A Model Integration Framework for Assessing Integrated Landscape Management Strategies

Similar documents
A Model Integration Framework for Assessing Integrated Landscape Management Strategies

Integration of the DAYCENT Biogeochemical Model within a Multi-Model Framework

An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions

Progress of China Agricultural Information Technology Research and Applications Based on Registered Agricultural Software Packages

Composite Simulation as Example of Industry Experience

REAP: Renewable Energy Assessment Project

Electronic Agriculture Resources and Agriculture Industrialization Support Information Service Platform Structure and Implementation

Using the HOS Method for Evaluating the Efficiency of Environmental Information Systems

Layout Design by Integration of Multi-agent Based Simulation and Optimization

Agronomic and soil quality trends after five years of different tillage and crop rotations across Iowa

Optimal Storage Assignment for an Automated Warehouse System with Mixed Loading

Utilizing LEAF to Increase Biomass Feedstock Supplies from Agricultural Land

Decision Support for Nitrogen Management in Tile-Drained Agriculture

Manag Mana in g g Soil Carbon to Imp to Im rove Water Qualit Douglas L. Douglas L Karlen USDA USDA--ARS National ARS National Soil Tilth Lab REAP

A Design Method for Product Upgradability with Different Customer Demands

A Performance Measurement System to Manage CEN Operations, Evolution and Innovation

Facility Layout Planning of Central Kitchen in Food Service Industry: Application to the Real-Scale Problem

Simulation for Sustainable Manufacturing System Considering Productivity and Energy Consumption

Flexibility in the Formation and Operational Planning of Dynamic Manufacturing Networks

Integrating Aspects of Supply Chain Design into the Global Sourcing Process Insights from the Automotive Industry

Regional Changes in Water Quality Associated with Switchgrass Feedstock

The Energy Independence and Security Act of 2007

Chapter 2: Best Management Practices: Managing Cropping Systems for Soil Protection and Bioenergy Production

Towards a Modeling Framework for Service-Oriented Digital Ecosystems

Economic analysis of maize/soyabean intercrop systems by partial budget in the Guinea savannah of Nigeria

Assessing Benefits of Winter Crops

Impact of cutting fluids on surface topography and integrity in flat grinding

Supporting the Design of a Management Accounting System of a Company Operating in the Gas Industry with Business Process Modeling

Performance Analysis of Reverse Supply Chain Systems by Using Simulation

Strip-tillage Successes, watch-outs based on soil type, soil drainage, and climate

Comparison of lead concentration in surface soil by induced coupled plasma/optical emission spectrometry and X-ray fluorescence

Measurements of methane leaks from biogas plant based on infrared camera

Production of Biofuels Feedstock on Agriculture Land and Grasslands

Experimental Study on Forced-Air Precooling of Dutch Cucumbers

Interaction of weather and field variability on profitability in crop production

Heat line formation during roll-casting of aluminium alloys at thin gauges

3D Experiences Dassault Systèmes 3DS Strategy to Support New Processes in Product Development and Early Customer Involvement

Spring Nutrient Flux to the Gulf of Mexico and Nutrient Balance in the Mississippi River Basin

Nutrient and Sediment Loss Reduction by Perennial & Cover Crops

Connections Between Midwest Agriculture, Bioenergy, and Water Quality

How Resilient Is Your Organisation? An Introduction to the Resilience Analysis Grid (RAG)

The effects of land-use on water quality are more obvious in places like Spring Green because of the susceptible geologic conditions

Within-Field Profitability Assessment: Impact of Weather, Field Management and Soils

IOWA SOYBEAN ASSOCIATION RESEARCH UPDATE

Recycling Technology of Fiber-Reinforced Plastics Using Sodium Hydroxide

Energy savings potential using the thermal inertia of a low temperature storage

RESEARCH. AFREC Research Projects. htm

Estimating traffic flows and environmental effects of urban commercial supply in global city logistics decision support

Collusion through price ceilings? In search of a focal-point effect

Decomposing Packaged Services Towards Configurable Smart Manufacturing Systems

An investigation of sustainable agricultural residue availability for energy applications

Finite Element Model of Gear Induction Hardening

Transferability of fish habitat models: the new 5m7 approach applied to the mediterranean barbel (Barbus Meridionalis)

Coping strategies with agrometeorological risks and uncertainties for water erosion, runoff and soil loss

Managing Systems Engineering Processes: a Multi- Standard Approach

Exploring Different Faces of Mass Customization in Manufacturing

Effect of a rye cover crop and crop residue removal on corn nitrogen fertilization

Balancing biomass for bioenergy and conserving the soil resource or Having your biomass and your soil too. Jane Johnson USDA-ARS, ARS, Morris, MN

HYPOXIA ACTION PLAN: WHAT CAN MIDWEST AGRICULTURE DO? Dennis McKenna Illinois Department of Agriculture

High Purity Chromium Metal Oxygen Distribution (Determined by XPS and EPMA)

The influence of acid mist upon transpiration, shoot water potential and pressure volume curves of red spruce seedlings

Experiences of Online Co-creation with End Users of Cloud Services

Environmental Impact of PV Systems: Effects of Energy Sources Used in Production of Solar Panels

Overall Layout Design of Iron and Steel Plants Based on SLP Theory

DIFFICULTIES IN GRAIN REFINING ALUMINUM LITHIUM ALLOYS USING COMMERCIAL Al-Ti AND Al-Ti-Bor MASTER ALLOYS

Prediction of the energy efficiency of an Ar-H2-O2 plasma torch with Ansys Fluent

Structure/property relationships in HSLA steel with low carbon and manganese and increased silicon content

Monitoring of Collaborative Assembly Operations: An OEE Based Approach

One-of-a-Kind Production (OKP) Planning and Control: An Empirical Framework for the Special Purpose Machines Industry

Executive Summary November 2012

Environmental Benefits and Management of Small Grain Cover Crops in Corn-Soybean Rotations

New experimental method for measuring the energy efficiency of tyres in real condition on tractors

Assessing Regional Water Impacts of Biofuel Production Scenarios

An Innovative Framework Supporting SME Networks for Complex Product Manufacturing.

Integrated Assembly Line Balancing with Skilled and Unskilled Workers

Rapid National Model Assessments to Support US Conservation Policy Planning Mike White

THERMAL PULSE ANNEALING OF TITANIUM AND TANTALUM SILICIDES

Application of AnnAGNPS to model an agricultural watershed in East-Central Mississippi for the evaluation of an on-farm water storage (OFWS) system

Dynamic price competition in air transport market, An analysis on long-haul routes

Value-Based Design for Gamifying Daily Activities

Sustainability Evaluation of Mass Customization

Strategies for nitrate reduction: The Cedar River Case Study

Selecting the components of composites

Innovation Management in European Projects

Aeration control in a full-scale activated sludge wastewater treatment plant: impact on performances, energy consumption and N2O emission

A Stochastic Formulation of the Disassembly Line Balancing Problem

Anne Peretz. To cite this version: HAL Id: halshs

A Digital Management System of Cow Diseases on Dairy Farm

Production Cost Analysis and Production Planning for Plant Factories Considering Markets

Development of Colorimetric Analysis for Determination the Concentration of Oil in Produce Water

The Reverse Logistics Technology and Development Trend of Retired Home Appliances

Bioenergy Feedstocks from Semi Arid Agro ecosystems: Soil C and Water

University of Maryland Phosphorus Management Tool (The Revised Maryland PSI)

Pressure effects on the solubility and crystal growth of α-quartz

Integration of Supplier and Customer s Production Processes

Cover Crops, Wetlands, and Conservation Drainage

Climate Change: Impacts,Adaptation, and Mitigation. Charles W. Rice University Distinguished Professor Department of Agronomy Kansas State University

Hydrologic and Water Quality of Climate Change in the Ohio-Tennessee River Basin

Drum- and -Disc-Engine with Shape Memory Wires

Transcription:

A Model Integration Framework for Assessing Integrated Landscape Management Strategies Jared Abodeely, David Muth, Joshua Koch, Kenneth Bryden To cite this version: Jared Abodeely, David Muth, Joshua Koch, Kenneth Bryden. A Model Integration Framework for Assessing Integrated Landscape Management Strategies. Jiří Hřebíček; Gerald Schimak; Miroslav Kubásek; Andrea E. Rizzoli. 10th International Symposium on Environmental Software Systems (ISESS), Oct 2013, Neusiedl am See, Austria. Springer, IFIP Advances in Information and Communication Technology, AICT-413, pp.121-128, 2013, Environmental Software Systems. Fostering Information Sharing. <10.1007/978-3-642-41151-9_12>. <hal-01457441> HAL Id: hal-01457441 https://hal.inria.fr/hal-01457441 Submitted on 6 Feb 2017 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Distributed under a Creative Commons Attribution 4.0 International License

A Model Integration Framework for Assessing Integrated Landscape Management Strategies Jared M. Abodeely 1, David J. Muth 1, Joshua B. Koch 1, and Kenneth M. Bryden 2 1 Idaho National Laboratory, Idaho Falls, ID USA {Jared.Abodeely, David.Muth, Joshua.Koch}@inl.gov 2 Iowa State University, Ames, IA USA kmbryden@iastate.edu Abstract. Nitrogen application is a standard practice for maximizing productivity of an agronomic system. The challenge is that many commercial scale agricultural systems are inefficient in utilizing the nitrogen that is applied. Therefore, understanding the impact of land management practices on nitrogen use inefficiencies within the agroecosystem is critical. This paper presents an integrated model that quantifies the impact of various land management practices on specific agroecosystem units. This integrated model is composed of the Wind Erosion Prediction System (WEPS), the Revised Universal Soil Loss Equation, Version 2 (RUSLE2), the Soil Condition Index (SCI), and the daily CENTURY model, DAYCENT. The integrated model was used to determine the impact of land management strategies on greenhouse gas emissions and nitrate leaching in a 60.5 ha field in Webster County, Iowa, USA. It was found that nitrogen use efficiency can vary significantly across a field and that integrated land management strategies can reduce overall nitrogen losses. Keywords: integrated model, soil organic carbon, greenhouse gas emissions, nitrate leaching 1 Introduction In some agricultural systems a significant amount of nitrogen fertilizer is required for the land to reach its maximum productivity potential. However, these agricultural systems are often inefficient in their utilization of the nitrogen, and much of the nitrogen is lost through greenhouse gas emissions and nitrate leaching. The U.S. Environmental Protection Agency has determined that in 2011 agricultural systems accounted for 8% of the total greenhouse gas emissions in the United States and that 69% of the total N 2 O emissions were due to agricultural practices [1]. This is significant because N 2 O has a global warming potential 310 times greater than CO 2. Nitrate leaching is another concern as nitrogen leaving a field through runoff or tile drainage enters river systems and migrates into open water. This is evident in the northern Gulf of Mexico where hypoxia is occurring due to increased concentrations of nitrogen delivered from the Mississippi River system [2]. adfa, p. 1, 2011. Springer-Verlag Berlin Heidelberg 2011

Nitrogen losses in agroecosystems can be attributed to several factors including land management practices, crop rotation, drainage, soil organic matter levels, and climate patterns [3]. This paper presents an integrated model composed of several agronomic models for simulating environmental processes that quantify the impact of various land management practices on specific agroecosystem units. Using the integrated model the potential of integrated landscape management strategies to improve nitrogen use efficiency and mitigate nitrogen losses from the agroecosystem are examined. Two land management scenarios are assessed: 1) a traditional Midwest row cropping rotation (corn-soybean) and 2) an integrated landscape management with a corn-soybean rotation with a rye clover cover crop and switchgrass in low production areas. The study is performed using high-fidelity soil, landscape, and grain yield data for a 60.5 ha field in Webster County, Iowa, USA. 2 Integrated Model Agronomic models provide the ability to assess a broad range of soil, climates, and land management practices. However, these models are often disparate in nature and focused on a specific environmental process. Muth and Bryden [4] addressed the challenges of integrating agronomic models through development of a model integration framework. Initial research efforts for the integrated model were focused on sustainable residue removal with models used by the US Department of Agriculture Natural Resources Conservation Service for developing land management plans. These models include the Wind Erosion Prediction System (WEPS) [5], Revised Universal Soil Loss Equation, Version 2 (RUSLE2) [6], and the Soil Conditioning Index (SCI) [7]. The integrated model predicted sustainable residue removal rates based on wind- and water-induced soil erosion and qualitative soil organic carbon constraints. The integrated model was used to investigate sustainable residue removal at the national scale [8] and at the subfield scale [9-10]. In this paper, this integrated model has been extended to include the biogeochemical model DAYCENT [11]. The DAYCENT model quantifies exchanges of carbon and nitrogen between the soil, vegetation, and atmosphere, enabling assessment of the impacts of land management decisions on soil organic carbon, greenhouse gas emissions, and nitrate leaching. The data flow in the integrated model is shown in Fig. 1. The model uses highfidelity datasets including light detection and ranging (LiDAR) for slope and elevation (0.5m 2 ), grain yield data taken from a yield monitor of a combine during grain harvest (5m 2 ), and the Soil Survey Geographic (SSURGO) Database (10m 100m). The integrated model is initialized with the selection of an agroecosystem unit and land management practice. Soil and climate data are retrieved based on the selected location. The soil, climate, and land management data are then assembled into native file formats for each of the integrated models. The WEPS model is initialized and simulated to produce wind-induced soil erosion. The RUSLE2 model is then initialized and simulated to determine the water-induced soil erosion. The soil erosion values are then passed to the SCI model and considered in determining the qualitative

Fig. 1. Model integration framework used to assess environmental processes. soil organic carbon value. Also considered in the SCI calculation are organic matter and field operations. The system is then determined to either be sustainable or unsustainable using total soil erosion and soil organic carbon criteria. The DAYCENT model is then initialized and simulated to predict and quantify the long-term impacts on soil organic carbon, greenhouse gas emissions, and nitrate leaching. One of the challenges in the integrated model is using consistent yield data across all the models since WEPS and RUSLE2 use yield as an input, and DAYCENT predicts yield based on soil, climate, and land management practices. To account for this difference, a yield calibration module is utilized with DAYCENT to enable yield consistency across the integrated model. While this enables a more accurate assessment of the land management decisions, it increases the simulation time due to the parameter adjustment methodology employed by the yield calibration module and because the process occurs for each year of the simulation. The WEPS, RUSLE2, and SCI simulations are less than a minute while the DAYCENT simulation/calibration process is several minutes. 3 Methodology 3.1 Field Discretization The differences in computational runtime between the various models impacts the fidelity the agroecosystem unit can be analyzed. The relatively quick runtime of the WEPS, RUSLE2, and SCI models enables them to be simulated at every yield data point. However, simulation of the DAYCENT model with yield calibration at every yield data point is computationally expensive. To address this challenge, a discretization methodology was developed that captures the variability of the soil, slope, and yield at a scale that is appropriate for understanding the environmental processes

Fig. 2. Soil and grain yield characteristic for a field in Webster County, IA, USA. a) SSURGO soil map, b) soil organic matter (%), c) elevation (m), and d) grain yield (bu/acre) while enabling utilization of the DAYCENT model. A 10 m 10 m grid was determined to be the optimum resolution for (1) representing existing agricultural equipment used in the field and (2) aggregating the data to a level that is representative of the field. 3.2 Case Study The integrated model was applied to a 60.5 ha field in Webster County, Iowa, USA. Fig. 2 shows the high-fidelity data utilized to assess the field. Fig. 2a shows a satellite image of the field with the SSURGO soil map overlaid. The field is composed of seven soil types. The variation in soil type is noticeable from the satellite image. Fig. 2b shows the soil organic matter levels of the various soil types found in the field. Soil organic matter retains and recycles nutrients, improves soil structure, enhances water exchange characteristics, and sustains microbial life in the soil [12] and provides an indicator of productivity [13]. Fig. 2c shows the field elevation using LiDAR data. Slope values required by the integrated model are determined using this elevation data. Fig. 2d shows the 2010 corn grain yield distribution using yield data gathered during harvest from the grain combine. More than 24,000 yield data points were taken during the 2010 grain harvest. Corn grain yield varies across the field from 1.25

Mg/ha (20 bushel/acre) on the high elevation areas to almost 15 Mg/ha (220 bushel/acre) in the lower elevation areas. The field was discretized into 6048 grid cells, as shown in Fig. 3. Grain yield and slope data points were averaged within each grid cell to generate a representative value. In addition, the dominant soil type was determined based on area coverage within the grid cell. These values were used within the integrated model by DAYCENT. The integrated model was used to compare the impacts of two land management scenarios a traditional Midwest row crop rotation and an integrated landscape management strategy on nitrogen use efficiency in the agroecosystem. The traditional row crop rotation is a corn-soybean rotation assuming 2010 corn grain yield and 1.48 Mg/ha soybean yield. A fertilizer application of 0.235 Mg N /ha was applied during the spring in the corn year. A reduced tillage regime and no residue harvest are also assumed. For the integrated landscape management scenario, sections of the field with low productivity are taken out of row crop production and replaced with switchgrass. Switchgrass has been identified as a potential biomass resource for biofuel production and can potentially improve carbon sequestration, nutrient recovery from runoff, and soil remediation [14-15]. Approximately 35% of the field is converted from traditional row crops to switchgrass. The areas selected are based on the productivity of the land and the ability to manage the land with existing equipment without inconveniencing the farmer. The switchgrass stand is assumed to have a two-year establishment period followed by productive years where 80% of the biomass is harvested in the fall. Each year a fertilizer application of 0.101 Mg N /ha is applied. The remaining area of the field still in row crop production assumes the same fertilizer application and reduced tillage with the addition of a rye clover cover crop. In addition, residue was removed from the row crop area at the highest sustainable rate. Each scenario is simulated for 10 years to compare the impacts of the two land management scenarios on nitrogen use efficiency and losses. Fig. 3. Discretized field with an expanded view of a 30m x 30m section of the field with grain yield data points.

Fig. 4. Field representation of integrated landscape management 4 Results Fig. 5 shows the losses that occur in each of the land management strategies. Fig. 5a,b show the agroecosystem unit losses due to N 2 O gas fluxes. It can be seen that when calculating the N 2 O flux that the integrated model is sensitive to soil texture. Soils with higher organic matter tend to have higher N 2 O flux. Although crop rotation selection can reduce N 2 O emissions, the general trend of higher organic matter lead- Fig. 5. Nitrogen losses for the row crop and integrated landscape managements

Fig. 6. Nitrogen use efficiency for the row crop and integrated landscape managements ing to high N 2 O emissions is consistent. The integrated land management strategy reduces the greenhouse gas emissions relative to the traditional row crop system from the field from 1.46 Mg N to 0.87 Mg N over 10 years. Fig. 5c,d show the nitrogen losses due to nitrate leaching. Implementation of switchgrass reduces total nitrate leaching relative to the traditional row crop management by 4.83 Mg N over 10 years, a 63% decrease. Fig. 6a and 6b show the nitrogen use efficiency in the agroecosystem unit for both land management scenarios. As shown the integrated landscape significantly increases the efficiency of nitrogen use in the low production areas. Overall, the integrated land management strategy increases nitrogen use efficiency by 6% relative to the traditional row crop scenario, reducing nitrogen losses relative to the traditional row crop scenario by 6.48 Mg N over a ten-year period. 5 Conclusions The integrated model was used to investigate a traditional row crop rotation and an integrated landscape management scenario in a field with diverse soil and topographical characteristics. The integrated landscape management replaced low production areas in a traditional row crop rotation with switchgrass and added a rye cover crop where the traditional row crop was maintained. The integrated landscape improved nutrient use efficiency resulting in reduced nitrogen loss from the agroecosystem unit. The integrated land management strategy reduced N 2 O emissions and nitrate leaching by 40% and 63%, respectively, resulting in a net nitrogen loss reduction of 0.11 Mg N /ha. In addition, these nitrogen losses have an economic value associated with them and as markets for energy feedstocks begin to grow, the integrated model can enable decisions towards determining land management strategies that improve the economics, environment, and total biomass production. Acknowledgements. The authors gratefully acknowledge the funding support from DOE s Office of Biomass Programs, as well as significant support from all partners in the DOE Biomass Regional Feedstock Partnership Program.

References 1. U.S. Environmental Protection Agency: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011, http://www.epa.gov/climatechange/downloads/ghgemissions/us- GHG-Inventory-2013-Main-Text.pdf 2. Rabalais, N.N., Turner, R.E.: Hypoxia in the northern Gulf of Mexico: Description, causes and change. In Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Vol. 58, pp. 1-36. AGU, Washington, DC (2001) 3. Dinnes, D.L., Karlen, D.L., Jaynes, D.B., Kaspar, T.C., Hatfield, J.L., Colvin, T.S., Cambardella, C.A.: Nitrogen Management Strategies to Reduce Nitrate Leaching in Tile- Drained Midwestern Soils. Agron. J. 94, 153-171 (2002) 4. Muth, D.J., Bryden, K.M.: An integrated model for assessment of sustainable agricultural residue removal limits for bioenergy systems. Environ. Modell. Softw. 39, 50-69 (2013) 5. Official NRCS-WEPS Site. Wind Erosion Prediction System, http://www.weru.ksu.edu/nrcs/wepsnrcs.html 6. Revised Universal Soil Loss Equation, Version 2 (RUSLE2), http://fargo.nserl.purdue.edu/rusle2_dataweb/rusle2_index.ht m 7. Soil Conditioning Index (SCI), http://soils.usda.gov/sqi/concepts/soil_organic_matter/som_s ci.html 8. Muth, D.J., Bryden, K.M., Nelson, R.: Sustainable agricultural residue removal for bioenergy: a spatially comprehensive US national assessment. Appl. Energy 102, 403-417 (2013) 9. Muth, D.J., McCorkle, D.S., Koch, J.B., Bryden, K.M.: Modeling Sustainable Agricultural Residue Removal at the Subfield Scale. Agron. J. 104, 970 981 (2012) 10. Muth, D.J., Bryden, K.M.: A Conceptual Evaluation of Sustainable Variable-Rate Agricultural Residue Removal. J. Environ. Qual. 41, 1774-1786 (2012) 11. Abodeely, J.M., Muth, D.J., Bryden, K.M.: Integration of the DAYCENT Biogeochemical Model within a Multi-Model Framework. 6 th International Congress on Environmental Modelling and Software, pp. 1287-1294. Leipzig, Germany (2012) 12. Wilhelm, W.W., Johnson, J.M-F., Karlen, D.L., Lightle, D.T., USDA-ARS: Corn stover to sustain soil organic carbon further constrains biomass supply. Agron. J. 99, 1665-1667 (2007) 13. Bauer, A., Black, A.L.: Quantification of the Effect of Soil Organic Matter Content on Soil Productivity. Soil Sci. Soc. Am. J. 58, 185-193 (1994) 14. Bransby, D.I., McLaughlin, S.B., Parrish, D.J.: A review of carbon and nitrogen balances in switchgrass grown for energy. Biomass Bioenergy 14, 379-384 (1998) 15. Keshwani, D.R., Cheng, J.J.: Switchgrass for bioethanol and other value-added applications: A review. Bioresour. Technol. 100, 1515-1523 (2009)