SUBMERGED COMBUSTION HEATING AND EVAPORATION

Similar documents
Efficient volume reduction and concentration of mining waste water with direct contact evaporation technology

Heating Iron Ore Slurry to Improve Filtering Efficiency Prior to Pelletizing

FOR GOOD RTO OPERATION, KNOW YOUR INPUTS

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard

Downsizing a Claus Sulfur Recovery Unit

Chapter 2.1: Fuels and Combustion

Boilers & Fired Systems. Clean Coal Technology Dr. Tanveer Iqbal

Incinerator Options. Surefire TS Fixed Hearth Incinerators. todaysurematthews.com +44 (0) Application. Throughput Capacities

POZP 8 EN Incineration. Combustion Flares Combustion units Catalytic VOC oxidation Incineration of Hazard materials Vent gas cleaning Summary

NATIONAL CERTIFICATION EXAMINATION 2004 FOR ENERGY MANAGERS

Platinum Oxidation Catalysts in the Control of Air Pollution

Effluent Treatment Using Evaporation and Crystallisation Technology

HOW PYROLYSIS WASTE TO ENERGY WORKS

Green FSRU for the future

This presentation covers process steam energy reduction projects supported by the Ameren Illinois ActOnEnergy program.

Energy Efficiency Strategies Waste Heat Recovery & Emission Reductions

VIRIDOR WASTE MANAGEMENT ARDLEY EFW PLANT EP APPLICATION - NON TECHNICAL SUMMARY

1) ABSORPTION The removal of one or more selected components from a gas mixture by absorption is probably the most important operation in the control

The types of industrial exhaust streams that present particular pollution-control challenges include:

PRESENTATION OF CONDENSATE TREATMENT

HELIOSOLIDS FLUIDIZED BED INCINERATOR

Acid Gas Control Systems. Spray-Dry Scrubbers and Dry Injection Systems. United McGill products. a McGill AirClean product

Boiler Energy Efficiency & Overview of Economizers

Boiler and. steadily increases while the supply decreases energy

Fire triangle. Contents. Fire tetrahedron

T-125 EVOLUTION OF THERMAL REMEDIATION. Technical Paper T-125. EVOLUTION OF THERMAL REMEDIATION by Wendell R. Feltman P.E.

Technical Description Package Micro Auto Gasification System (MAGS )

MP-300. The most thermally efficient, robust and reliable medical incinerators on the market. Simply Built Better!

Brazed aluminium heat exchangers (BAHXs), also referred to

Questions. Downdraft biomass gasifier. Air. Air. Blower. Air. Syngas line Filter VFD. Gas analyzer(s) (vent)

COMPREHENSIVE MSW PROCESSING STEPS BIO COKE METHOD

CHAPTER 1 BASIC CONCEPTS

Biomass Boiler Emission Abatement Technologies. Simon Wakefield

CECEBE Technologies Inc.

ERT 318/4 UNIT OPERATIONS SEMESTER 1 (2013/2014)

Your Presenters: Scott Bayon / Director of Sales Anguil Environmental Systems Brian Kunkle / Director of Systems Sales Verantis Environmental

MP-400. The most thermally efficient, robust and reliable medical incinerators on the market. Simply Built Better!

Taravosh Jam Design & Engineering Co.

Application of the AGF (Anoxic Gas Flotation) Process

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering

A Presentation Prepared For: PROCESS COMBUSTION CORPORATION

PULSE DRYER TECHNOLOGY FOR DEVELOPING NATIONS ITS APPLICATION TO SLUDGE

The planning and design of effective wet duct/stack systems For coal fired utility power plants

GEOTHERMAL POWER PLANTS FOR MEDIUM AND HIGH TEMPERATURE STEAM AND AN OVERVIEW OF WELLHEAD POWER PLANTS

CHAPTER 3 BENEFITS OF BETTER BURNING

MP-500. The most thermally efficient, robust and reliable medical incinerators on the market. Simply Built Better!

novel polymer technology for boiler deposit control

Environmentally Friendly and Efficient

Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications

ECO2 LINCS LTD SLEAFORD RENEWABLE ENERGY PLANT IPPC APPLICATION - NON TECHNICAL SUMMARY

Natural Gas Processing Unit Modules Definitions

Chapter 2.6: FBC Boilers

natcom burner solutions Advanced burner technology for stringent emissions requirements

Electric Furnace Off-Gas Cleaning Systems Installation at PT Inco ABSTRACT

19 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS SEPTEMBER, 2018 PAPER 2: ENERGY EFFICIENCY IN THERMAL UTILITIES

Fundamentals of NO X Control for Coal-Fired Power Plants

Rethinking Refractory Design. Near-Net Shape Refractory Forming Technology and its use to Create Significant Process Improvement

Heat Rejection using Cooling Towers

6.5 Filtration General

Keywords: - Waste heat Recovery, Desalination, Turbo spin heat exchanger, Heat transfer, Diesel engine exhaust

Comparing Evaporative Technologies for the Recycling of Produced Waters

Power Recovery in LNG Regasification Plants

FOURTH-CLASS ENGINEER

Designing wet duct/stack systems for coal-fired plants

Particulate CEMs for Wet and Dry FGD applications. By William Averdieck, Managing Director, PCME Ltd, UK

Waste Heat Management Options Industrial Process Heating Systems. Dr. Arvind C. Thekdi E3M, Inc.

Chapter 11. Direct Reduced Iron (DRI)

Biomass Gasification

News. Power Generation 11. ph Control Reduces Acid Consumption in Neutralization Process up to 90 % Perspectives in Pure Water Analytics THORNTON

METHANOL CONVERTER AND SYNLOOP DESIGNS FOR GASIFICATION PLANTS

CHAPTER 1 INTRODUCTION

Incinerator Systems NFPA 82 Inspection Form

CRYOGENIC SOLVENT ABATEMENT (VOC s )

CAUSTIC RECOVERY USING MEMBRANE FILTRATION

Methanol Production by Gasification of Heavy Residues

Enhanced Dust Collector Performance Evaporative Gas Conditioning

TECHNICAL INFORMATION ABOUT UNDERGROUND STORAGE RESERVOIRS FOR NATURAL GAS

Appendix B. Glossary of Steam Turbine Terms

Information Centre Nitric Acid Plants. Kittiwake Procal Ltd Page 1 of 6

Jet Aeration Systems

Controlling NOx and other Engine Emissions

Integrated production of liquid sulphur dioxide and sulphuric acid via a lowtemperature

A Review of Sulfide Smelting Process Gas Handling Systems

Centerpoint Energy. Energy Efficiency & Technology Conference. Steam and Process Heat Recovery. May 23, 2017

Desalination Plants. IMIA Conference, Gleneagles, 2008 WG 57 (08) Prepared by:

Chapter Five Waste Processing, Treatment and Recycling Joe Green Dr Chris Wooldridge Cardiff University

INDUCED-DRAFT RICE HUSK GASIFIER WITH WET SCRUBBER AND JET-TYPE BURNER: DESIGN AND PERFORMANCE

REFRACTORY DRYOUT April 23, 2002

For Condensing Economizers ENBRIDGE MAY Topics

R.K.Yadav/Automobile Engg Dept/New Polytechnic Kolhapur. Page 1

Introduction. !! Propane is one of the world s most common engine fuels. !! U.S. imports about half of its petroleum

Biogas A Wet Gas Environment for Thermal Flow Meters

Selas Fluid Oxidation Technologies

ME 343 Exam 2 November 24, 2014

BURNER FLAME TEMPERATURE DURING WARM UP AND HOT STANDBY. Alan D. Mosher KPS Technology & Engineering LLC

CLEANER PRODUCTION GUIDELINES IN SMELTING INDUSTRIESS

GM2000. The most thermally efficient, robust and reliable medical incinerators on the market. Simply Built Better! GM2000. Touch Screen.

How to select a calibration bath fluid

Fluke-Direct.com. How to select a calibration bath fluid. Selection guide

Evaporative Gas Cooling and Emissions Control Solutions

Transcription:

SUBMERGED COMBUSTION HEATING AND EVAPORATION Wesley Young 1, Steven Panz 2 1. Chief Technical Officer, Inproheat Industries, Canada 2. President, Inproheat Industries, Canada INTRODUCTION Submerged Combustion is a method of direct contact heating that has been practised in a wide range of industries for several decades. This article explains the basic concepts of submerged combustion and how it can be applied to process heating of industrial aqueous solutions and slurries, and to the evaporation of solutions for the purposes of concentration or volume reduction. WHAT IS SUBMERGED COMBUSTION? The concept of submerged combustion is quite simple. Submerged combustion is the process of burning a fuel in a combustion chamber that is submerged in a liquid or slurry, which enables direct contact of the combustion gases with the liquid. Heat transfer from the gas to the liquid is completed rapidly and efficiently. The gases rise to the surface of the liquid and leave at, or near, the same temperature as the liquid. Submerged combustion is capable of achieving in excess of 99% thermal efficiency. WHERE CAN SUBMERGED COMBUSTION BE APPLIED? Submerged combustion can be used to heat or evaporate aqueous based solutions and slurries. It is often used to heat aggressive liquids or slurries that are challenging to heat by indirect methods. There are no heat exchange surfaces to foul which makes submerged combustion well suited to the heating of scaling liquids. Deposits from solutions are also problematic in conventional evaporators. Submerged combustion has been successfully applied to heat Potash brine Sulphuric acid heap leach solution Log chest water containing suspended wood fibre and dissolved lignin Process water containing high levels of chloride Sea water for LNG vapourization Waste water from industrial plants to maintain aerobic activity during winter Municipal sludge for pasteurization and production of Class A biosolids Fresh water for process use Iron ore concentrate slurry at 65% solids Brine for iodine recovery Page 1 of 7

Submerge Combustion has been used to evaporate Produced water from oil and gas wells Brine from hide curing Reverse osmosis rejects Salt whey Calcium chloride solution Metal acid leach solution Landfill leachate WHAT DO YOU NEED? Submerged combustion systems comprise these fundamental elements: Container Fuel source Combustion air Burner Submerged combustion chamber Exhaust gas outlet Burner control and safety Process control Container Submerged combustion systems can be mounted in a tank or any liquid containment that is deep enough to accommodate the submerged chamber. They are commonly installed in cylindrical or rectangular tanks, constructed of metal, fibre reinforced plastic, or concrete (above or below grade). Systems have also been installed on floating barges to heat ponds, and in earth or concrete channels to heat flow streams. The design of tanks needs special attention paid to the dynamic nature of submerged combustion. The impact forces imparted to tank walls by liquid turbulence inside the tank are substantial and are transmitted to the support structure. These forces can induce structural vibration and this must be taken into account in the design. The container must also be able to withstand corrosive and/or erosive effects of the liquid or slurry. Materials of construction for metal tanks range from bare carbon steel to exotic alloys. FRP and dual laminate tanks have also been used commercially, as has concrete, both bare and lined. Page 2 of 7

Fuel Source The most common fuel for submerged combustion is natural gas, although other gaseous fuels such as propane or butane can also be used provided the burner is properly configured to handle these fuels. #2 fuel oil can also be used but requires atomization, typically with high pressure air, to render it combustible in the burner. Heavy and high sulphur fuel oils such as Bunker C are not suitable. The calorific value of the fuel can be a determining factor in the maximum capacity of a particular burner, so it may influence the quantity of burners needed to meet the heat demand of the process. Combustion Air A source of air is needed to support the combustion process and it must be delivered to the burner at a pressure sufficient to overcome all of the resistance in the system. In the case of submerged combustion, the greatest resistance is the hydrostatic head of the liquid/slurry that must be overcome by the combustion gases exiting the chamber into the fluid. Combustion air is typically supplied by a centrifugal or positive displacement blower. The energy required by the blower is heavily dependent on the combustion chamber submergence which is dictated by the burner characteristics and the liquid/slurry properties, most notably the specific gravity. Other factors such as the design of the gas outlet from the combustion chamber will also contribute to the blower power requirements. The blower must be selected carefully to ensure that it can meet the range of conditions that will be demanded by process conditions. Blowers have minimum flow limits due to surging or overheating, and these can limit the amount of turndown that can be achieved on the burner. This problem can be overcome to some extent by using excess air blowoff to prevent blower damage and still meet the process requirement. The Burner Not all burners are suitable for submerged combustion applications. The burner must have low sensitivity to backpressure. A short flame length is advantageous in reducing the combustion chamber length, and hence the submergence depth. Tighter environmental standards is a driver promoting the use of low emission burners. An advantage in submerged combustion is that these burners tend to have shorter flame lengths for equivalent heat release. Turndown capability is another factor that can influence the selection of a burner. The burner flame temperature from is typically in the 1500 to 1650 C range. Submerged Combustion Chamber Submerged combustion chambers are typically cylindrical in shape, with openings at the bottom to allow the hot combustion gases to escape and sparge into the liquid. They are commonly fabricated from steel or alloy plate. The surrounding liquid acts as an effective heat sink and cooling medium for Page 3 of 7

the wall of the chamber. Because there must be space above the liquid for the inert gases (N 2, excess O 2, CO 2, and water vapour) to escape and be vented out of the heating container, the section of combustion chamber above the water line is not submerged and must be cooled to prevent heat damage. Cooling of the non submerged portion can be accomplished by dousing it with externally sourced cooling fluid, such as the fluid being heated, or it can be lined with a refractory material to shield the metal shell from the high gas temperatures. Some proprietary designs promote self cooling and therefore need neither external cooling nor refractory lining. Refractory linings can be highly problematic in submerged combustion chambers. The presence of water vapour inside the combustion chamber after a shutdown, due to backfilling of the chamber when the combustion air pressure is removed, can cause condensation onto and into pores of the refractory on cooldown. Upon restart of the burner, the rapid increase in temperature can volatilize the moisture and cause spalling of the refractory, leading to premature failure. Exhaust Outlet The products of combustion will invariably include trace levels of carbon monoxide and oxides of nitrogen, both of which can be toxic. Therefor it is imperative that the exhaust gases be vented in a controlled manner and not allowed to escape or accumulate in the workspace. For this reason, the heating container must have controlled release of the exhaust through an engineered vent, and the rest of the container must be sealed gas tight to prevent fugitive emissions. The sparging of gas into a liquid creates high levels of turbulence at the liquid gas interface. Fine droplets of liquid can be formed and transported with the gas, and these droplets will report as suspended particulate in the stack gas. This may or may not be an environmental concern depending on the nature of the entrained particulate, their concentration and/or quantity, and the site specific environmental permits. Burner Control and Safety Burner control deals primarily with flame safety, ensuring that the burner and its ancillary systems are functioning safely. The safety requirements are dictated by standards established by organizations such as CSA, NFPA, FM and CEN. The safety functions are typically monitored by microprocessors or dedicated PLC s. They are designed to ensure that safe operating conditions exist before and during burner operation. The heart of the flame safety monitoring is the flame detector. For continuous unsupervised operation of a burner for more than 24 hours, a self checking flame scanner is prescribed by the standards. The control of fuel and combustion air flow must be performed in tandem to ensure that sufficient combustion air is available in the burner and combustion chamber to support complete combustion of the fuel. This control can be accomplished by mechanically by directly linking the fuel flow device with the combustion air control valve. This necessitates characterization of the devices relative to one another. However, variable environmental conditions, such as ambient temperature, can alter the relationship, thereby upsetting the ratio of air to fuel. Inadvertent changes in the settings can also occur, for example by accidentally impacting the mechanical linkage. Page 4 of 7

Direct flow measurement of fuel and air flows can be a more reliable means of controlling the air and fuel flows. This usually requires some sort of electronic controller and actuators for the fuel and air. The use of volumetric metering devices is commonly used for flow measurement. These, however, can be subject to changing conditions such as a change in air density. The use of mass flow measuring devices, such as thermal dispersion meters, has the ability to compensate for changing conditions. Process Control A submerged combustion system must include process controls. The firing rate of the burner must be controlled to achieve the desired process temperature or evaporation rate. The liquid in the container must be maintained at a minimum level at all times to avoid overheating of the combustion chamber. Monitoring the level in a submerged combustion tank can be challenging because of the turbulence in the liquid bath and at the liquid surface. There is significant gas holdup in the bulk liquid which can occupy up to 20% of the apparent bulk volume of the liquid. Devices such as external stilling wells coupled with radar or ultrasonic level transmitters have proven successful in many situations. PLC s are commonly used to control the process parameters, but the peculiarities of submerged combustion must be taken into consideration when selecting instrumentation and control schemes. HOW DOES IT WORK? The process begins with starting the combustion air blower. The blower must overcome the hydrostatic head of liquid that resides in the combustion chamber at startup, forcing the liquid out of the chamber. Once the chamber is purged, a spark igniter is energised and fuel introduced into the burner to initiate a flame. Once a flame is established and the flame stabilized, the process can be ramped up to operating conditions. The hot combustion gases exit the combustion chamber and contact the liquid, transferring their sensible heat energy to the liquid. Some of the water of combustion is condensed, thereby transferring the latent heat to the liquid. The gases leave in a fully saturated state, carrying with it not only the sensible heat, but the latent heat of the vapourization of the water vapour. The gas leaving the liquid is at the same temperature as the liquid which is in contrast to a boiler heat exchanger combination in which exhaust from the boiler is at much higher temperatures. The saturated gas from submerged combustion contains an amount of latent heat related to the humidity ratio as shown on psychrometric charts. It can be seen in Table 1 and Figure 1 that the enthalpy in the saturated gas increases rapidly with temperature. This is the primary efficiency constraint associated with submerged combustion. Therefore, a higher liquid temperature leads to less thermal efficiency. Some of this latent heat can be recovered by contacting the incoming cold feed with the exhaust gas. This action condenses water vapour and the latent heat is absorbed into the liquid thereby preheating it before it enters the submerged combustion container. This is being practised with some proprietary design. Because of this phenomenon of latent heat carried by the exhaust gas, it is impossible to boil water by submerged combustion. The reason is that at a certain temperature, which occurs below the boiling point, the amount of energy contained in the water vapour in the saturated gas is equal to the amount of energy that is input into the liquid by the burner. At sea level, pure water can Page 5 of 7

only be heated to about 85 C. Dissolved solids will increase this temperature due to vapour pressure depression effects of the solute. It is this phenomenon that can make submerged combustion an effective evaporator. The evaporated water that is carried out with the exhaust gas offers opportunities for the recovery of high quality water by condensing the vapour directly into a suitable process stream, or indirectly with a condenser and cooling medium. Table 1. Humidity Ratio and Enthalpy of Saturated Air Temperature C PSYCHROMETRIC DATA Humidity Ratio kg water / kg Air Enthalpy of Saturated Air kj / kg dry air 0 0.0038 27 5 0.0054 37 10 0.0077 47 15 0.011 60 20 0.015 75 25 0.020 94 30 0.027 118 35 0.037 147 40 0.049 185 45 0.065 232 50 0.087 293 55 0.115 372 60 0.154 478 65 0.206 621 70 0.279 720 75 0.386 1110 80 0.553 1557 85 0.838 2321 90 1.420 3876 Page 6 of 7

Enthalpy of Saturated Air kj/kg Dry Air 4500 4000 3500 3000 2500 2000 1500 1000 500 0 Enthalpy of Saturated Air 0 10 20 30 40 50 60 70 80 90 100 Temperature, C Figure 2. Enthalpy of Saturated Air SUMMARY Submerged combustion is a heating technology that offers an effective method of heating difficult solutions and slurries with high thermal efficiency. Higher efficiency compared to conventional indirect heating results in lower energy consumption and lower greenhouse gas emissions. The absence of heat transfer surfaces makes submerged combustion a good candidate for fluid with scaling characteristics. The evaporation of waste water streams is a growing field of application for submerged combustion. It reduces haulage of waste water to disposal sites, eliminates discharge of liquid to waterways, and can recover high quality water for re use which lessens the draw on fresh water resources. Submerged combustion has proven to be an effective, efficient and reliable technology for process heating and evaporation. Page 7 of 7