Screening, Isolation and Quantification of PHB-Producing Soil Bacteria

Similar documents
Optimization of PHB (poly-hydroxybutyrate) Synthesis by Serratia sp. Isolated from Soil

PRODUCTION, ISOLATION, SCREENING AND EXTRACTION OF POLYHYDROXYBUTYRATE (PHB) FROM BACILLUS SPS USING TREATED SEWAGE SAMPLE

Molecular characterization and phylogenetic analysis of protease producing Streptomyces sp. isolated from mangrove sediments

BIODEGRADATION OF CRUDE OIL BY GRAVIMETRIC ANALYSIS

Cell Growth and DNA Extraction- Technion igem HS

Chapter 3 SCREENING AND SELECTION OF STRAIN FOR ALKALINE PROTEASE PRODUCTION BY SUBMERGED FERMENTATION

EFFECT OF GLUCOSE ON PHB PRODUCTION USING Alcaligenes eutrophus DSM 545 AND TISTR 1095

The optimization of fermentation conditions particularly physical and chemical

Degradation assessment of low density polythene (LDP) and polythene (PP) by an indigenous isolate of Pseudomonas stutzeri

Isolation and characterization of efficient poly- -hydroxybutyrate (PHB) synthesizing bacteria from agricultural and industrial land

Optimization of Poly-B-Hydroxybutyrate Production from Bacillus species

Chapter 6: Microbial Growth

Bioplastic (PHB) production by Vibrio mimicus isolated from Vellar estuary

Rubber Processing Industry Effluent Treatment and Electricity Production Using Microbial Fuel Cell Technology

2/25/2013. Psychrotrophs Grow between 0 C and C Cause food spoilage Food Preservation Temperatures

Production and characterization of biosurfactant from Pseudomonas spp

International Journal of Pharma and Bio Sciences

FORMULATION OF BACTERIAL CONSORTIA AND STUDYING THEIR SYNERGISTIC EFFECT ON TREATMENT OF EFFLUENT

Research Article PRODUCTION OF A THERMOSTABLE EXTRACELLULAR PROTEASE FROM THERMOPHILIC BACILLUS SPECIES

Life Science Archives (LSA)

Poly (3-hydroxybutyrate) production from glycerol by marine microorganisms. Abstract. 1. Introduction

Production and Optimization of Polyhydroxybutyrate from Rhizobium sp. present in root nodules

OPTIMIZATION OF CULTURE CONDITIONS FOR POLY Â- HYDROXYBUTYRATE PRODUCTION FROM ISOLATED BACILLUS SPECIES

Effects of Micronutrients on the Production of Heparinase from Bacillus lentus

IMPACT OF MEDIA ON ISOLATION OF DEXTRANASE PRODUCING FUNGAL STRAINS

Reduction of Ferric Compounds by Soil Bacteria

Screening and optimization of Poly Hydroxy Butyrate (PHB), using Eichhornia crassipes as substrate by Bacillus cereus and Bacillus subtilis

BIOACCUMULATION OF LEAD METAL IONS FROM PAINT INDUSTRY EFFLUENTS BY INDIGENOUS BACTERIA

Isolation & Characterization of Bacteria

SELECTED QUESTIONS F ROM OLD MICRO 102 QUIZZES PART I EXPERIMENTS 1 THROUGH 7

International Proceedings of Chemical, Biological and Environmental Engineering, Vol. 99 (2016) DOI: /IPCBEE V99. 7

Lambda DNA Purification Kit

GeNei TM Transformation Teaching Kit Manual

INVITRO COMPATIBILITY EVALUATION FOR THE BIOCONVERSION OF DOMESTIC SOLID WASTES BY MIXED CULTURES OF MICRO-ORGANISMS

Requirements for Growth

Isolation and Characterization of Protease Producing Bacteria from Soil Samples of District Kohat, Pakistan

HiPer Transformation Teaching Kit

Test Method of Specified Requirements of Antibacterial Textiles for Medical Use FTTS-FA-002

Activity 5.1.5: Student Resource Sheet

Microbial production of polyhydroxy alkanotes (PHA) from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources

Volume: 2: Issue-3: July-Sept ISSN EFFECT OF NITROGEN SOURCES ON MICROBIAL PRODUCTION OF XYLITOL. K. Srivani 1 and Y.

Microbiology Chapter 2 Laboratory Equipment and Procedures 2:1 The Light Microscope MICROSCOPE: any tool with a lens to magnify and observe tiny

Isolation and Characterization of Protease Producing Bacteria from Rhizosphere Soil and Optimization of Protease Production Parameters

INVESTIGATION ON CONVERSION OF FLOWER WASTES INTO BIOETHANOL AND PERFORMANCE EVALUATION ON SINGLE CYLINDER IC ENGINE

INTRODUCTION water-soluble Figure 1.

STUDIES ON THE EFFECTS OF END PRODUCT INHIBITION OVER LACTIC ACID BACTERIA UNDER HIGH CELL DENSITY CULTIVATION PROCESS

Physical State in Which Naphthalene and Bibenzyl are Utilized by Bacteria

M I C R O B I O L O G Y

Document No. FTTS-FA-001. Specified Requirements of Antibacterial Textiles for General Use

Isolation, partial purification and characterization of α-amylase from Bacillus subtilis

GB Translated English of Chinese Standard: GB

á62ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: TESTS FOR SPECIFIED MICROORGANISMS

Pathogenic Bacteria. culture media. Components of the Typical Culture Medium: Culture Media Importance:

Chromium Uptake by a Bacteria Isolated From Lemna Rhizosphere in a Lentic Ecosystem

Appendix. Medium Composition. Peptone - 0.5gm (gram) Yeast extract - 0.5gm. Beef extract - 0.1gm. NaCl - 0.5g. Agar - 2gm. ph Starch - 0.

Journal of Chemical and Pharmaceutical Research

Production and purification of enzyme Xylanase by Aspergillus niger

Supporting Information. Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells

Transformation of Escherichia coli With a Chimeric Plasmid

4.4 MICROBIOLOGICAL METHOD FOR THE ESTIMATION OF. The microbiological assay was performed by using the test

Cellulosic Conversion to Bioethanol from Pongamia Pod A Biodiesel Industry Waste

Novel approach for optimization of fermentative condition for polyhydroxybutyrate (PHB) production by Alcaligenes sp. using Taguchi (DOE) methodology

Isolation,Identification, and Characterization of of Rubber Degradation by a Mixed Microbial Culture Mr Munzer ullah (PhD student China University of

Cell free xanthan gum production using continuous recycled packed fibrous-bed bioreactor-membrane

MICROBIAL DEGRADATION AND NUTRIENT OPTIMIZATION OF PULP AND PAPER INDUSTRY WASTE WATER.

TD-P Revision 3.0 Creation Date: 6/9/2016 Revision Date: 8/16/2018

International Journal of Pharma and Bio Sciences

Production of polyhydroxyalkanoates by Ralstonia eutropha from volatile fatty acids

I January 23-January 26 INTRODUCTION; SAFETY; ASEPTIC TECHNIQUE; USE OF MICROSCOPES; OBSERVATION OF PREPARED SLIDES; ENVIRONMENTAL SAMPLE; EPIDEMIC

British Journal of Science 89 September 2011, Vol. 1 (1)

NITRATE REMOVAL BY ANTARCTIC PSYCHROPHILIC YEAST CELLS UNDER HIGH SALT CONDITIONS

A STUDY ON DENITRIFICATION IN A FLUIDIZED BED BIOREACTOR

Table of Contents 1. CHAPTER I INTRODUCTION 1 [A] GLUCOSE ISOMERASE 1

Application of green fluorescent protein signal for effective monitoring of fermentation processes

Serial dilution and colony count (Viable count) Pour plate. Spread plate Membrane filtration. Turbidity. Microscopic cell count

Growth kinetic and modeling of ethanol production by wilds and mutant Saccharomyces cerevisae MTCC 170

Plastic materials pose a major problem despite being used in day to day lives. They cannot be degraded in a short span

Lab 2-Microbial Enumeration

Microbial Growth. Phases of Growth. Pariporina: Bakteerien kasvukäyrä kuvaajana - Piirrä bakteerien klassinen kasvukäyrä - Nimeä kasvun eri vaiheet

Biodegradation of karathane using adapted Pseudomonas aeruginosa in scale up process

Characterization of the Lactobacillus isolated from different curd samples

Longan Shang,, Seong Chun Yim, Hyun Gyu Park,* and Ho Nam Chang*

DNA TRANSFORMATION OF BACTERIA RED COLONY REVISED 3/2003

National food safety standard Food microbiological examination: Listeria monocytogenes

Change in Ability of Agrobacterium to Produce Water-soluble and Water-insoluble g-glucans

Elisabeth Linton, Dr. Sridhar Viamajala, Dr. Ronald C. Sims UTAH STATE UNIVERSITY Biological and Irrigation Engineering

Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system

COUNT METHOD 5.0 OBJECTIVES 5.1 INTRODUCTION 5.2 PRINCIPLE. Structure

Optimization of Agitation Conditions for Maximum Ethanol Production by Coculture

Lab Activity #14 - Bacteriological Examination Of Water and Milk (Adapted from Lab manual by Dr. Diehl)

STUDIES ON ISOLATION, CHARACTERIZATION AND GROWTH OF CHLORPYRIFOS DEGRADING BACTERIA FROM FARM SOIL

MICROBIAL GROWTH. Dr. Hala Al-Daghistani

Module 11 : Water Quality And Estimation Of Organic Content. Lecture 13 : Water Quality And Estimation Of Organic Content

Study on Production, Extraction and Analysis of Polyhydroxyalkanoate (PHA) from Bacterial Isolates

Screening and Isolation of Polyhydroxy butyrate Producers

Ch 6. Microbial Growth

COMMERCIAL PRODUCTION OF PECTINASE USING FLASK FERMENTATION BY BACILLUS CERUS. K.Mehraj Pasha

J. Appl. Environ. Biol. Sci., 2(7) , , TextRoad Publication

Bacterial Transformation: Unlocking the Mysteries of Genetic Material

Bacterial Requirements. Growth and Nutrition

Transcription:

International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 9 ǁ September. 2013 ǁ PP.01-06 Screening, Isolation and Quantification of PHB-Producing Soil Bacteria Sunitha Panigrahi*, Ujwala Badveli 2. * HOD, Dept of Life Science, St. Mary s college, Hyd, Dept of Biotechnology, 2 Department of Biotechnology, Chaitanya Bharathi Institute of Technology ABSTRACT: Polyhydroxybutyrates are biodegradable polyesters synthesized by many bacteria Biodegradable polymer plays a predominant role as a biodegradable plastic due to their hydrolysable ester bonds. PHB is produced variety of microorganisms under appropriate conditions such as the presence of nitrogen, calcium, magnesium, iron or essential vitamins. Due to their biological origin it is an advantage of PHB is, they are degraded n aturally and completely to carbon dioxide and water under natural environment by the enzymatic activities of microbes. The present study reports the isolation and screening of soil bacteria and subsequent PHB production under normal conditions. It was observed that red soil was able to produce maximum yield of PHB. KEYWORDS: poly-β-hydroxybutyrates (PHB), PHV, PHA. I. INTRODUCTION Polyhydroxybutyrate (PHB) is a biodegradable and biocompatible thermoplastic, there are a class of bacterial polyesters collectively called polyhydroxyalkanoates (PHAs), accumulated intracellularly as reserve granules by many bacteria in harsh environmental conditions[1]. PHB was first isolated and characterized in 1925 [2]. PHB is primarily a product of carbon assimilation and is used by micro-organisms as a form of energy storage molecule [3]. It can be made into many forms and shapes. PHB & PHV (polyhydroxy valeric acid) are being developed for a ariety of applications[4]. PHB differentiates itself from other biodegradable plastics it has unique properties like insoluble in water, highly resistant to hydrolytic degradation, oxygen permeability, UV resistant, other biodegradable plastics are moisture sensitive and water soluble.phb is poor resistance to acids and bases, soluble in chloroform and other chlorinated hydrocarbons and biocompatible and hence it is suitable for medical applications. poly-β-hydroxybutyrate (PHB) is synthesized as an intracellular storage material and accumulates as distinct white granules during unbalanced growth in the cell, these are clearly visible in the cytoplasm of the cell. During the adverse conditions PHB is used by the cell as an internal reserve of carbon and energy. Many bacteria including those in the soil, are capable of PHB production and breakdown [5]. A series of enzymes, synthetases or depolymerases, are implied in the biosynthesis and biodegradation of poly-β-hydroxybutyrates and also of other polyhydroxyalkanoates [6]. These biodegradable polyesters display a special interest due to their possible use as substitutes of common plastics because they are completely degraded by the microoganisms present in the environment and they can be produced from regenerable carbon sources [7,8]. Alicaligens eutrophs H 16 is a facultative autotroph and can grow rapidly in simple media, for PHB prod it requires anaerobic conditions with Co 2 and N source [9]. Molecular structure of PHB doesn t depend on the features of the strain and conditions of carbon nutrition of microorganisms producing PHB[10]. Most of the bacteria which produce PHB are nitrogen-fixing microorganisms. The Azotobacter species fix the molecular nitrogen and have the capacity to accumulate polyhy-β-droxybutyrates when they are grown on different carbon sources, including sucrose media[11]. The cysts forme during adverse conditions germinate under favourable conditions to give vegetative cells, produce polysachharides. These bacteria utilize atmospheric nitrogen (N2) for their cell protein synthesis The study focused on the producing of poly-β-hydroxybutyrate (PHB) granules by strains isolated from different soil samples in AP. There were Screening, isolation, and optimization techniques done for the bacteria by using various techniques. The poly-β-hydroxybutyrate (PHB) granules production was tested by using various sources of C & N, C:N ratios, concentrations of C& N used, and the effect of PH. It was noticed that most of the soils had the PHB producing strains. Maximum density of granules was recorded from the red soil. 1 Page

II. MATERIAL AND METHODS Isolation of PHB from different cultures: The bacteria used in this study was collected from Soil samples like Vegetable soil, Paddy Field soil, Sunflower field soil, Red soil, Hussein sagar lake soil, for screening of best PHB producing bacteria and the below mentioned media is used as nutrient source. Various samples which were collected were serially diluted and the 10-5 dilution was plated on nutrient media, with Peptone- 2gm, Yeast extract-2gm, NaCl-1gm, Agar- 4gm, Distilled water- 1lt, the media was then autoclaved at 121 0 c for 20mins at 15lbs pressure to avoid contamination. These plates containing soil sample were incubated overnight. Among the four soil samples which were used RED soil gave more number of isolated single colonies. Ten colonies from red soil were again grown in nutrient broth and then again incubated overnight and then preserved for rest of the experiment Screening for PHB producing bacteria: All the bacterial isolates were qualitatively tested for PHB production following the viable colony method of screening using Sudan Black Dye (Jeran et al. 1998). For this screening of PHB producers, nutrient agar media supplied with 1% of glucose was autoclaved at 121 0 c for 20 min at 15lbs pressure. This media was poured into sterile Petri plates and allowed for solidification. The plates were divided into 5 equal parts and bacterial isolates were spotted. These plates were incubated for 24 hours. Now ethanolic solution of 0.02% Sudan Black B was spread over the Petri plates containing colonies and was kept undisturbed for 30 min. They were washed with 96% ethanol to remove excess stain from colonies. Quantification of PHB production and selection of isolates: All the Sudan Black B positives isolates were subjected to quantification of PHB production as per the method of Jhon and Ralph (1961). The bacterial cells containing the polymer were centrifuged at 10,000 rpm for 10 min and the pellet was washed with equal volume of acetone and ethanol to remove unwanted materials. The pellet was resuspended into 4% of sodium hypochlorite and incubated at room temperature for 30 min. The whole mixture was again centrifuged and the supernatant was discarded. The cell pellet containing PHB was again washed with equal volume of acetone and ethanol. Finally the pellet containing the polymer granules were dissolved in hot chloroform. The chloroform was filtered, and to the filtrate 10ml of concentrated hot sulphuric acid was added. The addition of sulphuric acid converts the pellet into crotonic acid which is brown in color. The solution was cooled and the absorbance was read at 235nm against sulfuric acid as blank. III. SREENING TECHNIQUES Gram Staining Twenty four hours old culture was gram stained and the slide was observed under microscope for gram reaction. IMViC,oxidase and peroxidase tests were also done IV. GELATIN LIQUIFICATION The isolates were inoculated on gelatin agar slants at 370C, for 2 days. Optimization of Cultural Parameters for maximum PHB production: Different factors affecting PHB production by the selected bacterial isolates were optimized. Effect of different carbon sources on PHB production: The selected bacterial isolates were grown in 250 ml conical flasks containing 100 ml MSM broth with different carbon sources like glucose, fructose, sucrose, maltose and cellulose. The flasks were incubated at 30 0 C on a rotary shaker (150 rpm) for 48 hours. After incubation, PHB produced by the isolates were quantified spectrophotometerically following the method of John and Ralph (1961). Effect of different nitrogen sources on PHB production: The bacterial isolates were grown in 250 ml conical flasks containing 100 ml MSM broth with the best carbon source, and different N sources were used like ammonium sulphate, ammonium chloride, ammonium nitrate and yeast extract, all at 1.0 g/l concentration. After 48 h, PHB yields were quantified. Effect of different concentrations of the best N sources on PHB production: The bacterial isolates were grown in 250 ml conical flasks, containing 100 ml MSM broth having the best carbon source and different concentrations of the best N source i.e. 05, 1.0 and 1.5 g/l. After 48 hr, PHB yields were quantified. 2 Page

Effect of ph sources on PHB production: The bacterial isolates were grown in 250 ml conical flasks containing 100 ml MSM broth containing the best carbon source and the best N source at the optimum concentration. Different ph of media were maintained i.e. 6.0, 7.0 and 8.0 and incubated. After 48 h, PHB produced were quantified. Effect of different C:N ratios on PHB production: The bacterial isolates were grown in 250 ml conical flasks containing 100 ml MSM broth with different C:N ratios i.e. 10:1, 15:1, 20;1 and 25:1 using the best C and N sources and incubated on a rotary shaker (150 rpm) at 300C. After 48 h, PHB yields were quantified V. RESULTS Screening for PHB producing bacteria: Black color colonies were taken as positive result. Screening for PHB producing bacteria Table No: 1 S. No. Sample description No of bacteria isolated No. of Sudan black positive isolates 1 Vegetable soil 11 4 2 Paddy Field 20 8 3 Sunflower field 15 7 4 Red soil 10 4 5 Hussein sagar lake 12 2 Quantification of PHB production and selection of isolates: Selected isolates for PHB production Table No: 2 S.No Source Isolates Yield (g/100ml) 1 Red Soil R3 0.180 2 Red Soil R9 0.160 Screening Test: Table No: 3 S.No TEST Result(R3) Result(R9) 1. Gram Staining Gram negative rods Gram negative rods 2. Gelatin Liquification Negative Negative 3. Citrate Test Positive Positive 4. Indole Test Positive Positive 5. Methyl Red Positive Positive 6. Voges-Proskauer Negative Negative 7. Oxidase Positive Positive 8. Peroxidase Positive Positive Colonies of PHB producing bacteria 3 Page

VI. OPTIMIZATION OF CULTURAL PARAMETERS FOR MAXIMUM PHB PRODUCTION Effect Of Different Carbon Sources On Phb Yield Table No: 4 S.N0 Isolates Glucose Fructose Sucrose Maltose Cellulose Mean yield g/100ml 1 R9 0.430 0.290 0.110 0.00 0.00 0.276 2 R3 0.500 0.410 0.160 0.00 0.00 0.356 Fig No:1 Maximum yield was seen when glucose was supplied as carbon source in both R3 and R9. VII. EFFECT OF DIFFERENT N SOURCES ON PHB YIELD BY THE SELECTED ISOLATES S.No Isolates Ammonium sulphate Table No:-5 Ammonium chloride Ammonium nitrate Yeast Extract 1 R3 0.680 0.390 0.200 0.008 0.241 2 R9 0.580 0.290 0.090 0.004 0.320 Fig No: 2 Mean yield in gm/100ml Maximum yield of the bacteria was seen when ammonium sulphate was used as nitrogen source. 4 Page

VIII. INFLUENCE OF DIFFERENT CONCENTRATIONS OF AMMONIUM SULPHATE (THE BEST N SOURCE) ON PHB YIELD BY THE SELECTED ISOLATES Table No:- 6 S.no Isolates Concentration of Ammonium Sulphate Mean yield in gm/100ml 0.5 1.0 1.5 1 R3 0.580 0.680 0.300 0.52 2 R9 0.470 0.580 0.24 0.43 Fig No:-3 When the concentration of ammonium sulphate was 1.0 the PHB synthesizing bacteria gave maximum yield. IX. EFFECT OF DIFFERENT C : N RATIOS ON PHB YIELD BY THE SELECTED ISOLATES Table no:-7 S.No Isolates C:N- C:N- C:N- C:N- Mean yield 10:1 15:1 20:1 25:1 gm/100ml 1 R3 0.500 0.827 1.100 1.080 0.877 2 R9 0.400 0.590 0.890 0.840 0.680 Fig no:- 4 Maximum production of bacteria was seen when C:N ratio is 20:1. X. EFFECT OF DIFFERENT PH LEVELS ON PHB YIELD Table no:- 8 S.No Isolates ph-6 ph-7 ph-8 Mean yield in gm/100ml 1. R-3 0.00 0.89 0.40 0.430 2 R-9 0.00 1.10 0.60 0.567 5 Page

Fig No: 5 Screening, Isolation and Quantification of PHB Maximum yield of bacteria was seen when the ph is 7. XI. CONCLUSION Among the 5 soil samples which were taken Red soil gave the maximum result which was tested using quantitative test,10 best colonies were isolated among them 6 colonies gave a positive result to PHB producing bacteria and R3 and R9 gave the maximum result. The physical and chemical parameters of R3 and R9 were altered and checked for the maximum yield. REFERENCES [1]. B.S. KIM, Production of poly (3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb. Technol., 27 (10), 774-777 (2000). [2]. Lemoigne, M. (1926). Produits de dehydration et de polymerisation de l acideß- oxobutyrique. Bull Soc Chim Biol 8,770 782. [3]. Steinbüchel, Alexander (2002). Biopolymers, Wiley -VCH. ISBN3-527-30290-5 [4]. Barnard GN & sanders JKM, The polyhydroxybutyrate granules in in-vivo, J BioChem, (1989) 3286-3291 [5]. A.J. ANDERSON, E.A. DAWES, Occurrence, metabolism, metabolic role, and industrial uses of bacterial PHA. Microbiol. Rev., (54), 450 472 (1990). [6]. T. ABE, T. KOBAYASHI, T, SAITO, Properties of a novel intracellular poly (3-hydroxybutyrate) depolymerase with high specific activity (PhaZd) in Wautersia eutropha H16. J. Bacteriol., (187), 6982 6990 (2005). [7]. S. KHANNA, A.K. SRIVASTAVA, Recent advances in microbial poly-hydroxyalkanoates. Process Biochem., 40, 607 619 (2005). [8]. M.J. PETTINARI, G.J. VASZQUEZ, D. SILBERSCHMIDT, B. REHM, A. STEINBUCHEL, B.S. MENDEZ, Poly (3- hydroxybutyrate) synthesis genes in Azotobacter sp. strain FA8. Appl. Environ. Microbiol., (67), 5331 5334 (2001). [9]. Schlegal H,G, Gottashalk & Bartha RV, Formationand utilization of poly hydroxyl butyric acid by Knallgas bacteria(hydrigenomas), Nature(Land), 191(1961) 463-465 [10]. Volva T G, Vasil ev AD, Zeer E P, Petrakovskaia EA & Falaieev O V, Study of the molecular structure of polyhydroxybutyrate- A thermoplastic & biodegradable biopolymer, Biofizika, 45 (2000) 445-451. [11]. J.C. QUAGLIANO, P. ALEGRE, S.S. MIYAZAKI, Isolation and characterization of Azotobacter sp. for the production of polyβ -hydroxyalkanoates. Rev. Argent. Microbiol., 26, 21 27 (1994) 6 Page