bio-molecule analysis

Transcription:

'Tips and Tricks' for Biopharmaceutical Characterization using SEC Waters Corporation 2012 Waters Corporation 1

Waters Commitment To develop, commercialize and market columns that, when used on Waters ACQUITY UPLC systems, provide speed, sensitivity, resolution, and reproducibility not previously achieved for characterization of biological macromolecules by traditional HPLC. 2012 Waters Corporation 2

Liquid Chromatography Protein Separation Modes Protein Structure Primary, Secondary, Tertiary Structure Carbohydrate Groups Net Charge Hydrophilic Groups Hydrophobic Regions Aromatic Groups Disulfide Linkages Hydrogen Bonding 2012 Waters Corporation 3

Liquid Chromatography Protein Separation Modes Protein Structure Primary, Secondary, Tertiary Structure Carbohydrate Groups Net Charge Hydrophilic Groups Hydrophobic Regions Aromatic Groups Disulfide Linkages Hydrogen Bonding 2012 Waters Corporation 4

Agenda Size-Exclusion Chromatography Theory and practice ACQUITY UPLC Columns for SEC o ACQUITY BEH450 SEC, 2.5 µm Columns o ACQUITY BEH200 SEC, 1.7 µm Columns o ACQUITY BEH125 SEC, 1.7um Columns Monoclonal Antibody Application o SEC-MS Applications Insulin and Small Protein Applications Factors Influencing Component Resolution Considerations to extending column life 2012 Waters Corporation 5

Principles of Size Exclusion Chromatography of Proteins Separates proteins by their size in solution (Stokes radius) Separations are Isocratic Tends to be used as a Polishing isolation step or as an analytical technique to determine presence of protein aggregates Generally a lower resolving technique compared to other methods such as ion-exchange or reversed-phase methods 2012 Waters Corporation 6

Size Exclusion Chromatography No adsorption to surface of particles Large molecules elute before small molecules Large molecules cannot access pores Small molecules access pores within particle dimer monomer 2012 Waters Corporation 7

Common SEC applications: Biotherapeutics Types Monoclonal Antibodies Antibody Conjugates Fc Fusion Proteins Synthetic Oligonucleotides Protein Subunit Vaccines Recombinant Proteins 2012 Waters Corporation 8

Agenda Size-Exclusion Chromatography Theory and practice ACQUITY UPLC Columns for SEC o ACQUITY BEH450 SEC, 2.5 µm Columns o ACQUITY BEH200 SEC, 1.7 µm Columns o ACQUITY BEH125 SEC, 1.7um Columns Monoclonal Antibody Application o SEC-MS Applications Insulin and Small Protein Applications Factors Influencing Component Resolution Considerations to extending column life 2012 Waters Corporation 9

UPLC Systems for Biopharmaceutical Analysis Wide range of applications Complete Solutions Instrumentation o o o o UPLC System (s) ACQUITY UPLC System ACQUITY UPLC H-Class System ACQUITY UPLC H-Class Bio System UV, FLR, PDA and MS Detections Application Specific Chemistries Developed and designed with applications QC Tested with application Optimized for UPLC Software Data Analysis Information management Focused on customer application requirements 2012 Waters Corporation 10

Advantages of UPLC Technology for SEC Separations Columns and Instruments both Minimize Band Spreading HPLC Broad Band Broad Peak Less Sensitivity Less Resolving Power Waters UPLC Technology Narrow Peak Increased Sensitivity Increased Resolving Power 2012 Waters Corporation 11

Effect of System Dispersion on ACQUITY UPLC BEH200 SEC 1.7 µm separation 0.30 0.20 0.10 USP Res= 2.37 UP-SEC ACQUITY UPLC BEH200 SEC 1.7 µm 4.6 x 300mm 0.25 0.20 0.15 0.10 0.05 USP Res= 1.37 HP-SEC ACQUITY UPLC BEH200 SEC 1.7 µm 4.6 x 300mm 2.00 4.00 6.00 8.00 1 12.00 14.00 16.00 18.00 2 22.00 24.00 26.00 28.00 Large system dispersion decreases resolution Sample: Human polycolonal IgG 2012 Waters Corporation 12

ACQUITY UPLC BEH200 and BEH125 SEC 1.7 µm Columns, and BEH450 SEC 2.5 µm Columns Application Areas Molecular weight ranges dependent on pore size: o BEH450: 100,000 to 1,500,000 Daltons o BEH200: 10,000 to 450,000 Daltons o BEH125: 1,000 to 80,000 Daltons Determination of protein / peptide molecular weight Quantifying protein / peptide aggregates primarily in therapeutic monoclonal antibodies, EPO, and Insulin Determination of size heterogeneity in a sample 2012 Waters Corporation 13

BEH Technology Particles Bridged EthylSiloxane/Silica Hybrid EtO 4 Si EtO EtO OEt Tetraethoxysilane (TEOS) EtO EtO + Si 1 EtO CH 2 CH 2 Si OEt OEt OEt Bis(triethoxysilyl)ethane (BTEE) EtO EtO Si Si CH 2 CH 2 Si O O O Si OEt OEt O O Si Si O Polyethoxysilane (BPEOS) OEt OEt O O Et Et n Bridged Ethanes In Silica Matrix U.S. Patent No. 6,686,035 B2 Anal. Chem. 2003, 75, 6781-6788 2012 Waters Corporation 14

HPLC to UPLC SEC Comparison 0.070 0.070 0.065 0.060 0.055 0.050 ACQUITY UPLC BEH200 SEC,1.7 µm 4.6 x 300mm 0.065 0.060 0.055 0.050 HPLC 100% Silica-Diol SEC 250Å 5µm 7.8 x 300 mm 0.045 0.045 0.040 0.040 0.035 0.035 0.030 0.030 0.025 0.020 0.015 2.26 % Aggregate 0.025 0.020 0.015 2.24 % Aggregate 0.010 0.010 5 5 0 0 2.00 4.00 6.00 1 8.00 5.00 1 15.00 2 25.00 3 3 Murine monoclonal antibody - Scaled load Conditions: 0.4 ml/min; 25mM Sodium Phosphate, ph 6.8, 0.15 M NaCl 2012 Waters Corporation 15

Calibration Curves of ACQUITY UPLC BEH450, BEH200, and BEH125 SEC Columns 2012 Waters Corporation 16

Protein Adsorption and Size- Exclusion Chromatography Proteins can interact or adsorb onto the SEC packing material These interactions create undesired and unpredictable retention of proteins (i.e. proteins not separated by size in solution) SEC particles frequently coated with a hydrophilic reagent to minimize non-desired ionic interactions between proteins and packing material Mobile phase additives (e.g., 150mM NaCl) may decrease nondesired ionic interactions between proteins and packing material 2012 Waters Corporation 17

BEH SEC Particle Overview The packing material is based on our patented Bridged Ethyl Hybrid base particle and effective diol bonding, which provide a stable chemistry with minimal secondary interactions. 2012 Waters Corporation 18

Comparative SEC Column Life 0.70 0.60 0.50 0.40 0.30 0.20 0.10 Lysozyme, pki Lysozyme, = 10.7 pi = 10.7 Suggestive of DIOL Bleed Suggestive of DIOL Bleed HPLC 100% Silica-Diol SEC 250Å 4µm 4.6 x 300 mm Injection 19 Injection 618 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 2012 Waters Corporation 19

Comparative SEC Column Life 0.70 0.60 0.50 0.40 0.30 0.20 0.10 Lysozyme, pki Lysozyme, = 10.7 pi = 10.7 Suggestive of DIOL Bleed Suggestive of DIOL Bleed HPLC 100% Silica-Diol SEC 250Å 4µm 4.6 x 300 mm Injection 19 Injection 618 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 ACQUITY BEH200 SEC, 1.7 µm 4.6 x 150 mm Injection 19 Injection 618 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 BEH200 shows minimal secondary interactions even after 600 injections 2012 Waters Corporation 20

Column Stability Log Mw 1000000 10000 Calibration Curve 0 hours 12 hours 24 hours 36 hours 48 hours 60 hours Protein MW Thyroglobulin 669000 Ferritin 440000 Aldolase 150000 BSA 66000 Ovalbumin 44000 Carbonic Anhydrase 29000 Ribonuclease A 13700 Aprotinin 6500 Uracil 112 100 0.5 1 1.5 2 2.5 3 Elution volume (ml) Protein standard analyzed over 48 hours Conditions: 25mM Sodium Phosphate buffer, 0.15 M Sodium Chloride, ph 6.8; 280 nm Elution volume for all proteins within 0.2% RSD 2012 Waters Corporation 21

Influence of Ionic Strength on Peak Shape and Retention 0.08 0.06 0.04 Conventional 100% Silica-Diol Coated SEC Column 4.6 x 300 mm lysozyme 10 mm 0.02 1 12.00 14.00 16.00 18.00 2 22.00 24.00 26.00 28.00 3 32.00 34.00 36.00 38.00 4 42.00 44.00 46.00 48.00 5 0.08 0.06 0.04 0.02 lysozyme 25 mm 1 12.00 14.00 16.00 18.00 2 22.00 24.00 26.00 28.00 3 32.00 34.00 36.00 38.00 4 42.00 44.00 46.00 48.00 5 0.08 0.06 0.04 0.02 lysozyme 100 mm 1 12.00 14.00 16.00 18.00 2 22.00 24.00 26.00 28.00 3 32.00 34.00 36.00 38.00 4 42.00 44.00 46.00 48.00 5 Flow rate: 0.5 ml/min; Mobile phase: 10, 25 or 100 mm sodium phosphate, ph 6.8 2012 Waters Corporation 22

Influence of Ionic Strength on Peak Shape and Retention 0.24 0.18 0.12 lysozyme ACQUITY BEH200 SEC 1.7 µm column, 4.6 x 150mm 10 mm 0.06 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 0.24 0.18 0.12 25 mm 0.06 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 0.24 0.18 0.12 100 mm 0.06 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 Flow rate: 0.5 ml/min; Mobile phase: 10, 25 or 100 mm sodium phosphate, ph 6.8 2012 Waters Corporation 23

BEH125 SEC, 1.7um Batch-to to-batch Reproducibility 0.09 0.06 0.03 1 2 3 4 Batch 1 Analyte pl MW 1. Thyroglobulin, 0.1 mg/ml 4.6 669,000 2. Ovalbumin, 0.3 mg/ml 4.5 44,200 3. Ribonuclease A, 0.3 mg/ml 9.6 13,700 4. Uracil, 0.05 mg/ml N/A 112 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.09 0.06 0.03 Batch 2 BEH125 SEC Protein Standard Part No. 186006519 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1 0.09 0.06 Batch 3 0.03 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1 Conditions: 100mM Sodium Phosphate ph 6.8; 0.3 ml/min; 30 C; 4.6x150mm 2012 Waters Corporation 24

BEH200 SEC, 1.7um Batch-to to-batch Reproducibility BEH200 SEC Protein Standard Part No. 186006518 2012 Waters Corporation 25

Combining Pore Sizes for Added Method Development Flexibility 0.10 0.05 ACQUITY BEH200 SEC (300mm) 1 2 3 4 5 BEH450 SEC Protein Standard Part No. 186006842 6 0.10 0.05 ACQUITY BEH200 SEC and BEH450 SEC (150mm + 150mm) 1 2 3 4 5 6 0.10 0.08 0.06 0.04 0.02 ACQUITY BEH450 SEC (300mm) 1 2 3 4 5 6 2.00 4.00 6.00 8.00 1 12.00 14.00 2012 Waters Corporation 26 Compounds: 1. Thyroglobulin Dimer (1,340 KDa), 2. Thyroglobulin (667 KDa), 3. IgG (150 KDa), 4. BSA (66 KDa), 5. Myoglobin (17 KDa), 6. Uracil (112 Da)

Column Reproducibility 0.05 Batch 1, Column 1 0.05 Batch 1, Column 2 0.05 Batch 1, Column 3 0.05 Batch 2, Column 1 0.05 Batch 2, Column 2 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1 Humanized monoclonal antibody Conditions: 25mM Sodium Phosphate, ph 6.8, 0.15 M Sodium Chloride, 0.4 ml/min Retention times within 0.2min 2012 Waters Corporation 27

Agenda Size-Exclusion Chromatography Theory and practice ACQUITY UPLC Columns for SEC o ACQUITY BEH450 SEC, 2.5 µm Columns o ACQUITY BEH200 SEC, 1.7 µm Columns o ACQUITY BEH125 SEC, 1.7um Columns Monoclonal Antibody Application o SEC-MS Applications Insulin and Small Protein Applications Factors Influencing Component Resolution Considerations to extending column life 2012 Waters Corporation 28

Monoclonal Antibody Adapted from Alain Beck Center of Immunology 2012 Waters Corporation 29

Protein Structure N Native U Unfolded or I Intermediate Soluble Aggregates Insoluble Aggregates Addressing particulate and aggregation issues of therapeutic protein products, Shi, L, PEGS, May 2011 Soluble aggregates and insoluble particles may affect immunogenicity and efficacy of biotherapeutic 2012 Waters Corporation 30

Orthogonal Techniques for Characterization Dynamic Light Scattering C FFF-MALS Static Light Scattering SEC Counter principle Flow Imaging Microscopy Light Microscopy Visual Inspection Microscope 10 100 nm µm 10 100 10 100 mm cm monomers oligomers Aggregates subvisible particles Particles Visible particles E. Freud, PDA Visual Inspection Forum, Oct- 2009 2012 Waters Corporation 31

Column Lifetime 0.015 0.010 Dimer = 0.46% USP Res = 2.35 Injection 2 5 0-5 mab 0.015 0.010 Dimer = 0.49% USP Res = 2.27 Injection 497 5 0-5 mab 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 Humanized monoclonal antibody Conditions: 25mM Sodium Phosphate buffer, 0.15 M Sodium Chloride, ph 6.8; 280 nm Column: 4.6 x 300 mm 2012 Waters Corporation 32

Effect of Flow Rate 0.030 0.020 0.010 0.4 ml/min % Aggregate Flow Rate (ml/min) 0.2 0.35 0.4 Average 2.87 2.83 2.79 Std Dev 0.04 0.02 0.02 % RSD 1.45 0.70 0.57 0 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1 11.00 12.00 13.00 0.030 0.020 0.010 0.35 ml/min 0 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 10.50 0.030 0.020 0.010 0.2 ml/min 0 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1 11.00 12.00 13.00 14.00 15.00 Triplicate injections overlaid No observable trend in aggregation with flow rate Murine monoclonal antibody (63 µg load) 2012 Waters Corporation 33

Effect of Particle Size: Analysis of LMW Species 0.010 mab dimer mab LMW peak LMW species BEH200 SEC 1.7µm 0 0.010 250Å, 4µm HPLC 100% Silica-Diol 0 0.010 300Å, 5µm HPLC 100% Silica-Diol 0 0.010 290Å, 5µm HPLC 100% Silica-Diol 0 2.00 4.00 6.00 8.00 1 12.00 14.00 Humanized monoclonal antibody biotherapeutic Conditions: 25 mm Sodium Phosphate, 0.15 M Sodium Chloride Flow rates and Injection volumes scaled for column dimensions 2012 Waters Corporation 34

Agenda Size-Exclusion Chromatography Theory and practice ACQUITY UPLC Columns for SEC o ACQUITY BEH450 SEC, 2.5 µm Columns o ACQUITY BEH200 SEC, 1.7 µm Columns o ACQUITY BEH125 SEC, 1.7um Columns Monoclonal Antibody Application o SEC-MS Applications Insulin and Small Protein Applications Factors Influencing Component Resolution Considerations to extending column life 2012 Waters Corporation 35

Precautions in SEC-MS Protein structure in solution depends on ph Ionic strength Buffer and salt Additives Good ionization conditions are different from conditions for biological activity Validation required when buffer is changed Special uses are valuable Fast desalting Clips 2012 Waters Corporation 36

LC/MS Compatible Mobile Phase on ACQUITY UPLC BEH200, SEC, 1.7um 0.20 PBS 0.10 0.30 0.20 100mM Ammonium Formate 0.10 2.00 4.00 6.00 8.00 1 12.00 14.00 16.00 18.00 2 22.00 24.00 Similar retention time/ peak shape observed with MS compatible mobile phases 2012 Waters Corporation 37

Humanized Monoclonal Antibody: MS Compatible/Native Mobile Phase 100mM Ammonium Formate 0.025 1.75e-2 26.00 0.020 1.5e-2 1.25e-2 0.015 1.0e-2 0.010 7.5e-3 5 5.0e-3 0 2.5e-3-5 0.0 0.020 0.015 0.010 17.05 20.02 14.00 16.00 18.00 2 22.00 24.00 26.00 28.00 PBS Time 5 0-5 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 Flow Rates: 100mM Ammonium Formate - 0.15mL/min, PBS- 0.4 ml/min Lower flow rate for MS compatibility 2012 Waters Corporation 38

SEC-MS Humanized Monoclonal Antibody 1.8e-2 25.27 2: Diode Array 280 0.0500Da Range: 6.757e-1 1.6e-2 1.4e-2 1.2e-2 1.0e-2 1 2 UV @ 280 8.0e-3 16.58 6.0e-3 4.0e-3 3 2.0e-3 0.0 13.22 19.50 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1: TOF MS ES+ 319.49 TIC 7.58e6 1 2 15.35 TIC % 16.62 23.74 25.06 4 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 MS: Xevo G2 Q Tof Conditions: 100mM Ammonium Formate, Flow rate: 0.15 ml/min Post UV detection additive: ACN, 0.8% Formic acid Scan 2012 Waters Corporation 39

Extracted Spectrum Herceptin 50%ACN,.4% FA_100mm Amm Form_0.15 ml/min_40cv_autoqua 7Oct11_PH_SEC_BEH200_Ext_T_ACN_pt8FA_2_5 907 (15.351) Sm (SG, 10x5.00); Sb (15,2.00 ); Cm (891:932) 100 3025.9878 3448.1404 3530.1348 2907.2991 % 2353.8545 2471.3726 2353.5356 2797.6379 2601.3782 3706.4951 3801.6843 3901.6064 3905.8140 4118.3599 1: TOF MS ES+ 4.34e3 Intact IgG MW 148,221 Peak 1 0 m/z 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 7Oct11_PH_SEC_BEH200_Ext_T_ACN_pt8FA_2_5 982 (16.619) Sm (SG, 10x5.00); Cm (969:996) 1: TOF MS ES+ 100 1.97e3 % 1251.3574 2648.5669 2460.4124 2652.8584 2801.4185 2968.8967 3154.9690 3370.0889 3616.4006 Clip MW 100,764 Peak 2 0 m/z 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 7Oct11_PH_SEC_BEH200_Ext_T_ACN_pt8FA_2_5 1152 (19.493) Sm (SG, 10x5.00); Cm (1116:1184) 1: TOF MS ES+ 1537.7053 100 1.22e4 1643.7091 1489.6832 1478.2386 1702.3831 1765.3279 % 1985.9363 2056.2769 2166.3523 2382.8904 2647.5525 Low MW Species Peak 3 0 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 m/z Deconvoluted molecular weight determined using MaxEnt1 2012 Waters Corporation 40

SEC-UV UV-MS: A generic methodology for screening intact and reduced antibodies HC Desalting LC/HC Resolution Detect Clips No Sample Concentration required LC UV 280 HC-HC HC Mass Spectrum HC LC Mass Spectrum TIC HC-HC LC Conditions: System, ACQUITY UPLC TM with TUV optical detector and Synapt G2 QTof MS Flow Rate: 0.2 ml/min 0.1%TFA and 0.1%FA in 30% ACN 2012 Waters Corporation 41

Agenda Size-Exclusion Chromatography Theory and practice ACQUITY UPLC Columns for SEC o ACQUITY BEH450 SEC, 2.5 µm Columns o ACQUITY BEH200 SEC, 1.7 µm Columns o ACQUITY BEH125 SEC, 1.7um Columns Monoclonal Antibody Application o SEC-MS Applications Insulin and Small Protein Applications Factors Influencing Component Resolution Considerations to extending column life 2012 Waters Corporation 42

Resolution of Proteins and Peptides (Aqueous) A 214 1.50 1.00 0.50 1.00 ACQUITY UPLC BEH125 SEC 1.7um 4.6 x 300mm 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1 11.00 12.00 BioSuite125 UHR SEC 4.6 x 300mm Carb. Carb. Anhyd. Anhyd. (29,000) (29,000) Myoglobin Myoglobin (16,900) (16,900) Ubiquitin Ubiquitin (8,565) (8,565) RASG RASG (898) (898) G-G-G G-G-G (189) (189) G-G (132) (132) Uracil Uracil (112) (112) BSA (66,000) (66,000) Ovalbumin Ovalbumin (44,000) (44,000) 0.80 0.60 0.40 0.20 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1 11.00 12.00 Conditions: 25mM Sodium Phosphate, 150mM Sodium Chloride, ph 6.8, 0.4 ml/min - - BEH125 column provides increased resolution throughout the lower end of the peptide mass range (132 29,000). - 2012 Waters Corporation 43

ACQUITY UPLC BEH125 SEC 1.7µm Column Reproducibility 1 0.9 % RSD Retention Time Range %RSD/Retention Time Range 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 G-G G-G-G RASG Aprotinin Ubiquitin Cytochrome C Myoglobin Carb. Anhyd. Ovalbumin BSA BSA Dimer Insulin Monomer Insulin Dimer Peptide/Protein Table 1. Retention time reproducibility for 5 ACQUITY UPLC BEH125 SEC 1.7 µm columns (4.6 mm x 30cm) using aqueous and organic (insulin separation method only) mobile phases. 2012 Waters Corporation 44

Resolution of Small Protein BioSuite 125 4µm UHR 4.6 x 300 mm column ACQUITY UPLC BEH125 SEC 1.7µm 4.6 x 300 mm column 0.80 0.80 0.70 0.70 0.60 0.50 USP Rs= 1.94 0.60 0.50 0.40 0.40 0.30 0.20 0.30 0.20 USP Rs= 3.29 0.10 0.10 2.00 4.00 6.00 8.00 1 12.00 2.00 2.00 4.00 6.00 8.00 1 12.00 - Conditions: 25mM Sodium Phosphate, 150mM Sodium Chloride, ph 6.8, 0.4 ml/min, sample 2 mg/ml USP monomer/aggregate resolution was 1.7 times greater on the BEH125 1.7µm SEC column as compared to 4 µm pore diol-coated silica column. - 2012 Waters Corporation 45

HPLC/UPLC Column Comparison 0.010 9 8 7 0.30 0.25 0.20 0.15 0.10 0.05 ACQUITY UPLC BEH125 1.7µm (4.6 x 300 mm) 6 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1 5 4 3 2 1 0 Rs = 3.7 USP Plate Count = 15K Flow Rate = 0.4 ml/min 0.020 0.018 0.016 0.014 0.012 0.010 8 6 4 2 0 0.50 0.40 0.30 0.20 0.10 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1 2.00 4.00 6.00 8.00 1 12.00 14.00 16.00 18.00 2 22.00 24.00 Rs = 2.1 USP Plate Count = 3K Flow Rate = 0.5 ml/min HMWP 10µm (7.8 x 300 mm) 2.00 4.00 6.00 8.00 1 12.00 14.00 16.00 18.00 2 22.00 24.00 Conditions: Mobile Phase: L-arginine (1.0 g/l) /acetic. acid (99%)/acetonitrile; 65/15/20 (v/v/v), Wavelength : 276 nm, Injection volume: (Waters HMWP) tested to perform in the European Pharmacopoeial method. Increase in HMW resolution observed in shorter run-times 2012 Waters Corporation 46

BEH125 SEC, 1.7um Column Life Insulin Analysis 5 4 3 Injection 26 ACQUITY UPLC BEH125, SEC 1.7µm 4.6 x 300 mm 2 1 0-1 -2 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 5 4 3 Injection 853 2 1 0-1 -2 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 Comparable absolute retention time change observed for both columns Conditions: Mobile Phase: L-arginine (1.0 g/l) /acetic acid (99%)/acetonitrile; 65/15/20 (v/v/v), Wavelength : 276 nm, Sample: Human Insulin ( 4mg/mL), Injection volume: 5 µl 2012 Waters Corporation 47

Column Stability for Insulin Analysis Retention Time USP Resolution Retention Time (min) 6 5 4 3 2 1 0 0 100 200 300 400 500 600 700 800 900 5.0 4.0 3.0 2.0 1.0 0.0 USP Resolution Injection Number Over 800 injections the retention time of the insulin monomer peak and the resolution between insulin monomer and dimer peaks are maintained. 2012 Waters Corporation 48

Effect of Pore Size: Insulin ACQUITY UPLC BEH125 SEC 1.7 µm ACQUITY UPLC BEH200 SEC 1. 7µm -0.022 Control Control -0.024-0.026 6 4 Sample 1 Fragment Sample 1 2 0-0.040-0.042-0.044 Sample 2 Sample 2 4.00 5.00 6.00 6.00 7.00 8.00 9.00 Conditions: Mobile Phase: L-arginine (1.0 g/l) /acetic acid (99%)/acetonitrile; 65/15/20 (v/v/v), Wavelength : 276 nm The HMW and insulin fragments are better resolved on the 125Å pore diameter column as compared to the 200Å pore diameter 2012 Waters Corporation 49

Effect of Particle Size: Insulin ACQUITY UPLC BEH125, 1.7µm 4.6 x 300mm -0.022-0.024-0.026 Control Rs= 3.37 HMW BioSuite125 UHR, 4µm 4.6 x 300mm Control Rs= 2.21 Control Rs= 2.08 Insulin HMWP, 10µm 7.8 x 300mm 6 4 2 Sample 1 Rs= 2.63 Fragment Sample 1 Rs= 1.93 Sample 1 Rs= 1.95 0-0.040-0.042-0.044 Sample 2 Rs= 2.63 Sample 2 Rs= 1.92 Sample 2 Rs= 1.88 4.00 5.00 6.00 6.00 7.00 8.00 9.00 1 14.00 16.00 18.00 2 Improved resolution of HMW and Fragment peaks observed with BEH125 1.7 um column Conditions: Mobile Phase: L-arginine (1.0 g/l) /acetic acid (99%)/acetonitrile; 65/15/20 (v/v/v), Wavelength : 276 nm, Column dimensions: 4.6 x 300mm BEH125 and BioSuite125, 7.8 x 300mm Insulin HMWP, Flow rate: 0.4 ml/min (HMWP: 0.5 ml/min), Injection volumes: scaled 2012 Waters Corporation 50

Agenda Size-Exclusion Chromatography Theory and practice ACQUITY UPLC Columns for SEC o ACQUITY BEH450 SEC, 2.5 µm Columns o ACQUITY BEH200 SEC, 1.7 µm Columns o ACQUITY BEH125 SEC, 1.7um Columns Monoclonal Antibody Application o SEC-MS Applications Insulin and Small Protein Applications Factors Influencing Component Resolution Considerations to extending column life 2012 Waters Corporation 51

Factors Influencing Resolution Resolution increases with lower injection volumes Resolution increases with lower flow rate Ideal flow rate is lower than typically running, however will sacrifice speed Resolution increases with column length Baseline resolution typically achieved at 50%-100% molecular weight difference 2012 Waters Corporation 52

Loading Capacity: Undiluted Monoclonal Antibody Biopharmaceutical 2.60 Injection Volume, Total Load 2.40 2.20 2.00 15 µl, 300µg 1.80 1.60 1.40 1.20 Aggregates 21.8% 10 µl, 200µg 1.00 0.80 0.60 0.40 0.20 21.2% 21.0% 5 µl, 100µg 1.50 2.00 2.50 3.00 3.50 4.00 4.50 Humanized IgG (20 mg/ml), 4.6 x 150 mm column Conditions: 25mM Sodium Phosphate buffer, 0.15 M Sodium Chloride, ph 6.8; 280 nm 2012 Waters Corporation 53

Effect of Column Length: Monoclonal Antibody 0.040 0.030 0.020 USP Res=2.07 1.12% 98.88% 150 mm 0.010 0.040 0.030 0.020 0.010 0-0.010-0.020 aggregates mab 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 USP Res= 2.81 1.22% 98.76% 300 mm 0-0.010-0.020 aggregates mab 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 Murine monoclonal antibody (load: 6.4 µg - 150mm; 12.7 µg -300mm) Conditions: 25mM Sodium Phosphate buffer, 0.15 M Sodium Chloride, ph 6.8;214 nm 2012 Waters Corporation 54

Effect of Flow Rate on Rs 0.30 0.20 0.2 ml/min Rs= 2.4 ~1500 psi dimer IgG 0.10 0.25 0.20 0.15 0.10 0.4 ml/min Rs= 1.8 ~3000 psi 0.05 0.15 0.10 0.8 ml/min Rs= 1.3 ~6000 psi 0.05 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Resolution increases with lower flow rates Conditions: 25mM Sodium Phosphate buffer, 0.15 M Sodium Chloride, ph 6.8;280 nm Column: BEH200 SEC 1.7 µm, 4.6 x 150mm 2012 Waters Corporation 55

Effect of Sample Load : Myoglobin Effect of Volume Load 1.90 Effect of Concentration 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 0.70 0.60 0.50 Injection Volume 50 35 15 USP Res 2.65 3.02 3.78 1.80 1.70 1.60 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 0.70 0.60 Concentration (mg/ ml) 10 2.5 1.25 0.625 USP Res 3.26 3.26 3.23 3.15 0.40 0.50 0.40 0.30 0.30 0.20 0.20 0.10 0.10 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 3.50 4.0 0 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 10.50 11.00 Conditions: 25mM Sodium Phosphate, 150mM Sodium Chloride, ph 6.8, 0.4 ml/min, sample 2 mg/ml, Column: ACQUITY UPLC BEH125 1.7µm SEC, 4.6 x 300 mm column Myoglobin: 5 mg/ml (volume load, and 20 ul injection volume (concentration) Increased injection volumes can result in a significant loss of resolution in UPLC-SEC analyses. 2012 Waters Corporation 56

Effect of Salt Anion on BEH200 SEC, 1.7um 4.6 x 150mm Peak Shape Different anions of sodium salt additive Buffer: 10mM sodium phosphate, ph 6.8 and 200mM of additive ( unless otherwise noted) Sample: Thyroglobulin, IgG, BSA, Myoglobin, Uracil 2012 Waters Corporation 57

Effect of Salt Cation on BEH200 SEC, 1.7um 4.6 x 150mm Peak Shape Different cations of chloride salt additive Buffer: 10mM sodium phosphate, ph 6.8 and 200mM of additive Sample: Thyroglobulin, IgG, BSA, Myoglobin, Uracil 2012 Waters Corporation 58

Agenda Size-Exclusion Chromatography Theory and practice ACQUITY UPLC Columns for SEC o ACQUITY BEH450 SEC, 2.5 µm Columns o ACQUITY BEH200 SEC, 1.7 µm Columns o ACQUITY BEH125 SEC, 1.7um Columns Monoclonal Antibody Application o SEC-MS Applications Insulin and Small Protein Applications Factors Influencing Component Resolution Considerations to extending column life 2012 Waters Corporation 59

UP-SEC Recommendations H Class Bio system Biocompatible system for the analysis of biological molecules o Eliminate system corrosion o Best sample recovery Limit sample adsorption Limit damage to molecules, especially oxidation o Eliminate adduct formation in MS detection Based on ACQUITY UPLC H-Class System (Quaternary) True UPLC performance Compatible for all modes of chromatography Incorporates Auto Blend Plus Technology 2012 Waters Corporation 60

Excipients Added to increase protein stability, minimize protein-protein interactions Inhibit adsorption of proteins to vials Can affect protein aggregation Can affect biotherapeutic efficacy and immunogenicity Common excipients Carbohydrates (Sucrose, Treahlose) Surfactants (Triton X-100, Polysorbate (Tween) 80, Polysorbate (Tween) 20, Brij 35, Puronic F-68) Human serum albumin 2012 Waters Corporation 61

Column Lifetime 9000 8000 7000 USP Plate Count 6000 5000 4000 3000 2000 1000 0 Column and guard Column without guard 0 100 200 300 400 500 600 700 800 900 1000 Injection Number Figure 1: Effect of using a 30 mm guard column on column efficiency for a monoclonal antibody. The arrows indicate where the guard column was changed. 2012 Waters Corporation 62

Effect of Column Guard on Lifetime : Monoclonal Antibody No Guards Guards Replaced every 200 injections 0.24 0.22 0.20 Injection 6 Injection 488 0.28 0.26 0.24 Injection 2 Injection 902 0.18 0.16 0.22 0.20 0.18 0.14 0.16 0.12 0.14 0.10 0.12 0.08 0.10 0.06 0.08 0.06 0.04 0.04 0.02 0.02 1.50 2.00 2.50 3.00 3.50 4.00 4.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 mab formulation with excipients (Tween 80) Improved mab peak tailing with use of guard column 2012 Waters Corporation 63

BEH200 SEC, 1.7um Care and Use: (Ways to extend column life) Preparation of SEC Mobile Phase and Needle Wash Pre filter through <0.2 um filter (i.e, Don t inject particulates) Use high purity water Replace mobile phases weekly and do not top off Ramp up and down flow to column over 1min to minimize bed shock Attention to SEC Eluent Inlet Filters Use titanium, NOT stainless steel Inlet filters can be major source of bacterial contamination o Consider occasional sinker replacement or 70% alcohol pull through to prevent problems Column Storage Considerations - Overnight: Continuously flush with the mobile phase at 10% of the maximum recommended flow rate - Extended: Store in the HPLC grade water with 10% methanol 2012 Waters Corporation 64

Bacterial growth 0.14 0.12 0.10 Injection 627 Injection 627 0.08 0.06 0.04 0.02 Injection Injection 10 10 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 System pressure increases slightly over lifetime (~50 psi) Analysis of frit indicated bacterial growth 2012 Waters Corporation 65

Interaction with Flow Cell under Native Conditions 0.015 0.010 Titanium 5 mm flow cell 5 0 0.030 0.020 Standard Teflon AF 10mm flow cell 0.010 0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1 11.00 12.00 13.00 14.00 15.00 16.00 SEC-PDA chromatogram of bovine serum album (BSA) (5 mg/ml in H20) shows the effect of flow cell material on peak shape. BSA monomer exhibits extensive peak tailing. Conditions: 25mM sodium phosphate, 150mM sodium chloride, ph 6.8, 0.4 ml/min, Injection volume: 4 µl, Wavelength: 280 nm; Column: ACQUITY UPLC BEH200 SEC 1.7 µm column, 4.6 x 300mm 2012 Waters Corporation 66

Auto Blend Plus Technology AQUITY H-Class Bio Program methods directly in units of ph and Molarity Calculation of required proportions from physical constants ph is calculated using Henderson-Hasselbalch equation with pka provided Typically use pka corrected for salt concentration OR: Empirical calibration table covering operating range of buffer and salts selected Proportions calculated at each pump stroke for best fidelity Independent gradients for ph and salt concentration Can produce a near true linear ph gradients as required 2012 Waters Corporation 67

Instrument Control Method Auto Blend to Auto Blend Plus Click to Convert to Auto Blend Plus TM 2012 Waters Corporation 68

Typical Gradient Table Auto Blend Plus 2012 Waters Corporation 69

Auto Blend Plus PH and Salt Gradients 2012 Waters Corporation 70

Calibration Options Auto Blend Plus Select to Use Empirical rather than Henderson- Hasselbalch 2012 Waters Corporation 71

Auto Blend Plus Calibration Options - Delivered ph 7.15 7.05 6.95 6.85 Measured ph 6.75 6.65 Programmed pk Corrected pk Empirical 6.55 6.45 6.35 1 2 3 4 5 6 7 8 9 Fraction Number 2012 Waters Corporation 72

Auto Blend Plus Method Development 0.10 0.05 ph 6.1 A B C 0.12 0.06 ph 6.9 A B C 0.10 ph 7.0 A+B C 0.05 0.10 0.05 ph 7.1 B A C 0.10 0.05 ph 7.6 B A C 5.00 1 15.00 A mixture of proteins was separated using cation exchange chromatography- alpha- Chymotrypsinogen A (peak A), Ribonuclease A (peak B), and Cytochrome C (peak C) 2012 Waters Corporation 73

SEC of Humanized Monoclonal Ab Effect of AutoBlend Plus ph Adjustment 0.45 0.40 0.35 0.30 0.25 0.20 0.15 A: 17.26% B: 2.74% C: 2% D: 6% 125mM NaH 2 PO 4 125mM Na 2 H 2 PO 4 1000mM NaCL H 2 O ph6.0 0.10 0.05 0.50 0.40 0.30 0.20 A: 2.74% B: 17.26% C: 2% D: 6% ph7.6 0.10 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 1 2012 Waters Corporation 74

Developing a Robust SEC Method using AutoBlend Plus [NaCl] ph 6.0 0.015 0.010 5 0 Monomer HMW 150 mm 250 mm 350 mm LMW 1 LMW2 6.5 7.0 UV Absorbance @ 280nm 0.015 0.010 5 0 0.015 0.010 5 0 7.5 0.015 0.010 5 0 4.00 5.00 6.00 7.00 8.00 4.00 5.00 6.00 7.00 8.00 4.00 5.00 6.00 7.00 8.00 2012 Waters Corporation 75

Reference Material Care and Use Size Exclusion and Ion-Exchange Chromatography of Proteins using the ACQUITY UPLC System, 715002147, REV. A Size Exclusion and Ion-Exchange Chromatography of Proteins using the ACQUITY UPLC H-Class System, 715002909, Rev A Controlling contamination in LC/MS and HPLC/MS Systems, 715001307 Improving the Lifetime of UPLC Size-Exclusion Chromatography Columns Using Short Guard Columns, Waters Technical Brief, 720004034en Guidelines for Routine Use and Maintenance of Ultra-Performance Size-Exclusion and Ion-Exchange Chromatography Systems, Waters Technical Brief, 720004182en 2012 Waters Corporation 76

Summary: Waters ACQUITY UPLC SEC System Solution New SEC column chemistries in 125Å, 200Å and 450Å pore sizes based on BEH particles Reduced secondary interaction Improved physical and chemical column lifetime Improved column-to-column reproducibility Improved resolution Improved throughput UPLC-SEC provides improved resolution, sensitivity, and higher throughput as compared to tradition HPLC Improved resolution of monoclonal antibody aggregates and clipped forms Complete system solution includes column chemistry and system UPLC columns specifically designed for bioseparations ACQUITY H-Class Bio System designed for the bioapplications Auto Blend Plus Technology provides convenience and efficiency 2012 Waters Corporation 77

Acknowledgements Paula Hong Kenneth Fountain Ed Bouvier Sue Serpa Bill Warren 2012 Waters Corporation 78