Synthesis of a red iron oxide/montmorillonite pigment in a CO2-rich brine solution

Similar documents
Synthesis of a red iron oxide/montmorillonite pigment in a CO 2 -rich brine solution

Structural, Optical, Morphological and Elemental Analysis on Sol-gel Synthesis of Ni Doped TiO2 Nanocrystallites

High Purity Chromium Metal Oxygen Distribution (Determined by XPS and EPMA)

ATOM PROBE ANALYSIS OF β PRECIPITATION IN A MODEL IRON-BASED Fe-Ni-Al-Mo SUPERALLOY

NANOINDENTATION-INDUCED PHASE TRANSFORMATION IN SILICON

Pressure effects on the solubility and crystal growth of α-quartz

Grain growth and Ostwald ripening in chromia-doped uranium dioxide

Prediction of the energy efficiency of an Ar-H2-O2 plasma torch with Ansys Fluent

Non-Platinum metal oxide nano particles and nano clusters as oxygen reduction catalysts in fuel cells.

Recycling Technology of Fiber-Reinforced Plastics Using Sodium Hydroxide

Development of Colorimetric Analysis for Determination the Concentration of Oil in Produce Water

Carbon-free sliding interface in sol-gel processed SiC Nicalon fiber-refractory oxyde matrix composites

CHAPTER 4 SYNTHESIS, CHARACTERIZATION AND MICROENCAPSULATION PROCESS OF THE NANO SILICA

Effect of grain orientation on the development of dislocation substructures during colddeformation

Laser cladding of copper base alloys onto Al Si7 Mg0.3

Structural characterization of SiN-carbon nanotube interfaces by transmission electron microscopy

K Vinodhini, K Srinivasan

Optimization of operating conditions of a mini fuel cell for the detection of low or high levels of CO in the reformate gas

The Effect of Magnetic Field on Metal Anodizing Behaviour

ATOM-PROBE ANALYSIS OF ZIRCALOY

CVD COATING OF CERAMIC LAYERS ON CERAMIC CUTTING TOOL MATERIALS

Supporting Information. Low temperature synthesis of silicon carbide nanomaterials using

Impact of cutting fluids on surface topography and integrity in flat grinding

Large area silicon epitaxy using pulsed DC magnetron sputtering deposition

The Effect of Nitrogen on Martensite Formation in a Cr-Mn-Ni Stainless Steel

Effects of temperature on monotonic and fatigue properties of carbon fibre epoxy cross ply laminates

Powder metallurgical processing of a SiC particle reinforced Al-6wt.%Fe alloy

Collusion through price ceilings? In search of a focal-point effect

Comparison of lead concentration in surface soil by induced coupled plasma/optical emission spectrometry and X-ray fluorescence

Non destructive observation by X-ray diffraction on a berlinite crystal

The microstructure evolution of Fe-Si alloys solidified in a high static magnetic field

Silicon carbonitrides - A novel class of materials

Time decay of the excited states of Eu+2 in europium-doped LMA

Synergic effects of activation routes of ground granulated blast-furnace slag (GGBS) used in the precast industry

Growth and characterization of ferrite film prepared by pulsed laser deposition

X-ray characterisation of bulk stones from the patina to the depth stone

Effect of the Hydrogen Induced Degradation of Steel on the Internal Friction Spectra

Interaction between mechanosorptive and viscoelastic response of wood at high humidity level

Evolution of the porous volume during the aerogel-glass transformation

Antibodies specific for channel catfish virus cross-react with Pacific oyster, Crassostrea gigas, herpes-like virus

THE EFFECT OF SILICA ON THE MICROSTRUCTURE OF MnZn FERRITES

LASER PROCESSING OF METAL-CERAMIC COMPOSITE MULTILAYERS

Progress of some techniques on electromagnetic metallurgy

Densification superficielle de matériaux poreux par choc laser

MAGNETICALLY MODIFIED BENTONITE AS POSSIBLE CONTRAST AGENT IN MRI OF GASTROINTESTINAL TRACT

Physical properties of epoxy and free volume evaluated by positron annihilation spectroscopy

Aeration control in a full-scale activated sludge wastewater treatment plant: impact on performances, energy consumption and N2O emission

Bonding of aluminium matrix composites for application in the transport industry

Selective growth of Au nanograins on specific positions (tips, edges. heterostructures.

HIGH DAMPING IN GREY CAST IRON

Metal-ceramic joining by laser

A simple gas-liquid mass transfer jet system,

Chapter -3 RESULTS AND DISCSSION

Effects of Magnetic Field Intensity on Carbon Diffusion Behavior in Pure Iron in α-fe temperature region

Kinetics of hematite chlorination with Cl2 and Cl2 + O2. Part II. Chlorination with Cl2 + O2

Structure/property relationships in HSLA steel with low carbon and manganese and increased silicon content

CHEMICAL VAPOR DEPOSITION OF IR-TRANSMITTING ZINC SULPHIDE

Compressive strength of an unsaturated granular material during cementation

Simulation of Dislocation Dynamics in FCC Metals

DISLOCATION RELAXATION IN HIGH PURITY POLYCRYSTALLINE ALUMINUM AT MEGAHERTZ FREQUENCIES

A new method of making metal matrix fibre reinforced materials

Induction hardening of small gear wheels made of steel 50CrMo4

A framework to improve performance measurement in engineering projects

Atom-probe study Ti Al based alloy

Precipitation mechanisms and subsequent hardening kinetics in the β-cez alloy

Biomimetic synthesis of gold nanocrystals using a reducing amphiphile. Ferdinand Gonzaga, Sherdeep Singh and Michael A. Brook. Department of Chemistry

at low concentrations

Size distribution and number concentration of the 10nm-20um aerosol at an urban background site, Gennevilliers, Paris area

How Resilient Is Your Organisation? An Introduction to the Resilience Analysis Grid (RAG)

Secondary recrystallization of oxide dispersion strengthened ferritic alloys

Occupational accidents in Belgian industry in restructuring contexts

Heat line formation during roll-casting of aluminium alloys at thin gauges

Mechanism of two Way Shape Memory Effect Obtained by Stabilised Stress Induced Martensite

Supplementary Information

Synthesis of porous hollow silica nanostructures using hydroxyapatite nanoparticle templates

HAL Id: pastel

SILICA SCALE PREVENTION METHOD USING SEED MADE FROM GEOTHERMAL BRINE

Iron-containing Adsorbents in Great Nile Sediments

BRIDGMAN GROWTH AND PROPERTIES OF LuAlO3-Nd3+ LASER CRYSTALS

Finite Element Model of Gear Induction Hardening

IDENTIFICATION OF AN ORDERED HEXAGONAL BeFe PHASE

SPECTROSCOPIC PROPERTIES AND OPERATION OF PULSED HOLMIUM LASER

New experimental method for measuring the energy efficiency of tyres in real condition on tractors

The new LSM 700 from Carl Zeiss

Supporting Information. Top-down fabrication of crystalline metal-organic framework nanosheets. Experimental section

Fatigue of High Purity Copper Wire

Continuous melting and pouring of an aluminum oxide based melt with cold crucible

Temperature Induced Structural and Photoluminescence Properties of Poly Ethylene Glycol (PEG) Capped/Uncapped Cadmium Oxide Nanoparticles (CdO NPs)

PHOTOCONDUCTIVITY IN a-si : H AND a-sixc1-x : H, CORRELATION WITH PHOTOLUMINESCENCE RESULTS

CHARACTERISTICS OF FERRITE ELECTRODES

ATOM PROBE STUDY OF A Ti-10V-2Fe-3Al ALLOY : PRELIMINARY RESULTS

Electrical properties of interlevel deposited oxides related to polysilicon preparation

ELUTION BEHAVIOR OF PHOSPHATE CONTAINED IN Mg/Fe AND Zn/Fe LAYERED DOUBLE HYDROXIDES

An update on acoustics designs for HVAC (Engineering)

Economic analysis of maize/soyabean intercrop systems by partial budget in the Guinea savannah of Nigeria

THE INTERPRETATION OF ELECTRON DIFFRACTION PATTERNS FROM Ni-Al MARTENSITE

Synthesis and Characterization of Iron-Oxide (Magnetite) Nanocrystals. Tan Wenyou. Engineering Science Programme, National University of Singapore

Dissolution enhancement of active pharmaceutical ingredients in Eudragit E100 by melt extrusion coupled with supercritical carbon dioxide

Energy savings potential using the thermal inertia of a low temperature storage

Sintering behaviour of CeO2-Gd2O3 powders prepared by the oxalate coprecipitation method

Transcription:

Synthesis of a red iron oxide/montmorillonite pigment in a CO2-rich brine solution German Montes Hernandez, Jacques Pironon, Frederic Villieras To cite this version: German Montes Hernandez, Jacques Pironon, Frederic Villieras. Synthesis of a red iron oxide/montmorillonite pigment in a CO2-rich brine solution. Journal of Colloid and Interface Science, Elsevier, 2006, 303, pp.472-476. <10.1016/j.jcis.2006.07.064>. <hal-00202497> HAL Id: hal-00202497 https://hal.archives-ouvertes.fr/hal-00202497 Submitted on 7 Jan 2008 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Synthesis of a red iron oxide/montmorillonite pigment in a CO 2 -rich brine solution G. Montes-Hernandez a, J. Pironon a and F. Villieras b a UMR-G2R 7566 UHP-CNRS-INPL-CREGU, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France b UMR-LEM 7569 INPL-CNRS, BP 40, 54501 Vandoeuvre-les-Nancy Cedex, France Received 28 April 2006; accepted 25 July 2006. Available online 28 July 2006. Abstract The homoionic calcium-montmorillonite was used to synthesize a red iron oxide/clay pigment in a CO 2 -rich brine solution (0.5 M of NaCl) by using an agitated batch-reactor (engineer autoclave). The operating conditions were 15 days of reaction, 200 bars of pressure and 150 C of temperature. SEM/EDS, STEM/EDS, XRD and Infrared Spectrometry were performed to characterize before and after reaction the solid phase. The results showed the precipitation of spherical nanoparticles (50 500 nm) of iron oxide (Fe 2 O 3 ) dispersed and/or coagulated in the clay-matrix. Evidently, this oxide produced red coloration in the final product. For this case, the Fe 3+ cation was provided to the aqueous solution by the dissolution of Ca-montmorillonite, particularly, the dissolution of most fine particles contained in the starting clay material. The cation exchange process and precipitation of polymorph silica were also observed.

Graphical abstract Keywords: Red pigment; Ca-montmorillonite; CO 2 -rich brine solution; Iron oxide; Synthesis Article Outline 1. Introduction 2. Materials and methods 2.1. Ca-montmorillonite preparation 2.2. Synthesis 2.3. Characterization 3. Results and discussion 4. Conclusion Acknowledgements References

1. Introduction Clay minerals and iron oxides are a subject of interest within the area of many applied sciences such as geochemistry, mineralogy, metallurgy and environmental protection. Clay and synthetic iron(iii) oxides are technologically important materials and are widely applied as components in various industrial products, e.g., pigments in the building industry, inorganic dyes, ceramics, pigments and adsorbents in the paper industry, lacquers or plastics [1], [2] and [3]. The world production of synthetic iron oxide pigments is over 1 million tons annually. About 13 different iron oxides and oxyhydroxides are known. Among them synthetic magnetite (Fe 3 O 4 ) is used as a black pigment, hematite (α-fe 2 O 3 ) as a red-brown pigment and goethite (α-feooh) as a yellow pigment. Numerous publications and patents appear every year dealing with various types of synthesis and applications of iron(iii) oxides and oxyhydroxides. During the oxidation of iron(ii) salts in water solution the constitution, crystal structure and properties depend on the process conditions including the methods of precipitating and oxidizing of the reactants. Different iron oxides and hydroxides could be produced depending on the solution concentration, temperature, ph value and starting materials as well as subsequent hydrolysis reaction of iron(iii) salts [1]. On the other hand, the major component of bentonite (native clay-rich material) is montmorillonite (>60%). A single montmorillonite platelet is composed of three layers: one octahedral layer is sandwiched between two tetrahedral layers (2:1 type). The montmorillonite platelets can form large stacks with a general structural-chemical formula: where M represents the interlayer cations such as Na +, K +, Ca 2+, etc. The presence of these cations is a result of the so-called isomorphous substitution and these interlayer cations greatly affect the swelling ability of montmorillonite (see for example [4], [5], [6], [7], [8] and [9]). In addition, the octahedral layer of the montmorillonite frequently contains Fe 3+ and Fe 2+ cations (e.g., montmorillonite of Wyoming). For that case, the dissolution of fine particles of montmorillonite at PTX controlled could allow the synthesis of red iron oxides finely dispersed on the montmorillonite support.

In this paper, the bentonite of Wyoming (labeled Wy2) was used to obtain a homoionic calcium-montmorillonite. Then, this purified clay material was used to synthesize a red iron oxide/clay pigment in a CO 2 -rich brine solution (0.5 M of NaCl) by using an agitated batchreactor (engineer autoclave). The operating conditions were 15 days of reaction, 200 bars of pressure and 150 C of temperature. SEM/EDS, STEM/EDS, XRD and Infrared Spectrometry were performed to characterize before and after reaction the solid phase. 2. Materials and methods 2.1. Ca-montmorillonite preparation Forty grams of a commercial bentonite (of Wyoming) were dispersed into 1 L of high purity water with electrical resistivity of 18 MΩ cm; this suspension was kept in constant mechanical agitation at 25 C and adjusted at ph 5 with acetic acid. Then, the suspension was heated at 80 C during 8 h in order to eliminate the carbonates. The solid phase was then recuperated by centrifugation (45 min at 13,000 rpm). This solid was re-dispersed in a brine solution (1 M of CaCl 2 ) and kept in constant mechanical agitation for 24 h at 25 C. Then, the solid was separated by centrifugation (45 min at 13,000 rpm) and decanting the supernatant solutions. This process was repeated three times. The accessory minerals (quartz, feldspar, etc.) were manually separated in plastic flask after each centrifugation. Finally, the purified Ca-montmorillonite was washed several times with high purity water until the AgNO 3 test for chloride is negative. This purified clay was subsequently dried for 48 h at 60 C and gently ground in a mortar. The scanning transmission electron microscopy (STEM) coupled to energy dispersive X-ray analyzer was used to notice the homoionic interlayer cation in the montmorillonite particles. 2.2. Synthesis One hundred ml of brine solution (0.5 M of NaCl) and 3 g of purified Ca-montmorillonite were charged in the reactor (engineer autoclave 200 ml). The clay particles were immediately dispersed with magnetic agitation. The dispersion was then oversaturated with CO 2 gas, thank to an injection system in the reactor. The operating conditions were 15 days of reaction, 200 bars of pressure (±5 bars), 150 C of temperature (±2 C) and magnetic agitation ( 500 rpm).

The autoclave was quenched down to 25 C and opened under atmospheric conditions. The solid product (pigment) was separated by centrifugation (15 min at 13,000 rpm) and decanting the supernatant solutions. Then, the product was washed several times with high purity water until the AgNO 3 test for chloride is negative. Finally, the washed product was dried for 48 h at 60 C and gently ground in a mortar. 2.3. Characterization The starting material and product were characterized by X-ray powder diffraction with a D8 Bruker diffractometer. The XRD patterns were recorded in the range using CoKα1 radiation ( ). Morphological analysis of the powders was performed by scanning electron microscope, with a HITACHI S2500 FEVEX. The quantitative microanalysis of the product was carried out by energy dispersive spectrometer (EDS). Isolated fine particles (oriented on carbon Ni-grids) of the starting material and product were studied using a transmission electron microscope, with a JEOL 3010 instrument, equipped with an energy dispersive X-ray analyzer (EDS) to illustrate the morphologies of the particles and to identify the precipitated phases. In order to identify the carbonate group in the solid product, the infrared spectrometry was performed, with a BRUKER EQUINOX55 spectrometer in diffuse reflection mode at 4 cm 1 resolution for 200 scans. 3. Results and discussion The physicochemical reactivity of the Ca-montmorillonite in a CO 2 -rich brine solution allowed the synthesis of a red iron oxide/clay pigment (Fig. 1). For this case, the Fe 3+ cation was provided to the aqueous solution by the dissolution of Ca-montmorillonite, particularly, the dissolution of most fine particles (nanoparticles) contained in the starting clay material. This chemical process can be described by the following reaction: [Si 3.90 Al 0.10 O 10 (OH) 2 ](Al 1.54 Fe III 0.22Mg 0.19 )Ca 0.22 + 6.4H + 3.90SiO 2(aq) + 1.64Al 3+ + 0.22Fe 3+ + 0.19Mg 2+ + 0.22Ca 2+ + 4.2H 2 O, where the structural formula of Ca-montmorillonite was calculated from 10 particles EDS- TEM analysis according to the method of Harvey [10], i.e., on the basis of 11 oxygen for particles of the (2:1) type (illite or smectite). The chemical reaction above cited can be favored by the decrease of ph in the aqueous solution because of CO 2 dissociation: CO 2(aq) HCO 3 + H +.

Consequently, the iron oxides can be precipitated from the solution [2]: 2Fe 3+ + 3H 2 O Fe 2 O 3 + 6H + (at T>125 C), the red coloration in the product and the microchemical (EDS-TEM) analysis for isolated particles confirmed the iron oxide (Fe 2 O 3 ) precipitation (see Fig. 1 and Fig. 2). However, this precipitated phase was not identified by X-ray diffraction (Fig. 3), possibly due to a poor crystallinity and/or slight proportion of the iron oxide particles in the product. The SEM and TEM observations showed spherical fine-particles (50 500 nm) of iron oxide dispersed and/or coagulated in the clay-aggregates (Fig. 2 and Fig. 4). Fig. 1. Physical comparison between starting material (Ca-montmorillonite) and product (iron oxide/clay pigment).

Fig. 2. Microchemical EDS-TEM analysis for isolated particles of iron oxide (IO) Spherical fine-particles (50 500 nm) and polymorph silica. Fig. 3. XRD measurements of starting clay material and iron oxide/clay pigment.

Fig. 4. Spherical fine-particles of iron oxide dispersed and/or coagulated in the clay-matrix. SEM observations (a) and (b), TEM observations (c) and (d). On the other hand, the high concentration of Na + in the solution favored a cation exchange process in the clay particles. Obviously, the cation exchange process is faster that the dissolution process for clays. Microchemical (EDS-TEM) analysis showed that about 60% of calcium was exchanged by sodium in the isolated clay-particles (Fig. 5): [Si 3.90 Al 0.10 O 10 (OH) 2 ](Al 1.54 Fe III 0.22Mg 0.19 )Ca 0.22 + 0.26Na + [Si 3.90 Al 0.10 O 10 (OH) 2 ](Al 1.54 Fe III 0.22Mg 0.19 )Na 0.26 Ca 0.09 + 0.13Ca 2+.

The presence of Ca 2+ and Mg 2+ in the solution; calcium ion liberated by cation exchange and/or dissolution processes, and magnesium ion liberated by dissolution process, suggests the precipitation of carbonates: Ca 2+ + HCO 3 CaCO 3 + H +, Mg 2+ + HCO 3 MgCO 3 + H +. These phases were not identified in the solid product by infrared spectrometry (see Fig. 6) and microchemical EDS-TEM analysis. Possibly, the solution was not saturated with Ca 2+ and Mg 2+ because these cations have a high solubility; or simply, the precipitation of carbonates was inhibited by the iron oxide precipitation in this system.

Fig. 5. Cation exchange process in the clay particles identified by microchemical EDS-TEM analysis.

Fig. 6. FTIR spectra of starting clay material and product (iron oxide/clay pigment). Diffuse reflection mode (at 4 cm 1 resolution for 200 scans) was used in order to identify the carbonate group in the product. The SiO 2(aq) liberated by dissolution of fine clay-particles allowed the precipitation of polymorph silica. SiO 2(aq) = SiO 2. Finally, the microchemical EDS-TEM analysis showed that the Al 3+ liberated by dissolution of fine clay-particles, was always associated to the precipitation of iron oxides and silicates (see, e.g., Fig. 2). It is clear that this cation does not keep in solution because it has a slight potential of solubility. 4. Conclusion The physicochemical reactivity of the Ca-montmorillonite in a CO 2 -rich brine solution allowed the synthesis of a red iron oxide/clay pigment. The results showed the precipitation of spherical nanoparticles (50 500 nm) of iron oxide (Fe 2 O 3 ) dispersed and/or coagulated in the clay-aggregates. Evidently, this oxide produces red coloration in the final product. For this case, the Fe 3+ cation was provided to the aqueous solution by the dissolution of Camontmorillonite, particularly, the dissolution of the most fine particles (nanoparticles) contained in the starting clay material. The cation exchange process and the precipitation of polymorph silica were also observed.

Acknowledgements The authors are grateful to National Council of Scientific Research (CNRS), France, for providing a financial grant for this work (postdoctoral position 2005 2006). This work was also supported by ANR-geocarbone (ANR-O5-CO2-006 grant) and by IMAGES program from INPL. J. Ganbaja, O. Barres and A. Kohler are thanked for their technical help and assistance. References [1] N. Guskos, G.J. Papadopoulos, V. Likodimos, S. Patapis, D. Yarmis, A. Przepiera, K. Przepiera, J. Majszczyk, J. Typek, M. Wabia, K. Aidinis and Z. Drazek, Mater. Res. Bull. 37 (2002), p. 1051. SummaryPlus Full Text + Links PDF (152 K) View Record in Scopus Cited By in Scopus (19) [2] P.A. Riveros and J.E. Dutrizac, Hydrometallurgy 46 (1997), p. 85. SummaryPlus Full Text + Links PDF (1027 K) View Record in Scopus Cited By in Scopus (10) [3] D. Hradil, T. Grygar, J. Hradiolova and P. Bezdicka, Appl. Clay Sci. 22 (2003), p. 223. SummaryPlus Full Text + Links PDF (397 K) View Record in Scopus Cited By in Scopus (19) [4] A. Neaman, M. Pelletier and F. Villieras, Appl. Clay Sci. 22 (2003), p. 153. SummaryPlus Full Text + Links PDF (263 K) View Record in Scopus Cited By in Scopus (21) [5] G. Montes-H, J. Colloid Interface Sci. 284 (2005), p. 271. SummaryPlus Full Text + Links PDF (253 K) View Record in Scopus Cited By in Scopus (2) [6] D.W. Rutherford, Clays Clay Miner. 45 (1997), p. 534. View Record in Scopus Cited By in Scopus (38) [7] S.Y. Lee and S.J. Kim, J. Colloid Interface Sci. 248 (2002), p. 231. Abstract Abstract + References PDF (520 K) Full Text via CrossRef View Record in Scopus Cited By in Scopus (19)

[8] A.C.D. Newman, Mineralogical Society, Monograph No. 6, 1987, 480 p. [9] B. Velde, Introduction to Clay Minerals (first ed.), Chapman & Hall, London (1992) 195 p. [10] C.O. Harvey, Am. Mineralogist 28 (1943), p. 541.