MIT SCALE RESEARCH REPORT

Similar documents
MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

The Evolution of Data and the Impact of New Technologies on Agency Finance & Procurement

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

MIT SCALE RESEARCH REPORT

Fujitsu Value Proposition for Manufacturing Industry. Enabling Digital with Connected Enterprise

2014 SAP SE or an SAP affiliate company. All rights reserved. 1

MIT SCALE RESEARCH REPORT

The Internet of Things in the Context of Manufacturing

Connected Automation: Showcase Manufacturing i4.0

MIT SCALE RESEARCH REPORT

Enterprise Asset Intelligence & Opportunities for Growth

ROLLING INTO THE FUTURE, LONG ROLLING CONTROL SYSTEM UTILIZING THE CHANGING TRENDS IN TECHNOLOGY AND DIGITALIZATION *

Fujitsu Value Proposition for Manufacturing Industry. Enabling Digital with Connected Enterprise

CONNECTED LOGISTICS. Denis SENPERE Inspirage Europe Vejle, October 2 nd Inspirage / Oracle All rights reserved. Courtesy Alstom / Amtrak

Business Decision-Making in the Factory of the Future. An IDC InfoBrief, Sponsored by Infor November 2015

IoT shines light on contract manufacturing supply chain visibility

INUDSTRY 4.0 SMART FACTORY

Manufacturing in an Era of Internet of Everything. Internet Business Solutions Group Jay Chung Puneet K Bhatia

MIT SCALE RESEARCH REPORT

ADVENT ONE. The Dynamic Demands of IoT in a Connected World

Senda BOUKEF IBM Watson and Cloud Platform portfolio architect, MEA Watson / Presentation Title / Date

The Internet of Things Services and People Next level solutions

Digital Transformation and the Power of Networks

ACHIEVE INNOVATION WITH CONNECTED CAPABILITIES Connected Product Maturity Model. white paper

Cognitive IoT unlocking the data challenge

사물, 사람그리고 세상을잇는 IoT 플랫폼

THE FLOW OF DIGITISED INFORMATION AND THE TRANSFORMATION OF CONSTRUCTION CONTRACTORS HOW HANSEN YUNCKEN ARE LEVERAGING DATA AS AN ENTERPRISE ASSET

Management Information Systems, Sixth Edition. Chapter 3: Business Functions and Supply Chains

Luxoft and the Internet of Things

MIT SCALE RESEARCH REPORT

DIGITAL DISRUPTION AT THE DOOR STEPS OF INDUSTRIAL ENTERPRISE. Digitalization 2.0 and Future of Enterprises

Fujitsu Value Proposition for Manufacturing Industry. Enabling Digital with Connected Enterprise

IoT ANALYTICS IN THE ENTERPRISE WITH FUNL

Data: The Renewable Resource for Digital Reinvention

PwC Digital Services Connected manufacturing. Collaboration realized.

Mobile Computing Data with Voice M2M and IoT. Recent advances present Opportunities

Chapter 1. Introduction to Instrumentation and Process Control (Systems and Applications)

Chapter 1. Introduction to Instrumentation and Process Control (Systems and Applications)

Connecting Your ERP with IoT and Ultimately Blockchain

Smart Factory The Heart of the Digital Transformation Era

Transforming customer experiences through cognitive commerce

Reimagine Your Business with Digital Transformation IoT Regional Forum Sao Paulo

The Value of Real-Time Visibility and Predictive Intelligence for Supply Chains. An IDC InfoBrief, sponsored by TransVoyant October 2016

MES ON THE EDGE IN AERONAUTICS

Powering the Digital Supply Chain of One SAP SE or an SAP affiliate company. All rights reserved.

Re-thinking and empowering operations in a digital world! Sebastian Seutter Director Strategy and Business Development

Transform Procurement with Integrated Processes

The growth of traditional industries. Making manufacturing productive again with IoT

Industry and Logistics 4.0, new business models for competitiveness

Guide Superfast Broadband technology and the manufacturing sector

Developing the future of manufacturing and supply chain

How to Apply Digitization in Smart Machine & Factory. Digitization. Albert Kim / PhoenixContact Korea

The future of agriculture Technologies shaping the industry

Kinetic Enterprise Putting the next-generation organization into motion

IoT and Artificial Intelligence to Increase Competitiveness in the Green Industry Case study apple cultivation. Case study Vineyard

Campus Tracking System Based On IoT Yibiao Pi

DIGITAL OUTLOOK CONSUMER PACKAGED GOODS INDUSTRY

Chapter 1 Digital Technology Creates New Levers for Growth and improved Performance

SAP Digital Manufacturing Strategy

Leading the Future of Field Service: Connecting Field Service Management to the Internet of Things

Independent flexible reliable

Intelligent Logistics Distribution System Design under the Environment of Internet of Things Yun WU1, a

JD EDWARDS. Drive Digital Transformation with the Internet of Things

Why Connecting to the Internet of Things Project List

Accenture Technology Vision for Postal Organizations: Five trends shaping the future

Building Intelligence: The New BI

Evolving Technology Trends Impacting Manufacturing Industry

Transportation. FiveYearsOut.com

3 Myths about IoT in Logistics

WHITE PAPER. IoT-enabled Banking Services

Thriving in a Hybrid World. Dean J. Marsh Vice President, Client Success IBM Analytic Solutions

Transcription:

MIT SCALE RESEARCH REPORT The MIT Global Supply Chain and Logistics Excellence (SCALE) Network is an international alliance of leading-edge research and education centers, dedicated to the development and dissemination of global innovation in supply chain and logistics. The Global SCALE Network allows faculty, researchers, students, and affiliated companies from all six centers around the world to pool their expertise and collaborate on projects that will create supply chain and logistics innovations with global applications. This reprint is intended to communicate research results of innovative supply chain research completed by faculty, researchers, and students of the Global SCALE Network, thereby contributing to the greater public knowledge about supply chains. For more information, contact MIT Global SCALE Network Postal Address: Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) Location: Building E40, Room 267 1 Amherst St. Access: Telephone: +1 617-253-5320 Fax: +1 617-253-4560 Email: scale@mit.edu Website: scale.mit.edu Research Report: MISI-2015-11 Demystifying Industry 4.0 Implications of Internet of Things and Services for the Chemical Industry Rahul Ravi and Li-Chung (Milton) Wu MIT Global Scale Network

For full thesis version please contact: Professor Shardul Phadnis Director of Research MISI No. 2A, Persiaran Tebar Layar, Seksyen U8, Bukit Jelutong, Shah Alam, 40150 Selangor, Malaysia. Phone: +6 03 7841 4845 Email: sphadnis@misi.edu.my MIT Global Scale Network

DEMYSTIFYING INDUSTRY 4.0: IMPLICATIONS OF INTERNET OF THINGS AND SERVICES FOR THE CHEMICAL INDUSTRY By Rahul Ravi and Li-Chung (Milton) Wu Thesis Advisor(s): Dr. Shardul Phadnis Summary: Have you ever imagined a world where your refrigerator tells what food items you need to order or your washing machine washes clothes at a time when electricity cost is lowest for the day or a product knows its destination as soon as it is produced and transmits its coordinates to the buyer while in transit. This is not an imaginary work from a science fiction. Welcome to the connected world of Internet of Things. The Internet of Things (IoT) is widely presented as the next revolution in which massively distributed sensors will generate information. In this concept, any real-world object can communicate via the Internet and can potentially be globally discovered and queried. Our thesis explores the implication of such a connected world on the realm of Supply Chain. It is hard to predict tomorrow with little deviation from today, through our research we have tried to envision the complex world of chemical supply chain in years to come. Through our study, we identified several areas in which the capabilities brought by IoT technology will bring efficiencies in the current supply chain, the research also identified areas in which IoT enabling technologies will reduce human interventions and enable better decisions. Rahul Ravi came to the MSCM program with six years of diverse work experience in procurement, sales and analytics functions of automotive industry. Following graduation, he will be joining a global consulting firm in India as a consultant. Li-Chung Wu came to MISI program with nine years of work experience in the R&D function of the consumer electronic industry. He is an IoT enthusiast and following graduation intends to work in hi-tech industry focused on IoT. KEY INSIGHTS 1. Adoption of IoT technology in chemical supply chain can bring efficiencies in supply chain. 2. Identification of areas in supply chain where IoT enabling technologies can reduce human intervention and associated systematic errors. 3. Identification of areas in supply chain where IoT enabling technologies can enable better and faster human decisions. Introduction "Internet of Things" was coined about 10 years ago at the MIT Auto-ID Center, Kevin Ashton in 1999 and David L. Brock in 2001 were among the first to use and propagate the term. In what s called the Internet of Things, the physical world is becoming a type of information system through sensors and actuators embedded in physical objects and linked through wired and wireless networks via the Internet Protocol that connects the Internet. IoT encapsulates three important technological layers:

Sensing/Actuation Layer: This layer consists of sensor technologies and smart objects that impact data acquisition and its utilization Network Layer: This layer is supported by mobile Internet and advanced wireless networks. It aims at disseminating large quantities of real time information. Here information exchange is between people and things or among things themselves Application Layer: This layer enables intelligence either by distributed data processing at the device and/or by centralized processing enabled by cloud computing and management technologies As such Internet of Things is not a new concept. Many of the essential components like semiconductors, sensors and wireless networks have existed for decades. A number of developments have contributed to business adoption of the IoT. Most important of which are enumerated below: Falling cost of the underlying technology Convergence of a number of other technology development Ubiquitous smartphone and tablets Methodology To understand the impact that IoT will have on the supply chains in the chemical industry, we first worked with our thesis sponsor to find a suitable business unit that will serve as our case. We then visited one of the plants of the concerned business unit i.e. construction chemical division, and did the first phase of interview to get an overview of the concerned supply chain. These activities helped us in gaining basic knowledge about construction chemical supply chain. In the second phase of our research we conducted a series of semi-structured interviews with processes owners of different processes constituting the supply chain. These interviews helped us in getting deeper understanding of the chemical industry, the company itself and the company s business as well as supply chain processes. After the collection of needed information, we analyzed the data collected till then. In order to understand the complete picture of the construction chemical supply chain, we started preparing the process flow map of this supply. Through this activity we came to understand that we needed much deeper understanding of the construction chemical supply chain. So, we designed a new questionnaire and conducted third of phase interview. These interviews were semi-structured but leaned towards an unstructured approach, where the interviewee had the freedom to get into details of a process. After this phase of interviews, we prepared the process map of construction chemical supply chain. We then set up the second plant visit to refine and validate our process map. We then used the current supply chain map to envision the future state of this supply chain when technological capabilities of IoT are added to it. Results After understanding the state of art of construction chemical supply chain and the technological capabilities provided by the IoT enabling technologies. We developed propositions about future state of the construction chemical supply chain processes. These propositions cut across different processes of the supply chain and help in realizing values for the organization in form of reduction in better forecast accuracy, reduction in inventory costs, reduction in labor costs, reduction in shrinkage costs, better and timely decisions, reduction in human error etc. The propositions developed about the future state are enumerated below: Proposition 1: Availability of real time information about product consumption and inventory levels from sensors embedded in smart containers along with social media news feeds will increase the forecast accuracy. Proposition 2: For products with low demand variability (X class items) wherein forecast-based planning is done, the additional step of production plan approval can be eliminated. For products with

medium demand (Y) variability the order approval step can be automated via IOT enabled approval process. Proposition 3: Enabling customers to place orders themselves through smart containers/tanks/drums or mobile apps will decrease the workload on CSO. Proposition 4: There will be no need for people to track the current raw material status if all suppliers will put all raw materials requested by the subject company into a smart containers/pallets. The quantity, location, and name of items will be available real time in its closed-loop supply chain. Proposition 5: The accuracy of inventory position can be improved due to the use of RFID-based warehouse. Proposition 6: Before starting the production of each job, the weighing machine can check if the worker is using the right raw materials and in the correct proportions. Therefore, the human errors in the production process can be reduced. Proposition 7: Setting up sensors in the production lines would help the company to get the exact information of each production process and understand accurate wear and tear level of each component of the machine. Therefore, the more accurate data can result in more feasible production or maintenance plans. Proposition 8: The delivery receipt confirmation by the customer can be real-time. The customer can confirm order via smart card identification or through the mobile device. Proposition 9: The smart containers will provide real time location data which can be transferred to customer or the customer can track it via a website. This will eliminate the need for human intervention in the process; it will also reduce loss and theft of material in transit and phantom stock-outs. Conclusions The advent of IoT and its integration with the supply chain to harness the true potential of current and evolving technologies in the space posses a significant challenge to the industries. Supply Chain leaders and managers across industries want to understand the capabilities brought by IoT, its impact on the supply chain and how to take advantage of the IoT wave. The current research answers the above questions for construction chemical supply chain of a large chemical company. Therefore, from the research results, we can emphasize that adoption of IoT technology in chemical supply chain can bring efficiencies in supply chain. Moreover, these efficiencies can possibly be realized in other fields since the IoT characteristics are universal and specific to chemical products. The major characteristics of IoT can be enumerated as: Real time information Connectivity Communication with other systems The research findings show that how application of IoT enabling technologies with the above mentioned characteristics in different processes of supply chain can render several process improvements including: More accurate real time data Enhanced visibility Enhanced visibility Reduced inventory Reduced costs Reduced human errors Increased service quality Reduced in process cycle times Elimination and reduction in human errors The research also provides the kind of current technology enablers for each of the supply chain processes identified for the construction chemical supply chain and how these can be used for reducing the errors associated with human interventions. Further it identifies the area where these technologies e.g. smart phone integration with ERP and predictive analytics can enable better and faster human decisions.