Assessment of Actions of the United States, Europe, and China to Address Colony Collapse Disorder. Alejandro Gutierrez

Similar documents
Colony Collapse Disorder: Why is it so difficult to study?

Save the Bees! (University of Maryland, Nation s Beekeepers lost ). The big question is, why are these

Humming. for Bees. February 24, 2014

The Buzz in Pollinators Michael Embrey Tuckahoe Apiaries

Paul van Westendorp Provincial Apiculturist B.C. Ministry of Agriculture

UNEP: The Question of Bee Colony Collapse Disorder Cambridge Model United Nations 2018

The Use of Asian Honeybees for Sustainable Apiculture in Afghanistan Zabul ADT, MSG James Doten, July 10, Background

SAVE THE BEES. Act-Oh-vism September 2018

Issue Overview: Bee blight

General Beekeeping Schedule and Information

So What is Affecting Bee Health?

Honey Bee Health Understanding the issues, providing solutions

Neonicotinoids and Honey Bees

Honey Bee Health Challenges

Bee Detective: Discover the Culprit Behind Declining Bee Populations

Neonicotinoids Special Registration Review. Raj Mann, Ph.D.

What We re Learning About Pollinators. John Ternest February 13, 2018

Bee Diseases Pests and Parasites

During this time keywords/concepts could be added to the questions on the whiteboard.

Farmers & Honeybees. A Farmer s Guide

Bee Health in North America Understanding Colony Decline. Rick Fell, Professor Emeritus Department of Entomology Virginia Tech

Pollinator Protection. Brian Rowe Pesticide Section Manager Michigan Department of Agriculture and Rural Development

Pesticide Risk Assessment and Management for Pollinators

Minnesota and Neonicotinoids. Gregg Regimbal, Manager

Honey Bee Health Understanding the issues, providing solutions

How dо pesticides get into honey?

Pollinator Protection and Regulation: Applicator Considerations, Laws, EPA mitigation, and MDA compensation

Bee Health in North America Understanding Colony Decline. Rick Fell, Professor Emeritus Department of Entomology Virginia Tech

Bayer Bee Care Program The importance of pollinators in sustainable agriculture

Mississippi Honey Bee Stewardship Program

Photo Source: CrystalGraphics.com. Bee Aware! How Pesticide Applicators Can Protect Bees from Pesticide Poisoning.

help host defense give bees a chance

Performance Task Honeybee Mystery: Why are so many bees dying?

MEMO. 1. What has the European Commission done for better bee health?

The Perfect Storm: Setting the Stage for this Year's Loss of Honey Bee Colonies. Marla Spivak University of Minnesota

Bee Diseases, Health Risks & their Management in Africa. Mike Allsopp ARC-PPRI, Stellenbosch South Africa

Protecting Pollinators in

Bojana BEKIĆ, Marko JELOČNIK, Jonel SUBIĆ

Northern NY Agricultural Development Program 2016 Project Report

Tips for Commercial Agricultural Pesticide Applicators

Early one June 2013 morning at an Oregon shopping center parking lot. The bee kill in Oregon resulted from a label violation

Testimony before the House Committee on Agriculture and Natural Resources House Bill 2535 relating to four-year pilot program for pollinator forage

Slide 1. Slide 2. Slide 3

Institute of Ag Professionals

Of Bees and Men. A time will come when bees will disappear and milk will be poisonous... Vanga (Bulgarian fortune teller)

Lesson: Habitat happening: The Buzz on Bees. Environmental Literacy Question: How have humans affected the Chesapeake Bay and its watershed?

Cover Crops and Best Management Practices for Honey Bees in California s Almond Orchards. Billy Synk

HONEY BEE COLONY HEALTH

Written by Joseph Mercola, D.O. Sunday, 01 September :00 - Last Updated Wednesday, 18 March :32

The Case. Honeybees. of the Disappearing. The Case of the Disappearing. Honeybees Y Z 1 Z 2 LEVELED BOOK Y. Connections Writing.

HONEY BEES The Angel of Agriculture Written by Emily Takata

Goal Oriented Beekeeping

Lesson: School Choice: The Buzz on Bees. Environmental Literacy Question: How have humans affected the Chesapeake Bay and its watershed?

UNITED STATES BEEKEEPING INDUSTRY RESOURCE

EU activities on bee-health State of play

Bees: Background and Biology. Cory A.Vorel Utah State University Extension

Pollinator Protection & Seed Treatments: Fact, Fiction & the Future

Honey Bee Health Coalition. Stacey Smith, Keystone Policy Center (Moderator)

Bee health in Europe- Facts & Figures. Dr. Konstantinos Kasiotis Benaki Phytopathological Institute Laboratory of Pesticides Toxicology

Beekeeping in a pollination beekeeper s practice

Bee Surveillance Programmes, Bee Mortality and Risk Assessment. EMEA London Dec

FAQ s Colony Collapse Disorder

Introduction to Honey Bee Health

Protecting Pollinators Everyone s Job

Chemical cocktail in the hive

National Organic Standards Board Livestock Committee Organic Apiculture Recommendation. October 27, 2010

UBC Social Ecological Economic Development Studies (SEEDS) Student Report

Bee Safety of Neonicotinoids - Evidence from Studies Conducted Under Realistic Field Conditions

Phil Veldhuis: Beekeeper / Philosopher Phil Veldhuis, Apiarist

SAVE THE BEE ANNUAL REPORT

Kentucky Queen Bee Breeders Association December 2 nd, Kevin Hale

Virginia Tech study aims to help explain honeybee losses

A BILL. This Act may be cited as the `Saving America's Pollinators Act of 2019'.

The Honey Bee Health Crisis. Is that still a thing?

USDA Honey Bee Pests and Diseases Survey Project Plan for 2014

Slide 1. State of Bee ing. A Summary of Honey Bee Health. Erin Ingram Ph.D. Student University of Nebraska Department of Entomology.

Bees: Earth s Backbone

Bees and crop pollination

1 of 7 4/14/2014 4:04 PM FEATURES NEWS FOOD PLANTS AND ANIMALS CULTURE MAGAZINE SHOP

Fact Sheet on Neonicotinoids

The contribution of beekeeping to UK horticulture

Beekeeping Calendar Hampton Roads, Virginia

EXECUTIVE SUMMARY. RECOMMENDED ACTION: Motion to approve resolution endorsing Bee-Safe policies and procedures.

Farming and the decline of bumblebees

1. Plant bee-friendly flowers and flowering herbs.


Attractiveness and Impact of Terminix All Clear brand Attractive Targeted Sugar Bait (ATSB) to Honey Bees during nectar dearth.

Chemical causes and repercussions of colony collapse disorder in Apis mellifera

Media headlines would suggest that honey bees are in danger of extinction. But is the managed bee population actually under threat?

Faba beans. Introduction. Faba bean production in Australia. Pollination Aware. Case Study 14

USDA Programs Addressing Pollinator Decline and CCD

The Buzz About Bees. Sadie Brown Boston Area Beekeepers Association July 20, 2015

INDIANA POLLINATOR PROTECTION PLAN

Canada s Efforts Supporting Bee Health

Worldwide Loss of Bees a Growing Concern Alissa Fleck

Syllabus of Examination for Proficiency in Apiculture: Apiary Practical Senior & Beemasters Examination

The National Diploma in Beekeeping

Honey Bee Colony Collapse Disorder Model (CCD)

President Allen Blanton opened the meeting and welcomed all new Beekeepers.

Apiary Inspectors of America. Danielle Downey Apiary Specialist Hawaii Department of Agriculture

Transcription:

Assessment of Actions of the United States, Europe, and China to Address Colony Collapse Disorder Alejandro Gutierrez May 14, 2014

Introduction: Without pollinators like the honeybee, the economic portions of many nations would be affected, and a significant setback in the food supply among the many crops that solely depend on pollinators would occur, as pollinators contribute in 30% of pollinating services in the world (Natural Resources Defense Council 2011). As contributors of one third of the food supply in the world, one can tell the role honeybees play in today s agriculture. Agriculture and its practices, such as pesticide use and deforestation, have then needed to drastically expand as global food demand has been increasing rapidly (Tilman et al 2011). With the expansion of agriculture, environmental impacts, such as soil degradation and deforestation are believed to be one of several other anthropogenic and non-anthropogenic contributors in the recent phenomenon called Colony Collapse Disorder (CCD) that poses a great threat to the population of honeybees (United States Department of Agriculture 2013). CCD has been growing in magnitude, concern and attention starting in 2006 with honeybee keepers noticing 30-90% losses of their hives, and currently the United States has only 2.5 million honeybee colonies, which is low in comparison to the 5 million it had back in the 1940 s (United States Department of Agriculture 2013). CCD presently has the attention of many powerful governments, such as the United States, European Union, and China, in which they too are taking notice of the potential dangers of CCD. We see these three different governments taking notice and action against CCD, but there is a differential take on action and policy-making between them. A great divide is at hand, as countries must address CCD but in doing so, it put today s technological advances such as pesticide use in question, some of which have even already placed bans on certain pesticides. With such bans or propositions of potentially doing so on certain aspects in agriculture, the rise of objections from certain interest groups, put into question the legitimacy of the accumulation of studies on issues

such as in the connection between neonicotinoids and CCD. Through the analysis of several studies and peer-reviewed articles, we will observe the different types of actions nations such as the United States, Europe, and China are taking in order to combat CCD, and whether to see if any of the different approaches are showing promising results. The paper will also look deeper into finding the reasons why some governments are able to take more proactive steps in their legislation while others appear to let the issue get worse before reacting to it, as extensive and similar studies have been done worldwide and are constantly replicating the similar answers when it comes to observing practices such as pesticide use, which will be one of our main focuses on this paper. Background: Honeybees are a subset of bees in the genus Apis, which compromise of 10 species, 9 which are only in Asia (Whitfield et la 2006). The most commonly domesticated species of honey bee many are familiar with is known as Apis mellifera honey-bearing bee, which is going to be the focus pollinator of this paper. Apis mellifera are believed to originate from Africa and expanded into Eurasia at least twice and a third expansion in the New World (Whitfield et la 2006). Honey bees and humans have had a long association, as Apis melliferia has been depicted in 7000-year-old cave paintings, demonstrating the collection of honey from wild bee nests (Whitfield et la 2006), so honey bees are extremely important currently and in the past as at least 20 recognized subspecies of the western honey bee currently exist, and have been spread extensively beyond the original natural range due to the benefits it has on many nations economy due to their pollination and honey production services (Mortensen 2013). Economic Importance:

The common honey bee is not simply important due to its production of honey; they also aid in the pollination of many commercial crops. Honey bees contribute to the pollination of at least 30% world s crops and 90% of wild plants (Natural Resources Defense Council 2011). This pollination service contributes up to 15 billion dollars a year in the United States in crops like apples, berries, cantaloupes, almonds, and alfalfa (American Beekeeping Federation 2013). As stated by the American Beekeeping Federation (2013), some of these crops solely or mostly depend on pollination from the common honey bee, such as blueberries and cherries that rely 90 percent on honeybee pollination, whereas almonds depend 100 percent on honeybees when they bloom, and other crops would simply do poorly without the pollinator. With such importance and relevance to our current agriculture and economy, the American Beekeeping Federation (2013) states that there is an estimated 2.4 million colonies in the United States today, in which twothirds are moved around the country to provide their pollinating services, such as in California, which needs more than one million colonies to pollinate the almond crops state-wide. As an added bonus to their billions of dollars already in pollinating services, their production of honey provides 150 million dollars per year alone (Natural Resources Defense Council 2011). Colony Collapse Disorder: Colony Collapse Disorder (CCD), was first observed during the winter of 2006-2007, in which beekeepers were beginning to note the disappearance of 30-90% of their hives (United States Department of Agriculture 2013). What was more alarming and confusing was the absence of the dead bodies, a significant amount of the colony s worker bee population would go missing, leaving the queen, brood, honey, and pollen reserves back in the hive, which would result in a non-functional hive that would collapse (United States Department of Agriculture 2013). The

EPA points to potential factors for CCD, such as parasites, diseases, pesticide poisoning, foraging habitat modification that lead to inadequate foraging and poor nutrition, along with immune-suppressing stress on bees due a combination of all factors noted (EPA 2013). Varroa Mite: An example of a parasite honeybees are exposed to is the Varroa mite. The University of Kentucky describes the Varroa mite as an external parasite that feeds on both adults and brood, with a preference for drone brood. These mites do not immediately kill their victim, but instead feed on the blood which weakens and shortens the life-span of the adult form, and potentially leads to the emergence of the brood with deformities. Originally confined within the region east of Urals and up to Afghanistan, the Varroa mite only affected other species from where it was native, such as the Asiatic honeybee, Apis cerana or Apis indica, but due to anthropogenic factors, the mite is now widespread globally within simply a span of 50 years (Satzburg 2011). They were first reported in Kentucky in 1991 and have spread and became a major pest for the honey bees in many states since their introduction into Florida in the mid 1980 s. These mites spread between colonies through drifting workers and drones. As the mites are introduced to the hive, the females will lay their eggs on brood cells before being capped. As the bee larva matures within its cell, the mites will have matured, fed on the larva, and mated, so as the brood emerges, the mites are prepared to infect neighboring cells. Untreated hives lead to the overall death in honey bee colonies, and can often be mistaken for winter mortality or queenlessness if not thoroughly examined, and so early detection is important along with the treatment of Apistan strips within the brood nest (Bessin 2010). Parasites such as the Varroa mite is believed to be a component of CCD, in which honey bees are undergoing multiple stressors that are affecting the health of colonies all over the world (United States Department of Agriculture 2013)

Neonicotinoids: Neonicotinoid pesticides are new nicotine-like chemicals that act on the nervous systems of insects, but were deemed less dangerous to mammals and the environment than many of the older sprays (EPA 2013). These pesticides are often applied to seeds before planting and are water soluble, allowing them to be applied to the soil and be taken up by the whole plant, making it systemic, and so the plant turns into a poison factory with toxins coming from various parts of it, such as the roots, leaves, stems, and pollen (Maxim 2013). In the United Kingdom, five neonicotinoid insecticides were used in agriculture, such as for seed treatment for cereals, sugar beet, soil treatment of potted plants in ornamental sectors, treatment of turf in amenity sector, foliar sprayed on apples, pears, and along many available for public use in lawns, house plants, etc. (Pesticide Action Network 2013). These pesticides are rather powerful with only small doses of a neonicotinoid needed to able to kill many pollinators when exposed (Maxim 2013). These pesticides don t all stay within the plant, about 90% of the applied pesticide goes into the soil and is able to last a while and be retaken up by other crops or wild plants, any potential side effects of these pesticides are not fully known, but recent studies show that avian and aquatic organisms may be affected by neonicotinoids as well (Maxim 2013). Recent studiesmhave researches in Italy believing they have found a molecular trigger in which neonicotinoids affect a key molecule in a protein that regulates the immune response, and so making honey bees more prone to viruses. Such studies have involved treating bees with levels of neonicotionids that would normally be found in the field and then infecting them with a common pathogen that would normally be kept in check and inactive by the bee s immune system. The results showed that the bees treated with normal levels of the neonicotinoid and

pathogen showed a significant increased replication of the virus from the introduced pathogen, which suggests that these insecticides may in fact be suppressing the immune systems of honeybees and contributing to CCD (Hadlington 2013) Policy and the Honeybees: Beekeepers are not the only ones to notice the current trend of bee populations, governments are taking notice also. Last April of 2013, the European Commission agreed to an EU wide restriction of certain neonicotinoid pesticides (clothianidin, imidacloprid, and thiametoxam), specifically banning the use of them such as for public use like gardeners. The ban was voted in favor by 15 countries, while 8 countries, such as the UK, voted against it, and 4 refrained from voting, leaving a major split among the EU states, so the European Commission was left to take a decision unilaterally, and that has resulted in much debate along appeals from those that are pro neonicotinoids The ban will last for 2 years, specifically on crops and plants that are attractive to pollinators as research is being done on the pesticides (Maxim 2013). The British government has since accepted the ban but still rejects the science behind it, saying that there isn t enough evidence for such ban, and it isn t the only big entity to reject the European Commission s ruling, the Swiss agrochemical company, Syngenta, is taking the EC to court. The company expresses the action as undesirable on their part, but needed due to the incorrectness of the ruling by the Commission stating that the decision of the ban was inaccurate and incomplete as it was based on the studies by the European Food Safety Authority, along that it lacked the full support of the EU member states, so Syngenta states that the link between thiamethoxam, the type of neonicotinoid they use in their product, and decline in bee health is wrong, and that it will leave farmers and farming organizations with less sustainable alternatives. The proceedings of

the lawsuit from Syngenta can be up to two years, but regardless, neonicotinoids have been place in moratorium for the next two years since December 2013, even though partial bans have already existed in Italy, France, Germany, and Slovenia before (Maxim 2013). The United States has been taking less of an active approach, and although a lot of the studies match the ones from Europe, the USDA has instead taken lead into the CCD issue and established a steering committee back in 2007, while the EPA remains an active participant. The steering committee involves various components such as survey and data collection to see the extent of CCD, analysis of bee samples, research, and mitigation along prevention (EPA 2013). Also on July 16 th of this 2013, representatives John Conyers and Earl Blumenauer introduced the Save America s Pollinators Act, H.R. 2692, a bill that would make the EPA take off the neonicotinoid pesticides from the market until properly tested for the safely of pollinators, which is an action similar to the one the European Commission has taken this current year. The bill has been referred to a committee and has a chance of 11% of getting passed (Pesticide Action Network 2013). When it comes to neonicotinoids and China, China is a huge traditional agricultural country with immense pressures from pests, weeds, and plant pathogens, so it relies a lot on pesticides to keep up with its enormous expansion as a developing country, and so China is not only a big pesticide consumer, but also producer. As older pesticides are being removed from domestic use, a need for more efficient and aggressive pesticides are needed, such as imidacloprid, one of several neonicotoids used, but the most common. Imidacloprid accounts for 24 % of the insecticide market. So as other countries are banning or studying the effects of neonicotinoids, China happens to be a big supplier, it is the largest exporter and producer of pesticides in general (Shao et al. 2013). When it comes to neonicotidoids, China will not be

banning them any time soon, but due to the current excessive production rate of imidacloprid and acetamiprid, limits of production will be established by the Chinese Ministry of Industrial and Information Technology (Shao et al. 2013) Decline of Honeybees: Honeybee losses have been well recorded both in the United States and Europe, with the United States experiencing the highest losses between 1947 to 2005, it has lost 59% of managed honey bees, where Europe experienced only 20%. (Zhenghua 2011). China is one of several countries and territories in which there hasn t been a lot of recorded data to know the trend of the honeybee population, but it currently has the most abundance of honeybee colonies and honey production than any other country. A study discussed in Zhenghua s paper had collected the number of honey bee hives, production, and exported honey within the last five years to observe the change of managed honeybees. From the data collected from the last five years, it was compared to other data available, such as from 1980-1984 for honey production and managed honeybee colonies, and the comparison showed that out of 24 provinces assessed, 21 of them had increased in honey production, and one of the twenty-four had reduced in honeybee colonies while the rest increased. Zhenghua s paper discusses that China focuses a lot on honeybees due to their great importance to their agricultural economy, and so when a parasite, disease, etc. emerges endangering the pollinator, a lot of research is invested to find a solution. Conclusion: Many studies and articles are being published every so often discussing the dangers of pesticides, habitat loss, and invasive species for the species such as the honeybee that are very valuable to the global economy. CCD isn t a small or local problem, it is happening globally. CCD is also no longer a minimal and over-blown issue by environmental groups or beekeepers,

since the issue is being taken up by governments that are funding research in order to regulate the phenomenon, which is generating much political friction as agrochemical companies such as Syngenta are at risk if pesticides such as neonicotinoids are indeed found to be a major component for the decline in honeybee health. This paper is observing a spectrum of approaches to CCD between the United States, Europe, and China. Although China being the bigger supplier and consumer of pesticides such as neonicotinoids, the current studies on its honeybee population show that it is not experiencing a loss such as the U.S. or Europe, but we need to take into consideration that the study is only comparing the minimal data it has available, and so a reliable trend won t be available till further data is collected. What we can see is that Europe compared to the United States has a much lower loss in honeybee population and also has the more aggressive approach in limiting neonicotoids, and so with further studies and data collection, a true trend might be visible between these three countries.

Bibliography American Beekeeping Federation. Pollination Facts. ABF. http://www.abfnet.org/displaycommon.cfm?an=1&subarticlenbr=14. 2013. Web. Accessed [2014] Bessin Ric. Varroa Mites Infesting Honeybee Colonies. University of Kentucky College of Agriculture. http://www2.ca.uky.edu/entomology/entfacts/ef608.asp. 2010. Web. Accessed [2014] Brenda Kellar. Honey Bees Across America. Oregon State Beekeepers Association. https://www.google.com/#q=orsba. Web. Accessed [2014] EPA. Pesticide issues in the works: Honeybee colony collapse disorder. http://www.epa.gov/pesticides/about/intheworks/honeybee.htm. 2012. Web. Accessed [2014] EPA. Colony Collapse Disorder: European Bans on Neonicotionoid Pesticides. http://www.epa.gov/pesticides/about/intheworks/ccd-european-ban.html. 2013. Web. Accessed [2014] Hadlington Simon. Neonicotinoids let virus thrive in bees. http://www.rsc.org/chemistryworld/2013/10/neonicotinoids- let-virus-thrive-bees-colonycollapse-disorder. 2013. Web. Accessed [2014] Natural Resources Defense Council. Bee Facts. http://www.nrdc.org/ wildlife/animals/files/bees.pdf. 2011. Web. Accessed [2014] Maxim, Laura, and Jeroen van der Sluijs. "Seed-dressing systemic insecticides and honeybees." Late lessons from early warnings: Science, precaution, innovation (European Environmental Agency) (2013) Vol II, Chapter 16: 369-406. Accessed [2014] Mortensen Ashely et la. European Honey Bee. Entomology and Nematology Department, University of Florida. http://entnemdept.ufl.edu/creatures/misc/bees/euro_honey_bee.htm. 2013. Web. Accessed [2014] Pesticide Action Network. Take bee-harming pesticides off the market. http://www.panna.org/issues/related-actions/take-bee-harming-pesticides-market. Web. Accessed [2014]

Satzburg, Imkerhof. Origin of the varroa mite. Dany Bienenwohl. http://www.bienenwohl.com/eng/herkunft.php. 2011. Web. Accessed [2014] Shao, Xusheng, et al. "Overall status of neonicotinoid insecticides in China: production, application and innovation." Journal of Pesticide Science 38.1 (2013): 1-9. Accessed [2014] Tilman, David, et al. "Global food demand and the sustainable intensification of agriculture." Proceedings of the National Academy of Sciences 108.50 (2011): 20260-20264. Accessed [2014] USDA. Honey Bees and Colony Collapse Disorder. http://www.ars.usda.gov/news/docs.htm?docid=15572. 2013. Web. Accessed [2014] Whitfield, Charles W., et al. "Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera." Science 314.5799 (2006): 642-645. Accessed [2014] Zhenghua, Xie. "Managed honeybee colonies and honey production in China grew during the last five decades." Journal of Apicultural Science 55.1 (2011): 77-85. Accessed [2014]