Í.Ï. Äèêèé, Å.Ï. Ìåäâåäåâà... Ñòðóêòóðà è ìàãíèòíûå ñâîéñòâà...

Similar documents
Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

Structural and Magnetic Properties of Aluminium-Substituted Cobalt-Ferrite Nanoparticles Synthesised by the Co-precipitation Route

CONTENTS INTRODUCTION EXPERIMENTAL

(received: 31/7/2004 ; accepted: 25/9/2004)

Predominantly Exposed Facets and Their Heterogeneous. UVA/Fenton Catalytic Activity

Electronic Supplementary Information (ESI) Self-assembly of Polyoxometalate / Reduced Graphene Oxide

PREPARATION of 2-5 µm MAGNETITE POWDER from HIGH CARBON FERROCHROME (Fe-Cr) ALLOY

EFFECT OF MANGANESE SUBSTITUTION ON Co Ga AND Co Tl FERRITE NANOPARTICLES PREPARED BY HYDROTHERMAL ROUTE

Non-Magnetic Stainless Steels Reinvestigated a Small Effective Field Component in External Magnetic Fields

R.M.Cornell U. Schwertmann. The Iron Oxides. Structure, Properties, Reactions, Occurrence and Uses. Weinheim New York Basel Cambridge Tokyo VCH

Synthesis and Characterization of Cadmium Sulfide Nanoparticles

SYNTHESIS OF MAGNETITE NANO-PARTICLES BY REVERSE CO- PRECIPITATION

STRUCTURE AND MAGNETIC PROPERTIES OF THE Zr 30

Synthesis and characterization of a narrowband Ca 5 (PO 4 ) 3 (OH):Gd 3+, Pr 3+ phosphor for medical applications

This journal is The Royal Society of Chemistry S 1

Annealing study of Fe 2 O 3 nanoparticles: Magnetic size effects and phase transformations

Supporting Information. for Efficient Low-Frequency Microwave Absorption

Preparation and Characteristics of BiFeO 3 Ceramics Doped by MnO 2 and Co 2 O 3

CHAPTER 8 SYNTHESIS AND CHARACTERIZATION OF COPPER DOPED NICKEL-MANGANESE MIXED FERRITE NANOPARTICLES BY CO-PRECIPITATION METHOD

Ultra-large scale syntheses of monodisperse. nanocrystals via a simple and inexpensive route

Supplementary Figures

A fascinating metallo-supramolecular polymer network with thermal/magnetic/light-responsive shape-memory effects anchored by Fe 3 O 4 nanoparticles

Synthesis and Characterization of Lanthanum-doped Ni-Co-Zn Spinel Ferrites Nanoparticles via Normal Micro-Emulsion Method

Supporting Information

Synthesize And Investigate The Austenitic Nanostructural Propertise

diffraction Studies of Ceramic Oxides

Microstructure and Magnetic Properties of Iron Oxide Nanoparticles Prepared by Wet Chemical Method

INTEGRATED OPTICAL ISOLATOR

Magnetic and Mössbauer studies of Fe and Co co-doped SnO 2

Mössbauer analysis of iron ore and rapidly reduced iron ore treated by micro-discharge using carbon felt

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.3, pp ,

Dielectric, Magnetic, Electric and Structural Properties of Ni 0.2 -Co x -Zn 0.8-x Ferrite Nanoparticles Synthesized by Sol-Gel Auto Combustion Method

Thermal Property and Structural Characteristics of Ni0.9Cu0.1Fe2O4 Ferrite Material

Magnetic, Electric and Structural Properties of Ni Substituted Co-Zn Ferrite Nanoparticles Synthesized by Sol-Gel Method.

Iron oxide(iii) nanoparticles fabricated by electron beam irradiation method

Growth and characterization of urea-thiourea non-linear optical organic mixed crystal

University of Groningen

SYNTHESIS AND CHARACTERIZATION OF LEAD ZIRCONATE BY HOMOGENEOUS PRECIPITATION AND CALCINATIONS

Mössbauer Measurements on Spinel-structure Iron Oxide Nanoparticles

STUDIES AND MAGNETIC PROPERTIES OF Ni-Zn FERRITE SYNTHESIZED FROM THE GLYOXILATES COMPLEX COMBINATION

Preparation of NdFe 10.5 V 1.5 N x powders with potential as high-performance permanent magnets

Generation Response. (Supporting Information: 14 pages)

Preparation of Lanthanum Oxide Nanoparticles by Chemical Precipitation Method Qiuli ZHANG a, Zhenjiang JI b, Jun ZHOU c, Xicheng ZHAO, Xinzhe LAN

INFLUENCE OF PHOSPHOROUS AND UREA ON THE MAGNETIC AND MECHANICAL PROPERTIES OF NANOSTRUCTURED FEPTP FILMS

Crystal growth behavior in CuO-doped lithium disilicate glasses by continuous-wave fiber laser irradiation

Preparation and characterization of nano ceramic size La 0.5 Ni 0.5 FeO 3, and La 0.8 Sr 0.2 CO 0.2 Fe 0.8 O 3 cathodes for Solid Oxide Fuel Cells

Synthesis and Characterization BaFe 12-2x Ni x Co x O 19 Using Chemical Coprecipitation and Variations of Calcination Temperature

Green synthesis of copper nanoparticles and conducting nanobiocomposites

Investigations on Mn x Zn 1-x Fe 2 O 4 (x = 0.1, 0.3 and 0.5) nanoparticles synthesized by sol-gel and co-precipitation methods

Processing of Nano-crystallite Spinel Ferrite Prepared by Co-precipitation Method

Chapter -3 RESULTS AND DISCSSION

SOLUBILITY LIMITS OF ERBIUM IN PARTIALLY DISORDERED CRYSTALS LANGANITE AND LANGATATE *

magnetic nanoparticles, part 1. synthetic methods: from mechanochemistry to biomimetics

Magnetic and electrical properties of calcium doped Cobalt spinel ferrites (Co 1-x Ca x Fe 2 O 4 ) synthesized by solution combustion method

In vivo Aggregation-Induced Transition between T 1 and T 2. Relaxations of Magnetic Ultra-Small Iron Oxide

Australian Journal of Basic and Applied Sciences. Effect of PH on Cobalt Oxide Nano Particles Prepared by Co-Precipitation Method

TitleNew Hexavalent Iron Compound, K₂Sr(

Influence of preparation method on the performance of Mn Ce O catalysts

Degree of Preferred Growth of Single StageHot Deformed NdFeB Magnets

Graphene/Fe 3 O Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties

Fabrication and Characterization of a Polypyrrole Coated Copper Nanowire Gas Sensor

Facile synthesis of Fe 3 O 4 nanoparticles on metal organic framework MIL- 101(Cr): characterization and its catalytic activity

Preparation and Characterization of Cu-Zn ferrites by Combustion method

Supporting Information

Structure and Magnetic Properties of Mn and Al Doped Magnesium Ferrite

Reduced Magnetism in Core-Shell Composites

SYNTHESIS AND CHARACETRIZATION OF MIXED OXIDE BASED ON COBALT FERRITE NANOPARTICLES

Mixture of silver and iron oxide nanoparticles produced by chemical methods

Preparation and Characterization of Nickel and Copper Ferrite Nanoparticles by Sol-Gel Auto-Combustion Method

Characterization of Iron(III) Oxide Nanoparticles Prepared by Using Ammonium Acetate as Precipitating Agent

Supplement of The effects of nitrate on the heterogeneous uptake of sulfur dioxide on hematite

Mossbauer spectroscopic and magnetic studies of magnetoferritin

Complex Permeability Spectra in Ni-Zn Ferrites

ABIOTIC AND BIOTIC FACTORS AFFECTING CONTAMINANT TRANSFORMATION AT IRON OXIDE SURFACES (Cosponsored with the Division of Geochemistry) Organized by

Optical spectroscopy of sodium silicate glasses prepared with nano- and micro-sized iron oxide particles

LASER SURFACE MELTING OF 304 STAINLESS STEEL FOR PITTING CORROSION RESISTANCE IMPROVEMENT

Preparation and Characterization of Copper Oxide -Water Based Nanofluids by One Step Method for Heat Transfer Applications

Structure of crystallographically challenged hydrogen storage materials using the atomic pair distribution function analysis

Assessment of Gamma Dose Rate for Hypothetical Radioactive Waste Container

Structural and Elastic Properties of Chromium Substituted Nickel Ferrites

Study of the Structural and Magnetic Properties of Li Substituted Cu-Mn Mixed Ferrites

Supporting Online Material for

Ibn Al-Haitham Jour. for Pure & Appl. Sci Vol. 32 (1) 2019

Study of Structural and Morphological Properties of MnFe2O4 Ferrite Material

Advances in Bioresearch ORIGINAL ARTICLE

Nano Ag Conductive Ink

Effect of Nitriding on Phase Transformations in the Fe-Mn Alloys

Supplementary Figure 1. SEM images of LiCoO 2 before (a) and after (b) electrochemical tuning. The size and morphology of synthesized LiCoO 2 and

Characterization of the metastable Cu-Fe nanoparticles prepared by the mechanical alloying route

Supporting Information. Selective Metallization Induced by Laser Activation: Fabricating

Synthesis, Characterization and Magnetic Properties of γ-irradiated and Unirradiated Magnetite Nanopowders

ITO. Crystal structure: Cubic, space group Ia3 No. 206, ci80, a = nm, Z = 16

Motivation: Biofunctional Composite Nanoparticles

Magnetic behaviour of nano-particles of Ni 0.5 Co 0.5 Fe 2 O 4 prepared using two different routes

ELECTROLESS PLATING Cu ON Mo POWDER AND ITS REACTION MECHANISM

Preparation and characterisation of "Y-Fe203 as tape recording material

Studying of Influence of neutron irradiation on element contents and structures of aluminum alloys SAV-1 and AMG-2.

Synthesis and Characterization of nanocrystalline Ni-Co-Zn ferrite by Sol-gel Auto-Combustion method.

Characterization of SrAlO:Dy nano phosphors

Electronic Supplementary Information. Effect of Lattice Strain in Electrocatalytic Activity of IrO 2 for Water Splitting

Transcription:

«Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 859, 2009 ñåð³ÿ ô³çè íà «ßäðà, àñòèíêè, ïîëÿ», âèï. 2 /42/ Ñòðóêòóðà è ìàãíèòíûå ñâîéñòâà... 89 547.535.36 -.. 1,.. 1,.. 2,.. 2,.. 2 1 «-», 61108,.,1 2..,61004,,., 4 e-mail: fedorets@univer.kharkov.ua 29 2009. - 22 500. - -..,., (M s ~ 74 2 / ). :,, -,, -,,. STRUCTURE AND MAGNETIC PROPERTIES OF GAMMA ACTIVATED NANOPARTICLES OF MAGNETITE N.P. Dikiy 1, E.P. Medvedeva 1, I.D. Fedorets 2, N.P. Khlapova 2, N.S. Lutsay 2 1 National Scientific Center Kharkov Institute of Physics and Technology Akademicheskaya st. 1, Kharkov, Ukraine, 61108 2 N.V. Karasin Kharkiv National University, Svobody sq. 4, Kharkov, Ukraine, 61077 Activation of nanoparticles of magnetite is carried out by slowing-down - radiation on high-current electronic accelerator in NSC KIPT at energy of electrons 22 MeV and a current 500 µ. The comparative analysis of component-phase structure and state of crystal structure of activated and initial nanomagnetite was carried out by X-ray diffractometry and IR spectroscopy methods. The magnetic properties of samples were investigated by magnetometric method. Radiative transformations have been analysed and it was shown that there were no essential changes in structure and properties of nanomagnetite. Activated nanoparticles of magnetite keep monophase state and crystallinity of initial state and have high level of saturation magnetization (M s ~ 74 m 2 /kg), so they predetermine possibility of their usage as a magnetically operated radiopharmpreparation. KEY WORDS: nanomagnetite, electron accelerator, gamma-activation, X-ray diffractometry, IR- spectroscopy, magnetometry, radiopharmpreparation -.. 1,.. 1,.. 2,.. 2,.. 2 1 «-». 1,., 61108 2.. 61077,,., 4-22 500. - -..,., (Ms ~ 74 2/ ). :,, -,, -,,.,,,,. (Fe 3 O 4 ),,. Fe 3 O 4,

90 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 859, 2009 (,, ).,.,.,,,, [1,2]..,.,,,,..,., - [3].. [4] ( 90 Y):., [5,6], 90 Y 188 Re.., -., -. -.,, -, -,. Fe 3 O 4 Alta Aesar a Johnson Mathey Company,,. - 22 500. - Ge(Li)- 2,2 1333. -., 35º. - ( ~ 1,5-2 ) ~ 80. ( ) - ( ). -2 30 10 Cu ( =1,5406 ). 1 /, 5 60. - Fe 3 O 4 - : Fe-O- Fe 3 O 4,, OH, NH 2. Specord-75 IR 2200 400-1, KBr. - 12 koe..1 Ge(Li)- -. 109,7, R=5c.. 1, - Fe - Cr, Mn Ni. - Fe 3 O 4

ñåð³ÿ ô³çè íà «ßäðà, àñòèíêè, ïîëÿ», âèï. 2 /42/ Ñòðóêòóðà è ìàãíèòíûå ñâîéñòâà... 91,. 1.,. 1, -. 100000 52 Fe 51 Cr 52 56 511 Mn Mn 54 Mn 52 Mn Mn 56 57 Ni 10000 1000 100 juvl 10 57 Ni Sour./R-nucl. 1 400 800 1200 1600 2000.1. -. 1.. A(%) / : Cr-24 50-4.31 / 52-83.76 / 53-9.55 / 54-2.38 51Cr(27.7D) 52Cr(83.76%)(γ,n), 53Cr(9.55%)(γ,2n), 50Cr(4.31%)(n,γ) Mn-25 55-100 54Mn(312.5D) 55Mn(100%)(γ,n) 56Mn(2.58H) 55Mn(100%)(n,γ) Fe-26 54-5.84 / 56-91.68 / 57-2.17 / 58-0.31 52Mn(5.59D) 54Fe(5.84%)(γ,2n)52Fe(8.275H)-> 54Fe(5.84%)(γ,np) 54Mn(312.5D) 54Fe(5.84%)(n,p) 56Mn(2.58H) 56Fe(91.68%)(n,p) 57Fe(2.17%)(γ,p) 52Fe(8.28H) 54Fe(5.84%)(γ,2n) Ni-28 58-67.76 / 60-26.16 / 61-1.25 / 62-3.66 / 64-1.16 57Ni(38.1H) 58Ni(67.76%)(γ,n). 2 ( b) Fe 3 O 4.,. (. 2, ) 2 = 18,25; 30,20; 35,60; 43,90; 54,00; 57,90, American Standard Testing Materials (ASTM Powder Diffraction Card No. 85-1436), (Fe 3 O 4 ). (. 2, b),,,, (2 = 18,25; 30,20; 35,60; 43,90; 54,00; 57,90 ),, 2, 26,00; 33,16 55,00,, ASTM Powder Diffraction Card No. 76-1821, - ( -Fe 2 O 3 ).. 2.. - ; b- Fe 3 O 4 -,

92 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 859, 2009 - ( -Fe 2 O 3 )., [7], Fe 2+, Fe 2+ 2 - ( -Fe 2 O 3 )., Fe 3 O 4,, -., Fe 3 O 4 -Fe 2 O 3. (.2, b),, Fe 3 O 4. 2 = 18,25; 30,20; 35,60; 43,90; 54,00; 57,90, [8], (111), (220), (311), (400), (422) (511) Fe 3 O 4 [9].. 2, (HKL) ( 2 + 2 +L 2 ). d - [10]. 8,34,, [10-12]. 8,40 [11]., [13], : 2 2 2 a = d H + K + L, (1), d, HKL 2. Fe 2 O 3. 1 2 3 4 5 6 2, º 18,25 30,20 35,60 43,90 54,00 57,90 (HKL) (111) (220) (311) (400) (422) (511) 2 + 2 + L 2 3 8 11 16 24 27 d, 4,86 2,95 2,52 2,06 1,69 1,61 d, 4,85 2,97 2,53 2,10 1,71 1,62 (HKL), n (H=nh, K=nk, L=nl)., [14], : L = 0,9 λ / B cosθ, (2) L,,, 2,. Fe 3 O 4 ~ 33,97., Fe 3 O 4 ( ).,, [15], d- -, Fe 3 O 4. (. 2, b),, Fe 3 O 4. -,. 3 ( a b). Fe 3 O 4 :. 1 2 590 440 1, Fe- - - Fe 3 O 4. [16], 1 2 Fe-. Fe- - -,, 580 400 1 [17,18],, 590 1 (605 575-1 ). 1 2 1.

ñåð³ÿ ô³çè íà «ßäðà, àñòèíêè, ïîëÿ», âèï. 2 /42/ Ñòðóêòóðà è ìàãíèòíûå ñâîéñòâà... 93. 3. - (Fe 3 O 4 ). - Fe 3 O 4; b- Fe 3 O 4 [10],., (f),, = f/m,.,., Fe 3 O 4 (. 2). 1, Fe,, 3d- Fe. 1 2 -, ( Fe 3 O 4 ). 1115-1, - -, 875 805-1, N 2 NO-,. 1630-1, (HOH) 1410-1390 -1, -NO 3., -, - -. - (. 2, b),, 1 2 5-1 595 445-1,. ( 1 2 ) (~10-15%). Fe 3 O 4,.,, -Fe 2 O 3. -Fe 2 O 3-680 500-1,, [19], -., - (~5-1 ) 1 2, -Fe 2 O 3 -.,,,,,.,,, Fe 3 O 4, [20]., D 1 10 10 (Fe 3+ Fe 2+ ),. Fe -,,,., 8 10 7,.,.. (M s ) ~ 34 87 2 / (87 emu/g),. [15] Fe 3 O 4 = 8,39 5,24 / 3 91 2 /.,

94 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 859, 2009,, ~ 74 2 /. M s 15% M s Fe 3 O 4., -,,,, -.. 1. - 22 500. Ge(Li)- - 2. -, Fe -. 3. d - - Fe- -, Fe 3 O 4,. 4.,. 5. M s ~ 74 2 /, 15%,. 1. Salata O.V. Application of nanoparticles in biology and medicine // Journ. Nanobiotechnology. 2004. Vol. 2:3. P. 1-6. 2. Pankhurst Q.A., Connoly J., Jones S.K. and Dobson J. Applications of magnetic nanoparticles in biomedicine // Journ. Phys.D: Appl. Phys. 2003. Vol. 36. P. 167 181. 3. Jain R. K. Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function // Journ. of Controlled Release. 2001. Vol. 74.. 241-263. 4. Häfeli U.O., Sweeney S.M., Beresford B.A. and Humm J.L. Effective targeting of magnetic radioactive 90 Y-microspheres to turmor cells by an externally applied magnetic field. Preliminary in vitro and vivo results // Nucl. Med. Biol. 1995. Vol. 22. P. 147. 5. Häfeli U.O., Casillas S., Dietz D.W., Pauer G.J., Rybicki L.A. Conzone S.D. and Day D.E. Hepatic tumor radioembolization in a rat model using radioactive rhenium ( 186 Re/ 188 Re) glass microspheres // Int. Journ. Radiat. Oncol. Biol. Phys. 1999. Vol. 44. P. 189-200. 6. Häfeli U.O., Pauer G., Failing S. and Tapolsky G. Radiolabeling of magnetic particles with rhenium-188 for cancer therapy // Journ. Magn. Mater. 2001. Vol. 225. P. 73-78. 7. Tang J., Myers M., Bosnick K.A. and Brus L. E. Magnetite Fe 3 O 4 Nanocrystals: Spectroscopic observation of aqueous oxidation kinetics // Journ. Phys. B 2003. Vol. 107. P. 7501-7506. 8.... :, 1976.-326. 9...,..,....:, 1970. -368. 10. Ma M., Zhang Yu., Wei Yu. et. al. Preparation and characterization of magnetite nanoparticles coated by amino silane // Colloids and Surfaces: Physicochem. Eng. Aspects. 2003. Vol. 212. P. 219-226. 11. Bocanegra-Diaz A., Mohallem Nelsy D.S. and Sinesterra R.D. Preparation of a ferrofluid using cyclodextrin and magnetite // Journ. Braz. Chem. Soc. 2003. Vol. 14. P. 936-941. 12. Zhang X., Zhou R., Rao W., Cheng Y., Ekoko B.G. Influence of precipitator agents NaOH and NH 4 OH on the precipitatin of Fe 3 O 4 nano-particles synthesized by electron beam irradiation // Journ. of Radioanal. and Nucl. Chem. 2006. Vol. 270. P.285-289. 13. Klug H., Alexsander L. X-ray Diffraction Procedure. - New York: Wiley, 1962. 125 p. 14. Wachtman J.B., Kalman Z.H. Characterization of Materials. Butterworth-Heinemann, Manning, Greenwich, 1993. 314 p. 15.... :, 1978. 208. 16. Keiser J.T., Brown C.W., Heidersbach R.H. Infrared spectra of magnetite nanoparticles // J. Electrochem, Soc. 1982. Vol. 129.. 2686. 17. Farmer V.C. Infrared spectra of minerals. London, 1974. 175 p. 18. Waldron R. D. IR spectra of Ferrits // Phys. Rev. 1955. Vol. 99. P.1727. 19. Kim Ch. Y., Jang S. and Yi S. Preparation and stabilization of iron oxide nanoparticles using polymers // Journ. Ceramic Processing Research. 2004. Vol. 5. P.264-268. 20. 5.:.4:..:, 1995. 640.