SA Climate Ready Climate projections for South Australia

Similar documents
SA Climate Ready Climate projections for South Australia

SA Climate Ready Climate projections for South Australia

Climate change projections to support natural resource management planning

Auckland Region climate change projections and impacts: Summary Report

Adapting to Change, Forming New Habits

Dr. Conor Murphy. The Citizens Assembly

Regional Climate Change and Variability Projections. Dave Sauchyn, Prairie Adaptation Research Collaborative, U of R

REPORT. Executive Summary

Chapter outline. introduction. Reference. Chapter 6: Climate Change Projections EST 5103 Climate Change Science

Public Bodies Duties Reporting Adapting to Climate Change. Anna Beswick Programme Manager SSN reporting training day 22 June 2017

Climate Change in New South Wales

LESSON 9: CONCEPTUALIZING MODULE II Factors Influencing Temperature

GLOBAL CLIMATE CHANGE

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report

Climate Change: Global and Australian perspectives

Human Activity and Climate Change

Climate change risks and vulnerability of Uzbekistan s energy sector Workshop briefing note 1. Introduction

Non-linearity of the runoff response across southeastern Australia to increases in global average temperature

Global Climate Change: Vulnerability Assessment & Modeling Scenarios for Water Resources Management in South Florida

Climate Change and the Campus. Contents. Welcome. iii. Introduction: A Word about Scientific Knowledge. Section 1: What Is Climate Change?

East Gippsland Regional Catchment Strategy: Climate Change Adaptation and Mitigation Plan

Global Climate Change

Climate Change : Facts and Future Scenarios

SEARs climate change risk and adaptation

R.A. Pielke Sr. University of Colorado at Boulder Presented at Wageningen University, The Netherlands, March 16, 2011

A guide to Representative Concentration Pathways

CLIMATE CHANGE EFFECTS ON THE WATER BALANCE IN THE FULDA CATCHMENT, GERMANY, DURING THE 21 ST CENTURY

Water Allocation Statement

What is climate change? - BBC News

The Impact of Climate Change on Surface and Groundwater Resources and their Management. I Concepts, Observations, Modeling.

Uncertainties in regional climate change projections

Evidence and implications of anthropogenic climate change

IPCC FOURTH ASSESSMENT CLIMATE CHANGE 2007: IMPACTS, ADAPTATION AND VULNERABILITY

Simulation of Climate Change Impact on Runoff Using Rainfall Scenarios that Consider Daily Patterns of Change from GCMs

2.4.0 CLIMATE CHANGE, EXPOSURE & RISK. Contents of Set : Guide 2.4.1: Activity : Activity : Activity 3 IN THIS SET YOU WILL:

Climate Change and Sustainable Development in Botswana

What does IPCC AR5 say? IPCC as a radical inside the closet

Heating up: bushfires and climate change

Historical climate, climate change and water availability

FACTS ABOUT GL BAL WARMING. gogreen. Shop visit An Ekotribe Initiative

DEVELOPING A NEW CLIMATE CHANGE STRATEGY FOR SOUTH AUSTRALIA

Climate change in the Asia-Pacific Region: What s the Evidence?

Module 7 GROUNDWATER AND CLIMATE CHANGE

IPCC WG1 AR5 Report & its relevance to Southeast Asia region

Introduction Climate Futures

Climate change scenarios in the Philippines (COVER PAGE)

Introduction. Frequently Used Abbreviations and Acronyms

Regional climate change on top of already high climate variability

Global Climatic Change. GEOG/ENST 2331 Lecture 22 Ahrens: Chapter 16

Overview: Contents: The Crop Monitor is a part of GEOGLAM, a GEO global initiative.

An Integrated Regional Climate Action Strategy

Dairy Businesses for Future Climates

Causes of past climate change and projections of future changes in climate. Peter Stott Met Office Hadley Centre, UK

The Science of Climate Change

Overview of Climate Change Impacts

ANALYZING THE RISE OF U.S. WILDFIRES

Climate Change: Implications for Groundwater Recharge and Saltwater Intrusion on the Gulf Islands

How things work college course/cumulative global warming exam/testbank

WG2 SPM. General Regional Impacts To California specifics. IPCC Scenarios

The Climate System. Goal of this session: Session contents. Modelling the Climate System and Climate Change

Global Climate Change Primer

Climate Change Adaptation Workshop For Planning Practitioners. National Climate Change Issues -- Setting the Scene

The IPCC Working Group I Assessment of Physical Climate Change

Climate Change Impacts in Washington State

Climate Adaptation National Research Flagship Andrew Ash Flagship Director September 2008

CLIMATE SUSTAINABILITY PLAN MACKAY WHITSUNDAY ISAAC

Climate change the facts

The European Commission s science and knowledge service. Joint Research Centre

Uncertainty in projected impacts of climate change on water

How Can Thermal Effects Be Explained?

Climate system dynamics and modelling

The Science of Climate Change

NOAA/NWS Ohio River Forecast Center. Water Resources Committee Climate Trends and Change

NATIONAL AND REGIONAL IMPACTS OF CLIMATE CHANGE ON THE INDIAN ECONOMY

Critical thinking question for you:

Iowa Climate Change Adaptation and Resilience: Applying Climate Data to Plans & Ordinances

Scientific Assessment of Climate Change: Global and Regional Scales

Intergovernmental Mandates calling for & supporting Climate Change Assessment in the Arab Region

1) Draw a diagram of the Greenhouse Effect with as much detail as you can.

Climate responsive design

Carbon Dioxide and Global Warming Case Study

The Science of Climate Change: The Global Picture

Assessing Climate Change Vulnerability at the Port of Mobile, AL Gulf Coast Phase 2

GLOBAL WARMING CONTRIBUTES TO AUSTRALIA S WORST DROUGHT

THE CRITICAL DECADE 2013

On the cascade of uncertainty in CMIP5 climate projections for scenario-led hydrologic modelling in major river basins western Canada

Thriving During Climate and Water Change: Strategies for the 21 st Century

Climate Change and Food Security Agricultural Production under Climate Change

An Assessment of the Need to Adapt Buildings for the Unavoidable Consequences of Climate Change

Climate Change and Agriculture

Adapting to climate change. UK Climate Projections June 2009

Climate Change from the WMO perspective

Building resilience to extreme weather events

Attributing and Predicting Climate Change

Attributing and Predicting Climate Change

November 6, SUBJECT: Streamflow and Temperature Projections of the Latest Climate- Change Datasets for the Columbia River Basin

CHANGE. Jean PLA, Frequency Management. Rapporteur ITU-D Question 24/2 ICT and Climate Change. CNES, Toulouse, FRANCE

Scientific Foundation of Climate Change. Human Responsibility for Climate Change

Climates and Ecosystems

Transcription:

South East SA Climate Ready Climate projections for South Australia This document provides a summary of rainfall and temperature (maximum and minimum) information for the South East (SE) Natural Resources Management (NRM) region generated using the latest group of international global climate models. Information in this document is based on a more detailed regional projections report available at www.goyderinstitute.org. Climate projections at a glance The future climate of the SE NRM region will be drier and hotter, though the amount of global action on decreasing greenhouse gas emissions will influence the speed and severity of change. Decreases in rainfall are projected for all seasons, with the greatest decreases in spring. Average temperatures (maximum and minimum) are projected to increase for all seasons. Slightly larger increases in maximum temperature occur for the spring season. By the end of the 21 st century Average annual rainfall could decline by 6.5-15.9% Average annual maximum temperatures could increase by 1.6-3.2 C The region The SE NRM region (from the northern Coorong and Tatiara districts to the coast in the south and west, and Victoria to the east) has wet, cool winters and dry, mild-hot summers; with increasing rainfall from north to south; coastal zones are dominated by winter rainfall, whilst more summer rain is experienced in inland areas. The SA Climate Ready project The Goyder Institute is a partnership between the South Australian Government through the Department of Environment, Water and Natural Resources, CSIRO, Flinders University, University of Adelaide, and the University of South Australia. In 2011, the Goyder Institute commenced SA Climate Ready, a project to develop climate projections for South Australia. The resulting information provides a common platform on which Government, business and the community can develop solutions to climate change adaptation challenges. The project has produced the most comprehensive set of detailed, local scale climate projections data ever available in South Australia. It covers rainfall, temperature, solar radiation, vapour pressure deficit and evapotranspiration. Average annual minimum temperatures could increase by 1.4-2.7 C.

How was the data generated? The climate projection information presented here is based on selected future climate change scenarios, projected to occur under two emissions scenarios defined by the Intergovernmental Panel on Climate Change (IPCC). The climate projection information presented here is based on selected future climate change scenarios which the IPCC describe as representative concentration pathways (RCPs). The high emissions scenario referred to in this document is RCP8.5 and the intermediate emission scenario is RCP4.5. The IPCC s emissions scenarios are the product of an innovative collaboration between integrated assessment modellers, climate modellers, ecosystem modellers as well as social scientists working on emissions, economics, policy, vulnerability and impacts. Detailed, local scale data were generated for the region using 15 Global Climate Models (GCM) and applying a technique called downscaling at selected weather stations. While using 15 GCMs provides a broader range of possible future climate changes, this document uses data from a subset of the 6 best GCMs. These models were chosen because they were found to perform better at representing climate drivers that are particularly influential on rainfall in South Australia, such as the El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole. Further information on methods, data and outputs is available in the full regional report available at www.goyderinstitute.org. 25527 25543 25523 25546 25526 26049 25507 26065 26026 26010 26078 26017 26069 25541 25525 25518 26062 26014 26027 26037 26058 26075 26021 26067 Figure 1. Location and identification numbers of the 24 weather stations in the SE NRM region Emissions scenarios CO2 concentration (ppmv) 1000 900 800 700 600 500 400 Intermediate emissions scenario (RCP4.5) High emissions scenario (RCP8.5) The two emissions scenarios used throughout this document are the intermediate stabilisation scenario called RCP4.5 and the high emissions scenario RCP8.5. Currently, global emissions of greenhouse gases are tracking at or above the RCP8.5 trajectory. 300 2000 2020 2040 2060 Year 2080 2100 How to interpret the graphs in this document The red line indicates the high emissions scenario (RCP8.5) which arises from little effort to reduce emissions and represents a failure to curb warming by 2100. The blue line indicates the intermediate emissions scenario (RCP4.5) which would stabilise the carbon dioxide concentration by 2100. The line indicates the average while the shaded area indicates the range.

Rainfall Climate modelling suggests that average annual rainfall could decline by up to 6.5-15.9% by the end of the 21 st century in the SE NRM region. Average annual rainfall is projected to decline under both intermediate emissions (RCP4.5) and high emissions (RCP8.5) scenarios (Figure 2a). By 2030 projected rainfall reductions are similar under both emissions scenarios. However, by the end of the century, projections diverge, with average rainfall declines more than twice as much under high emissions (Figure 2a). There is considerable overlap in the range of projections across the coming century. Seasonally, there is variation in both the average and range of declines projected. The largest change by 2070 occurs in spring under both emissions scenarios, with a 21.8% and 33.9% decline under the intermediate and high emissions scenarios, respectively (Figure 2b). Furthermore, by 2070, under intermediate emissions summer, autumn and winter may at times experience wetter years than the baseline average (Figure 2b). Under high emissions, however, only autumn and winter may have wetter years (Figure 2b). Both emissions scenarios are consistently drier in spring. Projected percent change in average annual and seasonal rainfall Figure 2a Mean projected change (%) compared -3.5% -4.4% -5.4% -6.6% -7.4% -11.9% -6.5% -15.9% Projected percent change in average annual rainfall. Mean projected change (%) compared -5.5% -14.0% -5.8% -9.2% 2070-0.3% -0.7% -21.8% -33.9% Figure 2b Projected percent change in average seasonal rainfall. High emissions scenario (RCP8.5) Intermediate emissions scenario (RCP4.5) Shaded area indicates the range

Maximum temperature Climate modelling suggests that average annual maximum temperatures could increase by up to 1.6-3.2 C by the end of the 21 st century in the SE NRM region. Under intermediate emissions (RCP4.5) average maximum temperatures could increase by 0.8 C by 2030 and 1.6 C by 2090 (Figure 3a). Changes are even greater under high emissions (RCP8.5), which projects an increase of 1.0 C by 2030 and 3.2 C by the end of the century. While the difference between emission scenarios is small early in the century, by the end of the century maximum temperature under high emissions is double that under intermediate emissions. Seasonally, the pattern of change in average maximum temperatures is similar between emissions scenarios by 2070. Across all seasons, temperatures are greater under high emissions by 0.9-1.1 C by 2070 (Figure 3b). Warming in the spring is projected to be greater than any other season under intermediate and high emissions (Figure 3b). The projected ranges about the averages indicate higher variation under high emissions compared to intermediate emissions, particularly in the summer (Figure 3b). Projected change in average annual and seasonal maximum temperatures Figure 3a Projected change in average annual maximum temperature. 1.0ᵒC 0.8ᵒC 1.6ᵒC 1.1ᵒC 2.4ᵒC 3.2ᵒC 1.6ᵒC 2070 Figure 3b Projected change in average seasonal maximum temperatures. 2.3ᵒC 2.4ᵒC 2.1ᵒC 2.7ᵒC 1.6ᵒC High emissions scenario (RCP8.5) Intermediate emissions scenario (RCP4.5) Shaded area indicates the range

Minimum temperature Climate modelling suggests that average annual minimum temperatures could increase by up to 1.4-2.7 C by the end of the 21 st century in the SE NRM region. Under the intermediate emissions scenario (RCP4.5), average minimum temperatures will rise by 0.6 C by 2030 and up to 1.4 C by 2090. Under the high emissions scenario (RCP8.5) a rise of 0.8 C is projected by 2030 and 2.7 C by the end of the century (Figure 4a). Minimum temperature increases are consistently greater under high emissions. By the end of the century, the projected changes under high emissions are nearly double those under intermediate emissions. The spring warming experienced in the maximum temperature projections are not repeated in the minimum temperature projections. By 2070, for example, autumn minimum temperature increases are projected to be 0.2-0.5 C greater than other seasons under high emissions, and under intermediate emissions, are the same as summer but greater than spring and winter (Figure 4b). Changes in minimum temperatures are projected to be lowest in winter under both emissions scenarios (Figure 4b). Like the maximum temperature change projections, the value ranges show low overlap between emissions scenarios, with the difference increasing over the years (Figure 4a). Projected change in average annual and seasonal minimum temperature Figure 4a Projected change in average annual minimum temperature. 0.8ᵒC 0.6ᵒC 0.9ᵒC 2.0ᵒC 2.7ᵒC 2070 Figure 4b Projected change in average seasonal minimum temperatures. 2.1ᵒC 2.3ᵒC 1.8ᵒC 1.0ᵒC 1.9C 1.1ᵒC High emissions scenario (RCP8.5) Intermediate emissions scenario (RCP4.5) Shaded area indicates the range

How to access the detailed data? Detailed data sets are available for weather stations in each of the NRM regions in South Australia through the Enviro Data SA website https://data.environment.sa.gov.au. Users of the site can download data through a search tool that allows for filtering of data by NRM region, GCM and RCP. Anyone interested in using the detailed data sets should first read the User Guide, which is located on the Enviro Data SA website. Further information links The Goyder Institute website includes further information about project outputs, including: regional summary documents for all NRM regions in South Australia case studies on how the climate projections data can been used to inform decision making a detailed report on climate projections for South Australian NRM regions (Charles and Fu 2014). Acknowledgments This document is a synopsis of data drawn from the following report: Charles S.P., Fu G. (2014) Statistically Downscaled Projections for South Australia Task 3 CSIRO Final Report. Goyder Institute for Water Research Technical Report Series No. 15/1 Adelaide, South Australia. This report should be consulted for further information regarding methods and data on other climate variables. Glossary Climate change: A change in the state of the climate, identified by changes in the mean and/or variability of its properties, that persists for long periods (typically decades or longer); driven by natural and anthropogenic processes. Climate change projections: The simulated response of the climate system to one of the emission scenarios (RCPs) and generally derived using climate models. Downscaling: Downscaling is a method that derives local to regional scale information from larger-scale (e.g. national or global) models or data analyses. GCM (Global Climate Model): Comprehensive numerical models of the climate system based on the physical, chemical and biological properties of its components, their interactions and feedback processes, and accounting for some of its known properties. Used to study and simulate climate. IPCC (Intergovernmental Panel on Climate Change): Scientific body providing an internationally accepted authority on climate change. RCPs (Representative Concentration Pathways referred to here as emissions scenarios): Scenarios that include time series of emissions and concentrations of the full suite of greenhouse gases and aerosols and chemically active gases, as well as land use/land cover. * Definitions are based on the glossary from the Intergovernmental Panel on Climate Change Fifth Assessment Report, Working Group 1 Report. Licensed under Creative Commons. Attribution 3.0 Australia License. http://creativecommons.org/licenses/by/3.0/au Copyright owner: Crown in right of the State of South Australia 2015.