Modeling and Analysis of Support Pin for Brake Spider Fixture by Fem Using Ansys Software

Similar documents
Design and Analysis of Fixture for component cradle in HMC-800

Design and Analysis of Tiltable Truck Cabin Floor

CHAPTER 6 FINITE ELEMENT ANALYSIS

STATIC STRUCTURAL ANALYSIS OF 3 AXIS CNC MACHINE TABLE USING FINITE ELEMENT ANALYSIS

A REVIEW ON DESIGN, ANALYSIS & WEIGHT OPTIMIZATION OF ROTARY TABLE PALLET

Design and Structural Analysis of Lifting Arm in Processing Lift

Anti-fatigue Performance Analysis on Steel Crane Beam

Analysis and Comparison of Mechanical Properties of Epoxy Fiber and Alloy Steel Leaf Spring

Static Analysis of Alloy Wheel using FEA

WEIGHT OPTIMIZATION OF STEERING KNUCKLE FOR FOUR WHEELERS ****

Finite element analysis and optimization of a mono parabolic leaf spring using CAE software

DOI: /IJMTER DQMWV 51

Design & Analysis of Mono Composite Leaf Spring

DESIGN AND BUCKLING STRENGTH EVALUATION OF A LIFTING BEAM FOR 350 TONNES THROUGH FEA

FINITE ELEMENT METHOD BROACH TOOL DRILLING ANALYSIS USING EXPLICIT DYNAMICS ANSYS

To have a clear idea about what really happened and to prevent the

Modeling Component Assembly of a Bearing Using Abaqus

Passive Viscoelastic Constrained Layer Damping Technology for Structural Application

DETERMINATION OF FAILURE STRENGTH OF CURVED PLATE WELD JOINT USING FINITE ELEMENT ANALYSIS

Comparison of Static Analysis of Bonded, Riveted and Hybrid Joints by using Different Materials

Determination of Failure Strength of Flat Plate Weld Joint Using Finite Element Analysis

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN

STATIC STRUCTURAL, FATIGUE AND BUCKLING ANALYSIS OF JET PIPE LINER BY INDUCING CORRUGATION

Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing

Contents FUNDAMENTALS OF STRUCTURAL ANALYSIS. Section A1 Elasticity... 3

Design and Analysis of Hydraulic Operated Press Brake

FINITE ELEMENT ANALYSIS OF A 2.5 TONNE HYDRAULIC PUNCHING MACHINE

DIAGNOSIS OF CRACKS IN STRUCTURES USING FEA ANALYSIS

Design and Analysis of a Connecting Rod

STRESS -STRAIN ANALYSIS AND EXPERIMENTAL VERIFICATION OF THREE-ROLL PYRAMIDAL SHAPE CONFIGURATION ROLL BENDING MACHINE

Rong He School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, , China

NUMERICAL ANALYSIS OF HYBRID CARBON FIBER COMPOSITE SPECIMEN AND VALIDATION OF RESULTS

Finite Element Modeling and Simulation of Thin Wall Machining of Al 8011

JCHPS Special Issue 7: 2015 NCRTDSGT 2015 Page 253

Experimental and finite element simulation of formability and failures in multilayered tubular components

Stress Analysis of Polyoxymethylene which Leads to Wear in Pin on Disc Configuration using Finite Element Method

FLEXURAL BEHAVIOUR OF COLD FORM STEEL SECTIONS SUBJECTED TO STATIC LOADING

Behaviour of Concrete Filled Rectangular Steel Tube Column

Stress calculation at tube-to-tubesheet joint using spring model and its comparison with beam model

New approach to improving distortional strength of intermediate length thin-walled open section columns

Design of Spherical Pressure Vessel against Buckling Failure as Per ASME and Validation with FEA Results Lokesh N 1 Manu S S 2

STRUCTURAL AND MODAL ANALYSIS OF CRANE HOOK WITH DIFFERENT MATERIALS USING FEA

Aircraft Structures B H. for engineering students. T. H. G. Megson ELSEVIER SAN FRANCISCO SINGAPORE SYDNEY TOKYO

Modelling of Pressure Vessels with different End Connections using Pro Mechanica

Analysis of Perforated Steel Channel Members When Subjected to Compression M. Jayakumar BhaskarM.Tech 1 P. Sai Pravardhan ReddyM.

Design and Bolt Optimization of Steam Turbine Casing using FEM Analysis

Design and Analysis of Blanking and Piercing Die Punch

DYNAMIC RESPONSE ANALYSIS OF THE RAMA 9 BRIDGE EXPANSION JOINT DUE TO RUNNING VEHICLE

Design and Analysis Of Composite Propeller Using ANSYS

9. VACUUM TANK 9. VACUUM TANK

Conception, Design and Development of a Test Bench for the Automotive Industry Intercoolers

Contact Pressure Analysis of Steam Turbine Casing

IJTRD Jul-Aug 2016 Available 227

SET PROJECT STRUCTURAL ANALYSIS OF A TROUGH MODULE STRUCTURE, IN OPERATION AND EMERGENCY Luca Massidda

II. LITERATURE REVIEW

Application of Controlled Thermal Expansion in Microlamination for the Economical Production of Bulk Microchannel Systems Abstract Introduction

Computational Analysis of Stress Intensity Factor for a Quarter Circular Edge Crack under Mode-I loading

Structural and Thermal Analysis of Metal - Ceramic Disk Brake Mahammad Rasul S. 1 1Byra Reddy. 2

Design, Analysis and Optimization of Overhead Crane Girder

Design, Optimization And FE Analysis of Composite Mono Leaf Spring

THERMAL EFFECT ON TOPOLOGY OPTIMIZED CRANK CASE COVER FOR ADDITIVE MANUFACTURING

Jib Crane Analysis Using FEM

Fatigue Life Estimation of Small Gas Turbine Blisk

Structural Optimization & Analysis of Heavy Steel Beam for Reduction of Material & Stress Using ABAQUS FE Package

STRESS ANALYSIS OF CONNECTING ROD BY FINITE ELEMENT METHOD AND EXPERIMENTAL METHOD

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

Zacq Consultants. An Overview

7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS

Determination of Fatigue Life of Drum Brake Using Experimental and Finite Element Analysis

Influence of Ductility Ingredients of Structural Adhesives on Fracture Energy under Static Mixed-Mode Loading 1. Introduction

Stress Analysis of Aircraft Fuselage Cockpit Floor Structure Using Patran and Nastran Software and Hand Calculations

Stress Analysis and Optimization of Rolling Mill Housing Using FEA Tool

Structural Analysis and Optimization of a Mono Composite Leaf Spring for Better Mechanical Properties and Weight Reduction

How to model Mohr-Coulomb interaction between elements in Abaqus

THE STUDY OF THE OVER STRENGTH FACTOR OF STEEL PLATE SHEAR WALLS BY FINITE ELEMENT METHOD

Design and Analysis of Multilayer High Pressure Vessels and Piping Tarun Mandalapu 1 Ravi Krishnamoorthy. S 2

I. INTRODUCTION. International Journal of Engineering Innovation & Research Volume 4, Issue 4, ISSN:

Stress Analysis of Fuel Access Cut out of the bottom skin of a transport aircraft

COMPOSITE LANDING GEAR COMPONENTS FOR AEROSPACE APPLICATIONS

FATIGUE ANALYSIS OF A NOTCHED CANTILEVER BEAM USING ANSYS WORKBENCH. N. Sinan Köksal, Arif Kayapunar and Mehmet Çevik

STRUCTURAL ANALYSIS AND OPTIMIZATION OF BIW A- PILLAR USED IN AUTOMOBILES

Modal Analysis of a Typical Landing Gear Oleo Strut

Numerical Study of Dual-core Self-centering Sandwiched Buckling Restrained Brace

FEA and Optimization of Flywheel Energy Storage System

Abstract Introduction and Background Formulation Results and Discussion Conclusion and Future Work References...

ANALYSIS OF CARBON-FIBER COMPOSITE STRENGTHENING TECHNIQUE FOR REINFORCED BEAM

Modelling and Analysis of Boron Carbide (B 4 C) Reinforcement in Aluminium Alloy (A356/LM25) Matrix Composite Using CATIA & ANSYS

Residual Stress Measurement of Quenched Components using Slitting Method

The Finite Element Analysis and Geometry Improvements of Some Structural Parts of a Diesel Forklift Truck

International Journal of Railway Research, Vol.1, No1, pp International Journal of. Railway Research

Design and Analysis of Crankshaft Used in Aerospace Applications and Comparision Using Different Materials.

CHAPTER 4 STRENGTH AND STIFFNESS PREDICTIONS OF COMPOSITE SLABS BY FINITE ELEMENT MODEL

The Static Analysis of the Truss

Buckling Length Factor of Perforated Column in Steel Pallet Racking

ANSYS CALCULATIONS REPORT Outer Vessel Ansys outer vessel Sylvain ANTOINE Amaury PORHIEL - Rev C

Modeling and Analysis of Mono Composite Leaf Spring under the Dynamic load condition using FEA for LCV

Analysis of RCC Beams using ABAQUS

IJRASET: All Rights are Reserved

Finite Element Studies on the Behavior of Reinforced Concrete Structures Using LUSAS

DCB TEST SAMPLE DESIGN FOR MICRO-MECHANICAL TESTING

Transcription:

IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684 Volume 6, Issue 1 (Mar. - Apr. 2013), PP 10-15 Modeling and Analysis of Support Pin for Brake Spider Fixture by Fem Using Ansys Software 1 Dr.Yadavalli Basavaraj, 2 Pavan Kumar B K Professor & Head, Dept.of Mechanical Engineering. Ballari Institute of Technology and Management, Bellary. Karnataka. India Asst.Professor, Dept.of Mechanical Engineering. Ballari Institute of Technology and Management, Bellary. Karnataka. India Abstract: A fixture is designed and built to hold, support and locate every component to ensure that each is drilled or machined with accuracy and manufactured individually. A fixture can be designed for a particular job. A brake spider includes a spider body with a central opening and a slot for receiving a camshaft and bracket assembly. The brake spider is attached to axle housing via the central opening. The form to be used depends on the shape and requirement of the work piece to be machined. In the existing fixture, used for modeling brake spider component, only five components were machined per hour. In the present work, detailed study of brake spider component is carried out and design is modified to increase the productivity. The new fixture design is carried out by using CATIA V5 modeling software and it is critically evaluated for the failure of support pin component, by finite element method (FEM) using ANSYS software. This modified design is adapted in the fabrication of fixture and is tested for its productivity. It is found that there is a considerable enhancement in the productivity to seven components per hour with required accuracy. Key Words: Fixture; support pin; ansys; brake spider; CATIA V5; FEM I. Introduction Over the past century, manufacturing has made considerable progress. New machine tools, highperformance cutting tools, and modern manufacturing processes enable today's industries to make parts faster and better than ever before. Although work holding methods have also advanced considerably, the basic principles of clamping and locating are still the same. The fixtures must satisfy the following conditions Reduction of ideal time Cleanliness Provision for coolant Safety II. Literature survey A brief review of contemporary research supporting this paper is presented below. The study of Dr. Yu Zheng presents a method for finding form-closure locations with enhanced immobilization capability. Fixtures are used in many manufacturing processes to hold objects. Fixture layout design is to arrange fixturing elements on the object surface such that the object can be held in form-closure and totally immobilized. The research of closure locations was determined experimentally by Kartik as it focused on the kinematics, stiffness, repeatability of a moving groove and dual-purpose positioned fixture. A dual-purpose positioned fixture is an alignment device that may be operated in a fixture mode or a six-axis nano-positioning mode. In contrast to concentration of six axis nano positioning method Dr.Patrick J. Golden tested a unique dovetail fretting fatigue fixture was designed and evaluated for testing turbine engine materials at room or elevated temperatures. Initial test results revealed interesting variability in the behavior of the nickel based super alloy specimens at elevated temperature. Mervyn addresses the development of an Internet-enabled interactive fixture design system. A fixture design system should be able to transfer information with the various other systems to bring about a seamless product design and manufacturing environment. The general situation of research on agile fixture design is summarized and the achievements and deficiencies in the field of case-based fixture design are pointed out. There are no correlative case bases and matching mechanisms during the period from establishing the fixture planning to design the fixture in currently used case-based fixture design systems. Thus a great amount of experience of fixture design is wasted and 10 Page

cannot be re-used, which reduces design efficiency and violates the original intention of case-based reasoning methods. In order to realize agility of fixture design, including re-configurability, re-scalability and re-usability. Wassanai Wattanutchariya s paper investigates the allowable tolerance limits in fixtures in order to minimize fin buckling while attaining precise alignment. A high-temperature buckling model is developed to predict the onset of fin buckling within a fixture. The results of the model are validated empirically. The post-buckled beam shows the soften-and-hardening characteristics of restoring force. Inorder to clarify chaotic behavior of thin walled beams, detailed experimental results carried by Nagai are presented on chaotic vibrations of a post-buckled beam subjected to periodic lateral acceleration. The principal component analysis predicts that the contribution of the lowest mode of vibration to the chaos is dominant among other contributions of multiple vibration modes. K.C. Aw paper concentrates on electronic equipment used for maritime application. Simulation using ANSYS workbench software was performed to comprehend the effect of various parameters of accelerated testing performed on these waterproof enclosures. Experiments were performed to examine the correlation with simulation results. The above mentioned strategy was applied to reduce the buckling in a part of fixture design assembly. But our main objective of the project is to increase the productivity with required accuracy. III. Objectives As design of the fixture for the component cannot happen in isolation, the objective of the project also extends to the aspects like the features of the vertical machining center. Process planning, cycle time estimation and designing of the fixture for the brake spider component is carried out. Critical component of the fixture would be analyzed from stress and deflection point of view. IV. Methodology Study of the brake spider component and the existing fixture in use. Study of the process planning: Estimation of the process for achieving the final dimensions of the components, selection of tools, tool holders, insert grades, cutting parameters and arriving at the cycle time of the component. Fixturing concept: As per the fixture base plate dimensions the vertical machining center is selected and conceptualized design is done by arresting six degrees of freedom by resting, locating, orienting and clamping. Detailed design: Assembly drawing of the brake spider fixture using CATIA V5 modeling software. Analysis of critical components: Static deflection analysis of key element of fixture support pin using ANSYS software. V. Fixture design Fixture planning is to conceptualize a basic fixture configuration through analyzing all the available information regarding the material and geometry of the work piece, operations required, processing equipment for the operations and the operator. Method of locating. Design the clamping method. Design any supports required. Design the base required. Design the fixture body. VI. Design features 1. Rest 2. Location 3. Orientation 4. Clamp 6.1 Cycle time estimation The design of fixtures should be such that the process of loading and unloading the components takes the minimum possible time and enables on easy loading. Table 1: Cycle time estimation Total cycle time 6.40 mins Load and unload time 2 mins Total time 8.40 mins No. of components / hour 7.142 nos. 11 Page

Hence, the production rate of brake spider component is seven components per hour. 6.2 Fixture planning Certain things to be remembered while designing a fixture Application of the fixture (manufacturing/repair/inspection) Number of parts for which the fixture will be used Level of accuracy required The criticality of the part with respect to the aircraft Replace ability, reusability and discard ability of the fixture Standardization of fixtures and fixturing principles 6.3 Brake spider component A brake spider includes a spider body with a central opening and a slot for receiving a camshaft and bracket assembly. The brake spider is attached to axle housing via the central opening. The slot is defined by an inner surface that does not completely surround the camshaft. The slot allows the camshaft and bracket assembly to be removed from a wheel end assembly for service operations without having to remove other components from the wheel end assembly, such as a wheel hub. Fig 1: 3D front view and side view model of brake spider component 7. Assembly of brake spider fixture The entire assembly is designed and assembled on the prerequisites of the customer. The model of the entire fixture assembly in 3D view is shown in Fig 2. The support pin of the fixture assembly is bolted onto the work table of the vertical machining center. Stage one deal with information gathering and analysis. These include product analysis such as the study of design specifications, process planning, examining the processing equipment and considering operator safety and ease of use. In this stage, all the critical dimensions and feasible datum areas are examined in detail. 12 Page

Stage two involves the consideration of clamping and locating schemes. A clamping scheme is devised in such a way that it will not interfere with the tools or cutters and are fully compatible with proposed locating surfaces or areas. The locating scheme, using standard elements such as pins, pads, etc. is designed to be consistent with clamping and tool-guiding arrangements. Stage three is the design of the structure of the fixture body frame. This is usually built around the as a single element which links all the other elements used for locating, clamping tool-guiding, etc. into an integral frame work. VII. Introduction to finite element method The finite element method is numerical technique, well suited to digital computers, which can be applied to solve problems in solid mechanics, fluid mechanics, heat transfer and vibrations. The procedure to solve problems in each of these fields is similar in all finite element models of the domain (the solid in solid mechanics problems) is divided into a finite number of elements. 8.1 Basic steps of finite element method Discretization of the continuum Selection of key points Choose proper field variables Generating the system of equations Globalizing the system equations Solution to the system equations to obtain the unknown field variables Computation of element variable or secondary field variables 8.2 Introduction to ANSYS ANSYS is finite element analysis software that enables engineers to perform the following tasks. Build computer models or transfer CAD models of structures, products, components, or systems. Apply operating loads or other design performance conditions. Study physical responses, such as stress levels, temperature distributions or electromagnetic fields. Optimize a design early in the development process to reduce production costs. VIII. Static analysis of support pin The procedure for a static analysis consists of these tasks: 1. Set the analysis title 2. Preferences 3. Preprocessor Element type Real constant Material properties Model generation Applying boundary conditions 4. Review of result The detailed steps in performing static deflection of support pin through finite element approach are as follows: a. Set the analysis title: Static deflection of support pin b. Preferences: Structural, Discipline: h method c. Preprocessor: Element type: The elements chosen for the present work is SOLID-45. Material properties: Modulus of elasticity of steel= 2 x 10 5 N/mm 2 Poisson s ratio = 0.3 Density = 7800 N/mm 3. Model generation: The model is imported from CATIA V5 and the meshing has been carried out using Ansys-mesh tool. Boundary conditions: A force of 1742N obtained from theoretical calculation is applied on the middle portion of support pin as shown in Fig 3. The bottom face of the support pin is constrained to all degrees of freedom. 13 Page

9.1 Stress distribution of support pin Fig 3: Boundary conditions applied on support pin Fig 4: Von-mises stress distribution of support pin The von mises stress is found to be maximum of 61.5MPa. Maximum stress can be seen at the top centre portion of the support pin than at the remaining portion of it as shown in Fig 4. 9.2 Static deflection of support pin Fig 5: Static deflection of support pin 14 Page

The displacement of support pin is shown in Fig 5. The maximum static deflection of support pin is found to be 0.512 x 10-05 mm. IX. Conclusions 1. In the current work, the following conclusion is outlined. The fixture for brake spider component machining as per the customer requirements has been attempted successfully, in order to increase the productivity. 2. The static analysis of the important basic component of the designed fixture carried out by finite element method using ANSYS software is summarized as follows. Maximum cutting force and maximum clamping force employed for the analysis are 1742N and 20904N respectively. Maximum static deflection of support pin part of the fixture is found to be 0.512 x 10-05 mm and maximum stress (Von mises) is found to be 61.5Mpa. These values are within specified limits which are shown in Fig 4 and Fig5. References [1]. S. Ratchev, K. Phuah, S. Liu, FEA-based methodology for the prediction of part fixture behavior and its applications School of M3, University of Nottingham, United Kingdom, Journal of Material Processing Technology 191 (2001) 260 264 [2]. Kartik M. Varadarajan, Martin L. Culpepper, A dual-purpose positioned-fixture for precision six-axis positioning and precision fixturing MA02139 (2002), USA [3]. Patrick J. Golden, Development of a dovetail fretting fatigue fixture for turbine engine materials Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433(2004), USA. [4]. Yu Zheng, Chee-Meng Chew, A geometric approach to automated fixture layout design, National University of Singapore, Singapore 117576, Singapore(2005). [5]. W. Li, Peigen Li, Y. Rong, Case-based agile fixture design School of MechanicalScience and Engineering,Worcester Polytechnic Institute, Worcester, MA 01609-2280(2005), USA. [6]. WassanaiWattanutchariya, Bonding fixture tolerances for high-volume metal microlamination based on fin buckling and laminae misalignment behavior, (2007) [7]. F. Mervyn, A. Senthilkumar, S.H. Bok, A.Y.C. Nee, Development of an Internet-enabled interactive fixture design system, 10 Kent Ridge Crescent, Singapore.(2009) [8]. K. Nagai, T. Yamaguchi, Experiments on chaotic vibrations of a post-buckled beam with an axial elastic constraint, Gunma 376-8515, Japan.(2010) [9]. SadettinOrhan, Analysis of free and forced vibration of a cracked cantilever beam, Department of Mechanical Engineering, Faculty of Engineering, Kirikkale University, 71400 Kirikkale, Turkey [10]. Rong Y, Bai Y, J Manufacturing Science Engineering, Automated generation of fixture configuration design Trans ASME 1997; 119(2):208 19. [11]. Ratchev, K. Phuah, G. Lammel, W. Huang, An experimental investigation of fixture work piece contact behavior for the dynamic simulation of complex fixture work piece systems [12]. K.C. Aw, W.D.J. Huang, M.W.R.P. De Silva, Evaluation of climatic vibration testing on plastic waterproof enclosure for electronic equipment using ANSYS workbench,(2011) The University of Auckland, 20, Symonds Street, Auckland, New Zealand. 15 Page