-KONTAKT 39 Information for the Rubber Industry

Similar documents
Information for the Rubber Industry. Selected Processing Additives in CR. content Introduction. Test equipment, Methods and Parameter

Silane Coupling Agents

SiSiB PC2000 SILANE C 2 H 5 O (CH 2 ) 3

in Peroxide Cured EPDM Cable

on the Thermal Conductivity

Surfactant Influence on Silica Filled Tread

Calcined Neuburg Siliceous Earth. in Medium and High Voltage Cable

Calcined. Neuburg Siliceous Earth. in Medium and High Voltage. Cable Insulations. Hubert Oggermüller Nicole Holzmayr. Approval: November 2011

Information for the Rubber Industry. Crosslinked Native Oils Factice* Vulcanized Vegetable Oils. Introduction 2

Antivibration Mount. Based on NR. Approval: July VM / Dr. Alexander Risch VM-2/ /

Improving the abrasion resistance of green tyre compounds

Achieving better processing of silica filled compounds

TECHNICAL BULLETIN. EPDM Engine Mounts

Advanced Silica Characterization and Its Importance for In- Rubber Performance

NXT* Z 100. Technical Data Sheet NXT* Z 100

Struktol Company of America Producers of Specialty Chemicals 201 E. Steels Corners Road P. O. Box 1649 Stow, Ohio

Keltan ACE TM High-VNB Products for Peroxide Cure Applications

Additives for improved silica tire performance

POLYVEST. Liquid rubbers for enhanced tire performance

OVERVIEW ON EPDM RUBBER

Molded NBR Parts for Automotive. Replacement of Carbon black N990

Molded NBR Parts for Automotive Oil Seals ASTM D2000. Replacement of Carbon black N990 with Neuburg Siliceous Earth. Hubert Oggermüller

Carbo NXT * Silane. Coupling Agent for Silica-Reinforced Tire Tread Compounds

Processing of Tire Treads Silica, Silanes, Additives

Evaluation of DISPERSIX in HCR Silicone Compounding

Elastomer Copolymerized from Ethylene Vinyl Aceteate and Acrylic Esters. Characteristics of DENKA ER

Improved Processing of Thermoplastics and Thermoplastic Elastomers

Rubber Curing Systems

Lecture No. (7) Rubber Fillers

NOEL CONSULTANT MELI RIO / LUZENAC THAKKAR AKRON MINERALS DEVELOPMENT ITEC 2008 PAPER 10C

Environmental Impact of Using Suprmix Versus Liquid

Setting the Industry Standard for Pyrolysed Carbon Black

COMPOUNDING WITH THERMAL CARBON BLACK FOR LOW CONDUCTIVITY

Influence of Coupling Agent on Properties of Carbon Black-Reinforced SBR and NR/SBR Vulcanizates

Aktifit AM. in AEM Seals and Gaskets. Hubert Oggermüller. Translation: Dr. Horst E. Toussaint. Approval: März VM / Dr.

GLASS FLAKE PARTICLES FOR ENHANCED PERMEATION RESISTANCE OF ELASTOMER COMPOUNDS

AEQ-QEG Technico-Commercial meeting November 8, N990 Thermal Black in Natural Rubber isolation bushings for improved dynamic performance

Aktifit AM. in AEM Seals. and Gaskets. Hubert Oggermüller. Approval: Juli VM / Dr. Alexander Risch VM-2/ /

Rubber Process Analyzer RPA Applications: Bridging the Gap Between Polymer/Compound Properties and Processing Behavior

Technical Report 74. Summary

Andreas Limper. Mixing of. Rubber Compounds HANSER. Hanser Publishers, Munich. Hanser Publications, Cincinnati

Effect of Rubber Mixing Sequence Variation Upon Bound Rubber Formation and Its Physical Properties

Aktifit AM. in AEM Seals. and Gaskets. Hubert Oggermüller. Approval: December VM / Dr. Alexander Risch VM-0/ /

Aktifit AM. in AEM Seals. and Gaskets. Hubert Oggermüller. Approval: VM / Dr. Alexander Risch VM-0/ /

Optimum diene content. Easy handling Shorter mixing cycle Efficient in short CV lines (Jet air / hot air)

Magazine for the Polymer Industry

vulcanized vegetable oils

Simpler, Lower Cost, Better Performing CASE Formulas with Harmonite Powders. Detroit Rubber Group 2018 Fall Technical Meeting November 28, 2018

Mitsui Metallocene EPT. Mitsui Metallocene EPT. Mitsui Chemicals, Inc.

Optimized rolling resistant tire treads with Aflux 37 and Aflux 72

Improved Processing and Batch Time Reduction Through Powder Liquid Dispersions

CROSSLINKING. of rubber and polyolefines with organic peroxides

Comparative Study of Silica, Carbon Black and Novel Fillers in Tread Compounds

DESIGNING OF CRADLE-TO-CRADLE LOOPS FOR ELASTOMER PRODUCTS

EPDM RUBBER AND IT S BENEFITS EPDM RUBBER AND IT S BENEFITS

New Keltan Grades for Flame Resistant EPDM Compounds Speaker: Philip Hough, Keltan M&S, TSAD

TECHNICAL UPDATE. Dymalink TM 633 & Dymalink TM 636 Use of Metallic Coagents in Peroxide-Cured Chlorinated Polyethylene (CPE) Benefits.

Ike Setyorini, Ihda Novia Indrajati, and Indiah Ratna Dewi. Center for Leather, Rubber and Plastics, Ministry of Industry Republic of Indonesia

Swelling and Mechanical Behaviour of Natural Rubber Vulcanisate Filled with Leather Wastes (Buffing Dust) and Its Modeling

Thermal Stability of Butyl/EPDM/Neoprene Based Rubber Compounds

naturkautschukmischungen Compounds

rcb, a unique material

Applications of Polybutadiene-based TPU s

Use of Antioxidant-modified Precipitated Silica in Natural Rubber

Millathane. Millathane

Rhenogran XLA-60 (GE 2014): DOTG-free curing systems for AEM compounds

Calcined Neuburg Siliceous Earth. in Adhesives with High Strength. Based on Silane Terminated. Polyurethane (STP-U) Hubert Oggermüller

DUPONT VAMAC FOR HALOGEN FREE FLAME RETARDANT (HFFR) APPLICATIONS

6.3 Results and discussion. Table 6.1. Compounding recipe. Ingredients Concentration (phr) Ingredients Concentration (phr)

Chapter 4 Results and Discussion

Properties of Rubber Compounds Containing Powdered Vulcanized Waste

Use of Amine Terminated Liquid Natural Rubber as a Plasticiser in Filled NR and NBR Compounds

New Developments in Ester Technology

RESINS. Singh Plasticisers & Resins (I) Pvt. Ltd.

RICE HULL ASH AS A FILLER IN MICROCELLULAR SOLES

in High Consistency Silicone Rubber

Kumarjyoti Roy, Md. Najib Alam, Subhas Chandra Debnath * Department of Chemistry, University of Kalyani, Kalyani, Nadia (W.

Materials. Butyl Rubber. Description. Composition. Physical Properties*

ISSN : Research & Reviews In. Assessement of local sponge (luffa aegyptiaca) filled natural rubber vulcanizate

The Effect of Natural Based Oil as Plasticizer towards Physics- Mechanical Properties of NR-SBR Blending for Solid Tyres

The Influence of Different Types of Rubber on Curing Behaviour and Dynamic Properties of Rubber Compound

New generation of aluminium hydroxide flame retardant filler for the wire and cable industry

JSR AT series for Tire applications

Studies on Aramid Short Fibers Reinforced Acrylonitrile Butadiene Rubber Composites

Catalogue. Celullar rubber

Koresin The tackifier for the rubber industry

an aliphatic polyester urethane with a low content of PVC as a dusting agent directives. Property Nominal Value Unit Test Method

MECHANOCHEMICAL RECYCLING AND PROCESSING OF WASTE CROSSLINKED POLYMERS: WASTE TIRE RUBBER AND WASTE XLPE FROM CABLE SCRAPS

Inline Process Control for Continuos Mixing Solutions

APPLICATION BULLETIN

SILICONE RUBBER GUM HTV (HCE) RTV FSR LSR. OH Polymer. SiSiB SILICONES. A part of PCC group.

RUBBER. InnOvATIOnS In RuBBER. Kaolin

Effect of expanded organoclay by stearic acid to curing, mechanical and swelling properties of natural rubber nanocomposites

Effect of nano silica on the mechanical properties of Styrene-butadiene rubber (SBR) composite

High Performance Silica Tread. with. Next Generation. Struktol Process Additives

Primers & Adhesion. August 2008

The Use of Fly Ash Fillers in Rubber

Fort Wayne Rubber & Plastics Group Unique Compounding Ingredients: An Overview

TERPOLYMER ETHYLENE VINYL ACETATE MALEIC ANHYDRIDE

Transcription:

-KONTAKT 39 Information for the Rubber Industry Deolink Silane Preparations Content 1. Introduction / History 2. Advantages of the DOG carrier systems 3. Sulphur silanes Deolink / Deolink 4. silanes Deolink / Deolink 5. Appendix Complete overview of all test series

-KONTAKT 39 Content Page 1. Introduction / History 3 1.1 General chemical structure 3 1.2 Chemical reactions during the silanization process 4 1.3 Silane categories 5 1.4 Interactions between filler and silanes 6 1.5 Deolink Silane Preparations / Deolink Liquid Silanes 6 1.5.1 Sulphur silanes 6 1.5.2 silanes 6 1.6 Applications for technical rubber compounds 7 2. Advantages of the DOG carrier systems 7 3. Sulphur silanes Deolink / Deolink 8 3.1 Effects in various elastomers 8 3.1.1 SBR / Silica 9 3.1.2 EPDM / Silica 1 3.1.3 CR / Silica 11 3.2 Influence of the time of addition 12 3.3 Effects of the silane dosage on various filler 12 3.3.1 SBR / Silica 13 3.3.2 SBR / Clay 14 3.4 Influence of different mixing temperatures 15 Page 4.2.3 EPDM / Aluminiumhydroxide 24 4.3 Influence of different mixing temperatures 25 4.4 Electrical properties 26 5. Appendix Complete overview of all test series 27 5.1 Sulphur silanes Deolink / Deolink 27 5.1.1 SBR / Silica 27 5.1.2 NR / Silica 28 5.1.3 EPDM / Silica 29 5.1.4 EPDM / Clay 3 5.1.5 NBR / Silica 31 5.1.6 CR / Silica 32 5.1.7 SBR / Clay 33 5.1.8 SBR / Silica 34 5.2 silanes Deolink / Deolink 35 5.2.1 EPDM / Silica 35 5.2.2 H-NBR (fully saturated) / Silica 36 5.2.3 H-NBR (partly saturated) / Silica 37 5.2.4 EVA / Aluminiumhydroxide 38 5.2.5 CPE / Clay / Silica 39 5.2.6 NBR / Silica 4 5.2.7 EPDM / Clay 41 5.2.8 EPDM / Aluminiumhydroxide 42 5.2.9 EPDM / Silica 43 4. silanes Deolink / Deolink 18 4.1 Effects in various elastomers 18 4.1.1 EPDM / Silica 19 4.1.2 H-NBR (fully saturated) / Silica 2 4.1.3 EVA / Aluminiumhydroxide 21 4.2 Effects of vinyl silanes on various filler 22 4.2.1 EPDM / Silica 22 4.2.2 EPDM / Clay 23 Imprint Editor: DOG DEUTSCHE OELFABRIK Gesellschaft für chemische Erzeugnisse mbh & Co. KG www.dog-chemie.de, info@dog-chemie.de Authors: Henry Ahrens, Dr. Bernd Bornemann, John Chapman, Manfred Heide, Stephan Müller, André Rittmann, Stefan Oettlein Layout/Production: EHRENBERG WERBUNG www.ehrenberg-werbung.de, info@ehrenberg-werbung.de 2

1. Introduction / History Silanes have been known for about 5 years. They were originally used in an industrial scale for adhesives and coatings. In the 7 s silanes found their way into the rubber industry as coupling agents for white filler. During the early 9 s, sulphur silanes gained more and more importance due to the increasing acceptance of the Green Tyre. Meanwhile, silanes are used in the rubber industry in a large variety of applications. From the chemical point of view, silanes are seen as a parallel to organic molecules. The main difference being, that instead of the carbon, the chemically similar silicium atom is bound in the molecule. This fact enables the silanes to work as bifunctionally active linking molecules. These can link on one side with the hydroxyl group of the filler and on the other side they can connect to the polymer. By using these properties, it is possible to connect an anorganic filler directly to the elastomer. Before silanes were commonly used connections with filler only consisted of relatively weak bonds, such as Van-der-Waalsinteractions, adhesion or absorption. 1.1 General formula Y (CH ² ) Si OR n OR OR R= organic group Y= organofunctional group Although the chemical theory is sufficiently researched, the selection of the most suitable silane for specific elastomers and their vulcanization systems requires much know-how. Through the use of silanes, not only a physical process takes place inside the mixing chamber, but also at the same time a chemical reaction called silanization: For these chemical reactions the mixing parameters play an important role. Certain compound ingredients may promote the silanization or disturb this process. Therefore the physical properties of the compound may be affected. THE MIXER BECOMES A REACTOR. 3

-KONTAKT 39 1.2 Chemical reactions during the silanization process During the past years, many studies have been conducted to support the understanding how silanes react. Generally, there are two theories in discussion. The first one describes a direct condensation, whilst the second is based on the pre-hydrolysis of the silane. The actual studies are in favour of a two-step-reaction with the following pre-reaction: Pre-reaction Hydrolysis (example: alkoxysilane) The alcoxy groups of the silicium are subject to hydrolysis. The necessary water is generally available on the surface of inorganic filler. Y Si OR OR OR + 3 H O ² Y Si + 3 R Y = organofunctional group Step 1 Connection with the mineral surface (example: silica) The silanol groups which are formed by the hydrolysis of the silane, condense with the hydroxyl groups of the filler and form stable Si-O-Si bonds by splitting off water. Si O Si O Si Si O Si O Si HO O H H O Si O H H O HO O H Si O H - nh ² O HO O Si Y O O Si Y O Y Y Y = organofunctional group Step 2 Linking with the polymer matrix (example: mercapto silane) The organofunctional group (Y) is relevant for the reaction with the polymer. This reactive group must be suitable for the chosen vulcanization system, to enable cross-linking during the vulcanization process. Using this mechanism, it is possible to form a silane bridge through a chemical reaction between the polymer chains and the filler particles. This process results in the formation of a polymerfiller-network. 4

Reaction of a silanized filler with the polymer (example: mercapto silane) Filler (after silanization) HO filler O Si CH 2 CH 2 CH 2 SH + CH 2 C CH CH 2 HO parallel to the vulcanization HO filler O Si CH 2 CH 2 CH 2 S CH HO H 3 C CH 2 CH CH 2 Diene-Polymer [ ] [ ] CH 3 n untreated microsphere silane treated microsphere Source: Presentation A new filler treatment for HFFR systems, GE Advanced Materials GE Silicones, Tarrytown, NY 1.3 Silane categories Depending upon the chemical composition, the following main categories of silanes are available: Sulphur Epoxy Amino Methacryl Isocyanato Chloro Thiocyanato In the rubber industry, sulphur and vinyl silanes are commonly used, whereas amino-, chloro-, and other silanes are rarely utilized. 5

-KONTAKT 39 1.4 Interactions between filler and silanes Increasing Effect Filler Silica Clay Aluminiumhydroxide Talc Inorganic oxides (e.g. Titaniumdioxide) No Effect Filler Whiting Barium sulfate (Baryte) Carbon black Not all filler are equally suitable for linking with silanes. The chemical connection with a silane requires the presence of hydroxyl groups in the filler. Under these conditions, the physical properties of vulcanizates are improved by the use of silanes. 1.5 Deolink Silane Preparations / Deolink Liquid Silanes 1.5.1 Sulphur silanes Deolink [bis(triethoxysilylpropyl)tetrasulfane] is a preparation with 5% active substance on a polymer / wax carrier system. It can be used in almost all elastomers which are suitable for sulphur vulcanization. DOG also offers the liquid tetrasulfane silane under the name Deolink -1. Deolink is a preparation of a thiocarboxysilane with 5% active substance. In comparison to the tetrasulfane silanes, Deolink can be processed over a broad temperature range without the risk of scorch. Deolink can often be used even at lower dosages without loss of effectiveness. Deolink has a blocked mercapto group and can be chosen as an alternative to conventional mercapto silanes. The protective group is removed during processing releasing the mercapto silane. By using Deolink, optimized processing properties can be achieved and the unpleasant odour of mercaptanes is avoided. Deolink is suitable for all elastomers, which can be crosslinked by sulphur vulcanization. DOG also offers the liquid thiocarboxysilane under the name Deolink -1. 1.5.2 silanes Deolink [tris(2-methoxyethoxy)vinylsilane] and Deolink [alkoxysilane] are preparations with 5% active substance on a polymer / wax system. By using Deolink the electrical and mechanical properties can be improved. Deolink is suitable for all elastomers which can be crosslinked by peroxide vulcanization. DOG offers the liquid tris(2-methoxyethoxy)- vinylsilane under the name Deolink -1. By using Deolink, the mechanical and electrical properties can be optimized. In comparison with conventional vinyl silanes Deolink can improve the long-term electrical properties to a higher extent. Deolink does not form any hazardous methoxyethanol (EGME)*. Furthermore, the processing of the unvulcanized compound can be facilitated by the use of Deolink. Under the name Deolink -1, DOG also supplies the liquid alkoxysilane. *Ethyleneglycolmonomethylether 6

1.6 Applications for technical rubber compounds Cables / cable accessories Improved electrical properties (insulation, water absorption-, swelling, dielectrical strength) Improved mechanical properties (tensile strength, abrasion) Roller coverings Reduced abrasion Improved compression set Improved dynamic properties (heat build up) Optimized processing properties Sealings / O-rings Improved compression set Optimized processing properties Improved mechanical properties Reduced abrasion, for dynamically stressed sealings V-belts / conveyor belts Reduced abrasion Improved dynamic properties Improved adhesion with the reinforcing fabric Shoe soles Reduced abrasion Optimized processing properties Improved dynamic properties (flex cracking resistance) Moulded articles Improved dynamic properties Optimized processing properties Improved mechanical properties Hoses and tubes Reduced abrasion of surfaces Improved mechanical properties Improved adhesion with the reinforcing fabric 2. Advantages of the DOG carrier systems The Deolink Silane Preparations contain 5% of the active substance on a polymer / wax carrier system. In comparison to liquid silanes, or preparations on inorganic carriers, Deolink Silane Preparations provide the following advantages: Improved protection against hydrolysis through moisture Excellent dispersion and handling Easy incorporation without spots, no formation of agglomerates No dust development by fines Prolonged storage stability without loss of activity Cost savings due to complete use of opened boxes, no disposal of ineffective hydrolized residues 7

-KONTAKT 39 3. Sulphur silanes Deolink / Deolink The in situ modification or in other words the hydrophobation of the mineral surface during the mixing process is the most frequently used method of silanization. As already mentioned, mixing temperature, filler-, silane types and the general compound formulation have a significant influence on the degree of silanization. 3.1 Effects in various elastomers The various polarities of the different elastomers can have an influence on the silanization, due to the different affinity of the filler to the elastomer. The following studies support the effects of Deolink and Deolink. The linking of the filler to the rubber matrix provides positive influences in respect to the mechanical dynamical values and the processing properties. These effectes in SBR, EPDM and CR are illustrated in the following pages. In these tests Deolink is particularly effective in EPDM and CR, since this silane preparation already gives a high efficiency at lower mixing temperatures. As a result of this, processing (higher injection volume) and processability (scorch safety) are improved. Name Deolink / -1 Deolink / -1 Description activator for filler activator for filler Active substance bis(3-triethoxysilylpropyl)- thiocarboxysilane tetrasulfane () Silane content [%] 5 1 5 1 Appearance yellow pellets yellow liquid white pellets clear liquid Analytical values Total sulphur [%] 1 13 2 26 3.8 4.8 7.6 9.6 ASTM D 1552 (LECO) Density at 2 C [g/cm 3 ] 1. 1.1 1. 1. DIN ISO 787 T1A Dropping point, [ C] 72±5 115±5 Mettler-apparatus DIN ISO 2176 Dosage in relation to filler [%] ca. 1 1.5 5 1 8.5 4 German Food Legislation (BfR recommendation XXI) not approved not approved Storage stability in originally sealed package in cool and dry places min. 1 year min. 1 year Classification and labelling labelled as irritant (Xi) according to EEC directives Supply form Deolink / Supply form Deolink -1 Supply form Deolink -1 2 kg in cardboard boxes with PE-inliner in pre-weighed packaging available on request 2 kg steel drums and 1 l containers 195 kg steel drums 8

3.1.1 SBR / Silica* Recipe 451S Deolink Deolink Buna SBR 152 1 1 1 Silica (BET 175 m 2 /g) 5 5 5 Naphthenic oil 1 1 1 ZnO 3.5 3.5 3.5 Stearic acid 1.5 1,5 1.5 PEG 4 2 2 2 Antioxidant SPH 1 1 1 Deolink 4 Deolink 4 MBTS 1 1 1 DPG 1 1 1 Sulphur 2 2 2 Total phr 172 176 176 The use of Deolink and Deolink provides substantially improved physical data. The most favourable advantages of Deolink take effect in EPDM (3.1.2) and CR (3.3.3). 2 15 DIN Abrasion 12 Modulus 3 % 1 8 mm 3 1 6 5 4 2 7 Mooney ML 1+4, 1 C 15 Tensile strength 6 5 1 5 4 3 [24 h/7 C] 4 Injection volume (capillary/piston 1 C, mould 18 C) 2 3 % cm 3 2 1 1 * The process parameters are documented in the appendix 9

-KONTAKT 39 3.1.2 EPDM / Silica* Recipe 93E Deolink Deolink EPDM Buna EPG 545 1 1 1 Silica (BET 125 m 2 /g) 5 5 5 Paraffin oil 2 2 2 ZnO 5 5 5 Stearic acid 1 1 1 PEG 4 2 2 2 Deolink 4 Deolink 4 Deovulc TP 4-75 2.8 2.8 2.8 MBTS 1 1 1 DPG.4.4.4 Deovulc ZBEC-8.6.6.6 Sulphur 1 1 1 Total phr 183.8 187.8 187.8 In addition to the improved physical properties (see 3.1.1), the use of Deolink enables a higher injection volume. 2 15 DIN Abrasion Modulus 3 % 12 1 8 mm 3 1 6 5 4 2 1 Mooney ML 1+4, 1 C 12 Tensile strength 5 11 1 9 2 [24h/7 C] 1,5 Injection volume (capillary/piston 1 C, mould 18 C) 15 1, % 1 cm 3 5,5, 1 * The process parameters are documented in the appendix

3.1.3 CR / Silica* Recipe 248C Deolink Deolink Baypren 11 1 1 1 Silica (BET 125 m 2 /g) 5 5 5 Ester plasticizer 1 1 1 MgO 4 4 4 Stearic acid.5.5.5 Controzon GP 2 2 2 Antioxidant ODPA 1 1 1 Deolink 2 Deolink 2 ZnO 5 5 5 MBTS.5.5.5 ETU 1 1 1 Total phr 174 176 176 In addition to the improved physical properties, the use of Deolink leads to a better processing safety. 2 DIN Abrasion Modulus 3 % 15 mm 3 15 1 5 1 5 9 Mooney ML 1+4, 1 C 19 Tensile strength 85 8 75 18 17 16 15 7 14 4 [24h/7 C] 1, Injection volume (capillary/piston 1 C, mould 18 C) 3,8 % 2 cm 3,6,4 1,2, * The process parameters are documented in the appendix 11

-KONTAKT 39 3.2 Influence of the time of addition For the majority of the technical rubber compounds, the influence of the time of silane addition during the mixing process is of relatively minor importance. Generally, a homogenous dispersion of the raw compound is mandatory. As mentioned in 3.4, special mixing procedures are often used in the tyre industry. For technical rubber compounds the conventional mixing method is adviseable. We recommend the addition of the silane together with the (first) dosage of light filler. It is not recommended to add the silane at the start of the mixing cycle together with the rubber, as in some cases, a deterioration of the physical values has been found. The upside down process, commonly used for EPDM, is also possible with all Deolink grades. For the so-called one-stage mixing procedure with sulphur curing systems, Deolink is of benefit since it shows its advantages already at lower mixing temperatures. 3.3 Effects of the silane dosage on various filler The degree of modification is certainly influenced by the quantity of silane used. The rubber technologist can adjust the silane dosage to the requirements of the particular application. Furthermore, the silane dosage should be adjusted to the filler. Higher dosages of silanes are recommended, if the full potential of high active filler (e.g. silica) needs to be used. An increased quantity of Deolink releases additional quantities of sulphur, which can influence the vulcanization process. Medium active filler (e.g. clay) often require only reduced silane dosages to provide the maximum reinforcement strength. Deolink provides significant improvements of the physical properties even at low dosages. 12

3.3.1 SBR / Silica* Recipe 451S Deolink Deolink Buna SBR 152 1 1 1 1 1 1 1 Silica (BET 175 m 2 /g) 5 5 5 5 5 5 5 Naphthenic oil 1 1 1 1 1 1 1 ZnO 3.5 3.5 3.5 3.5 3.5 3.5 3.5 Stearic acid 1.5 1.5 1.5 1.5 1.5 1.5 1.5 PEG 4 2 2 2 2 2 2 2 Antioxidant SPH 1 1 1 1 1 1 1 Deolink 2 4 8 Deolink 2 4 8 MBTS 1 1 1 1 1 1 1 DPG 1 1 1 1 1 1 1 Sulphur 2 2 2 2 2 2 2 Total phr 172 174 176 18 174 176 18 If Deolink is used at higher dosages, it needs to be taken into consideration, that additional quantities of sulphur will be released, which will affect the vulcanization process. 2 DIN Abrasion Modulus 3 % 12 mm 3 15 1 5 8 4 (8 phr) (8 phr) 7 Mooney ML 1+4, 1 C 14 Tensile strength 12 6 5 1 8 6 4 2 4 (8 phr) (8 phr) 3 [24 h/7 C] 5 Injection volume (capillary/piston 1 C, mould 18 C) 25 4 % 2 15 1 cm 3 3 2 5 1 (8 phr) (8 phr) * The process parameters are documented in the appendix 13

-KONTAKT 39 3.3.2 SBR / Clay* Recipe 456S Deolink Buna SBR 152 1 1 1 1 Clay 1 1 1 1 Naphthenic oil 1 1 1 1 ZnO 3.5 3.5 3.5 3.5 Stearic acid 1.5 1.5 1.5 1.5 PEG 4 2 2 2 2 Antioxidant SPH 1 1 1 1 Deolink 2 4 8 MBTS 1 1 1 1 DPG 1 1 1 1 Sulphur 2 2 2 2 Total phr 222 224 226 23 In comparison to silica, the use of silane with the medium active clay provides a relatively lower degree of reinforcement. If silanes are used in higher dosages, it should be considered, that additional quantities of sulphur will be released which will affect the vulcanization process. The use of Deolink leads to similar test results (see 3.3.1), without releasing sulphur. 35 3 25 DIN Abrasion Modulus 3 % 8 6 mm 3 2 15 4 1 5 2 (8 phr) (8 phr) 46 Mooney ML 1+4, 1 C 18 Tensile strength 44 42 4 38 12 6 36 (8 phr) (8 phr) 35 3 [24 h/7 C] 2,2 Injection volume (capillary/piston 1 C, mould 18 C) % 25 2 15 1 cm 3 2,1 2, 1,9 5 1,8 (8 phr) 1,7 (8 phr) 14 * The process parameters are documented in the appendix

3.4 Influence of different mixing temperatures* The reaction speed of the silanization is dependent on the processing temperature. For the effective use of sulphur silanes, a dumping temperature of 13 C 15 C is recommended. The tyre industry achieves their required silanization effects through a longer mixing process or with higher mixing temperatures of around 16 C. Typical silica tread compounds are produced in a three-pass procedure to ensure that the silane is used to its best potential. For technical rubber compounds these processes with several steps are usually not necessary. When using Deolink, mixing temperatures of > 16 C should be avoided to exclude the risk of pre-scorch of the raw compound through the poly-sulfane groups of the silane. Alternatively, Deolink can be used in these cases, as mixing temperatures of 17 C are easily possible. For a representative illustration of the influence of the mixing temperature on the silanization, the following temperature ranges have been chosen. Open mill: Mixing temperature 8 C Banbury: Dumping temperature 115 C Banbury: Dumping temperature 14 C Already at 8 C on an open mill both Deolink grades provide a silanization of the raw compound and an improvement of the physical properties. At this low temperature, Deolink shows an even higher activity than Deolink. At a dumping temperature of 115 C, the silanization effects are more significant and again, Deolink still presents advantages in comparison to conventional sulphur silanes. At a dumping temperature of 14 C abrasion and processing (injection volume) are further improved. Recipe 451S Deolink Deolink Buna SBR 152 1 1 1 Silica (BET 175 m 2 /g) 5 5 5 Naphthenic oil 1 1 1 ZnO 3.5 3.5 3.5 Stearic acid 1.5 1.5 1.5 PEG 4 2 2 2 Antioxidant SPH 1 1 1 Deolink 4 Deolink 4 MBTS 1 1 1 DPG 1 1 1 Sulphur 2 2 2 Total phr 172 176 176 * The process parameters are documented in the appendix 15

-KONTAKT 39 mm 3 2 18 16 14 12 1 8 6 4 2 8 C 8 C 8 C DIN Abrasion 115 C 115 C 115 C 14 C 14 C 14 C 12 Modulus 3 % 1 8 6 4 2 8 C 8 C 8 C 115 C 115 C 115 C 14 C 14 C 14 C 14 Mooney ML 1+4, 1 C 12 1 8 6 4 2 8 C 8 C 8 C 115 C 115 C 115 C 14 C 14 C 14 C 16 Tensile strength 14 12 1 8 6 4 2 8 C 8 C 8 C 115 C 115 C 115 C 14 C 14 C 14 C 16

3 25 [24h/7 C] % 2 15 1 5 8 C 8 C 8 C 115 C 115 C 115 C 14 C 14 C 14 C 3,5 3, Injection volume (capillary/piston 1 C, mould 18 C) 2,5 cm 3 2, 1,5 1,,5, 8 C 8 C 8 C 115 C 115 C 115 C 14 C 14 C 14 C 17

-KONTAKT 39 4. Silanes Deolink / Deolink 4.1 Effects in various elastomers In point 3.1 the influence of the elastomer on the silanization has already been shown. For the selection of rubber grades the standard products for peroxide vulcanization processes have been chosen. Again, the positive effects of the silanization can clearly be found. DOG offers two vinyl silane preparations, which differ in the active substance and in the carrier system. Deolink is a 5% preparation of a tris(2-methoxyethoxy)vinylsilane on an EVA / paraffin wax carrier system and is well established in the rubber industry. Deolink cannot develop any hazardous methoxyethanol during the processing, since it is based on a special alkoxysilane. The reinforcement effects of Deolink are more distinct than those of Deolink. With regards to the positive influence on processing, Deolink provides additional benefits. DOG also offers boths grades in liquid form as Deolink -1 and Deolink -1. Name Deolink / -1 Deolink / -1 Description activator for filler activator for filler Active substance tris(2-methoxyethoxy)- alkoxysilane vinylsilane Silane content [%] 5 1 5 1 Appearance white pellets clear liquid white pellets clear liquid Analytical values Density at 2 C [g/cm 3 ] 1. 1..9.9 DIN ISO 787 T1A Dropping point, [ C] 72±5 11±5 Mettler-apparatus DIN ISO 2176 Dosage in relation to filler [%] 1 1.5 5 1 1.5 5 German Food Legislation (BfR recommendation XXI) not approved not approved Storage stability in originally sealed package in cool and dry places min. 1 year min. 1 year Classification and labelling labelled as irritant (Xi) according to EEC directives Supply form Deolink / Supply form Deolink -1 Supply form Deolink -1 2 kg in cardboard boxes with PE-inliner in pre-weighed packaging available on request 2 kg steel drums and 1 l containers 186 kg steel drums 18

4.1.1 EPDM / Silica* Recipe 94E Deolink Deolink EPDM Buna EPG 545 1 1 1 Silica (BET 125 m 2 /g) 5 5 5 Paraffin oil 2 2 2 PEG 4 2 2 2 ZnO 5 5 5 Deolink 2 Deolink 2 TAC DL 7 2 2 2 Perkadox 14 4 7 7 7 Total phr 186 188 188 As mentioned in 4.1, the reinforcement effects of Deolink are more distinct than those of Deolink. With regard to the processing, Deolink provides certain benefits. 25 2 DIN Abrasion Modulus 3 % 12 1 mm 3 15 1 5 8 6 4 2 15 Mooney ML 1+4, 1 C 15 Tensile strength 1 95 9 1 5 85 8 2 [24 h/1 C] 1,5 Injection volume (capillary/piston 1 C, mould 18 C) 15 1, % 1 cm 3 5,5, * The process parameters are documented in the appendix 19

-KONTAKT 39 4.1.2 H-NBR (fully saturated) / Silica* Recipe 3T Deolink Deolink H-NBR Therban 347 1 1 1 Vulkasil A1 5 5 5 MgO 2 2 2 ZnO 3 3 3 Antioxidant SDPA 1 1 1 Vulkanox ZMB 2.5.5.5 Deoflow 821 1 1 1 Deolink 2 Deolink 2 TAIC 7 1.5 1.5 1.5 Perkadox 14 4 7 7 7 Total phr 166 168 168 As mentioned in 4.1, the reinforcement effects of Deolink are more distinct than those of Deolink. Deolink provides certain benefits regarding the processing. 2 DIN Abrasion Modulus 2 % 2 15 15 mm 3 1 1 5 5 115 Mooney ML 1+4, 1 C 2, Tensile strength 11 19,5 15 1 95 19, 18,5 18, 17,5 9 17, 5 [7 h/15 C] 2, Injection volume (capillary/piston 1 C, mould 18 C) 4 1,5 % 3 2 cm 3 1, 1,5, 2 * The process parameters are documented in the appendix

4.1.3 EVA / Aluminiumhydroxide* Recipe 12L Deolink Deolink Levapren 5HV 1 1 1 Aluminiumhydroxide 14 14 14 Zinc borate 1 1 1 Vulkanox DDA 1 1 1 Plasticizer DOS 4 4 4 Deolink 3 Deolink 3 TAC 5 1 1 1 Perkadox 14 4 6 6 6 Total phr 262 265 265 In EVA the reinforcement effects of Deolink are significantly stronger than those of Deolink. 3 25 2 DIN Abrasion Modulus 1 % 12 1 8 mm 3 15 6 1 4 5 2 6 Mooney ML 1+4, 1 C 16 Tensile strength 4 2 12 8 4 15 [24 h/1 C] 3, Injection volume (capillary/piston 1 C, mould 18 C) 2,5 1 2, % cm 3 1,5 5 1,,5, * The process parameters are documented in the appendix 21

-KONTAKT 39 4.2 Effects of vinyl silanes on various filler As already mentioned in 3.2, the silane dosage should be adjusted to the filler. Compared with sulphur silanes, vinyl silanes are used in much lower dosages. In all suitable filler, the positive effects even at low dosages can be noticed. Some differences can be observed depending on filler and Deolink grade. 4.2.1 EPDM / Silica* Recipe 94E Deolink Deolink EPDM Buna EPG 545 1 1 1 1 1 1 1 Silica (BET 125 m 2 /g) 5 5 5 5 5 5 5 Paraffin oil 2 2 2 2 2 2 2 PEG 4 2 2 2 2 2 2 2 ZnO 5 5 5 5 5 5 5 Deolink 1 2 4 Deolink 1 2 4 TAC DL 7 2 2 2 2 2 2 2 Perkadox 14 4 7 7 7 7 7 7 7 Total phr 186 187 188 19 187 188 19 25 2 DIN Abrasion Modulus 3 % 12 1 mm 3 15 1 8 6 4 5 2 (1 phr) (1 phr) 15 Mooney ML 1+4, 1 C 15 Tensile strength 1 5 1 5 (1 phr) (1 phr) 2 [24h/1 C] 1,5 Injection volume (capillary/piston 1 C, mould 18 C) 15 1, % 1 cm 3 5,5 (1 phr), (1 phr) 22 * The process parameters are documented in the appendix

4.2.2 EPDM / Clay* Recipe 941E Deolink Deolink EPDM Buna EPG 545 1 1 1 1 1 1 1 Clay 1 1 1 1 1 1 1 Paraffin oil 2 2 2 2 2 2 2 PEG 4 2 2 2 2 2 2 2 ZnO 5 5 5 5 5 5 5 Deolink 1 2 4 Deolink 1 2 4 TAC DL 7 2 2 2 2 2 2 2 Perkadox 14 4 7 7 7 7 7 7 7 Total phr 236 237 238 24 237 238 24 3 25 2 DIN Abrasion Modulus 3 % 12 1 8 mm 3 15 6 1 4 5 2 (1 phr) (1 phr) ( 4 phr) 8 Mooney ML 1+4, 1 C 15 Tensile strength 6 4 2 1 5 (1 phr) (1 phr) 2 [24h/1 C] 3, Injection volume (capillary/piston 1 C, mould 18 C) 15 2,5 2, % 1 cm 3 1,5 5 1,,5 (1 phr), (1 phr) * The process parameters are documented in the appendix 23

-KONTAKT 39 4.2.3 EPDM / Aluminiumhydroxide* Recipe 95E Deolink Deolink EPDM Buna EPG 545 1 1 1 1 1 Aluminiumhydroxide 15 15 15 15 15 Paraffin oil 3 3 3 3 3 ZnO 5 5 5 5 5 Deolink 1,5 3 Deolink 1,5 3 TAC DL 7 1.5 1.5 1.5 1.5 1.5 Perkadox 14 4 7 7 7 7 7 Total phr 293.5 295 296.5 295 296.5 3 DIN Abrasion Modulus 1 % 8 24 7 6 mm 3 18 12 5 4 3 6 2 1 (1,5 phr) (3 phr) (1,5 phr) (3 phr) 8 Mooney ML 1+4, 1 C 15 Tensile strength 7 6 5 4 3 2 1 5 1 (1,5 phr) (3 phr) (1,5 phr) (3 phr) 12 [24h/1 C] 3, Injection volume (capillary/piston 1 C, mould 18 C) 1 2,5 8 2, % 6 cm 3 1,5 4 1, 2,5 (1,5 phr) (3 phr), (1,5 phr) (3 phr) 24 * The process parameters are documented in the appendix

4.3 Influence of different mixing temperatures* The influence of the processing temperature is compared with sulphur silanes of minor importance. To provide a representative illustration of the processing temperature on the silanization in a Banbury, the following temperatures have been chosen 11 C, 125 C, 145 C. Recipe 939E Deolink Deolink EPDM Buna EPG 545 1 1 1 Silica (BET 125 m 2 /g) 5 5 5 Paraffin oil 2 2 2 PEG 4 2 2 2 ZnO 5 5 5 Deolink 2 Deolink 2 TAC DL 7 2 2 2 Perkadox 14 4 7 7 7 Total phr 186 188 188 25 2 DIN Abrasion Modulus 3 % 12 1 mm 3 15 1 5 8 6 4 2 11 C 11 C 11 C 125 C 125 C 145 C 145 C 11 C 11 C 11 C 125 C 125 C 145 C 145 C 12 Mooney ML 1+4, 1 C 14 Tensile strength 98 94 9 86 12 1 8 6 4 2 82 11 C 11 C 11 C 125 C 125 C 145 C 145 C 11 C 11 C 11 C 125 C 125 C 145 C 145 C 16 14 12 1 [24 h/1 C] 1,5 1,25 1, Injection volume (capillary/piston 1 C, mould 18 C) % 8 cm 3,75 6 4 2,5,25 11 C 11 C 11 C 125 C 125 C 145 C 145 C, 11 C 11 C 11 C 125 C 125 C 145 C 145 C * The process parameters are documented in the appendix 25

-KONTAKT 39 4.4 Electrical Properties In articles made for the electronical industry, the electrical properties are of particular importance. Silanes can provide a significant input to improve the required performance. For unaged samples, the addition of silanes only show a small influence on the electrical properties. The major advantage of silanes can be observed, when measuring the electrical data after an ageing process. The control compound with unsilanized filler absorbs moisture and therefore reduces the insulation properties. Compounds containing silanes show extreme improvements. The hydrophobation of the filler and the increased cross-linking density reduce the water absorption and keep the insulation properties constant. Recipe 926E Deolink Deolink EPDM Keltan 778 1 1 1 Suprex Clay 15 15 15 Paraffin oil 3 3 3 Controzon 5 5 5 ZnO 5 5 5 TMQ 1 1 1 Deolink 2 Deolink 2 TAC DL 7 1.5 1.5 1.5 Perkadox 14 4 7.5 7.5 7.5 Total phr 3 32 32 EPDM Cable Insulation 926E Room temperature 3 Days in 9 C water bath Dielectric Constant ASTM D 151 without Deolink 2.99 19.38 2 phr Deolink 3.1 5.63 2 phr Deolink 3.7 5.61 Dissipation Factor ASTM D 15 without Deolink.1.446 2 phr Deolink.13.45 2 phr Deolink.13.26 Volume Resistivity ASTM D 267 without Deolink 1.6 1 15 Ωcm.3 1 12 Ωcm 2 phr Deolink 1. 1 15 Ωcm.3 1 12 Ωcm 2 phr Deolink 1.7 1 15 Ωcm 21 1 12 Ωcm Dielectric Strength ASTM D 149 without Deolink 228 kv/cm 61 kv/cm 2 phr Deolink 166 kv/cm 173 kv/cm 2 phr Deolink 26 kv/cm 142 kv/cm The electrical values have been measured on 2 mm test plates, and provide a general indication of the positive wet electrical properties. 26

5. Appendix Complete overview of all test series 5.1. Sulphur silanes Deolink / Deolink 5.1.1 SBR / Silica (Recipe to 3.1.1 and 3.3.1 and 3.4) Recipe 451S 3) 3) 3) 1) 2) 3) 2) 1) 2) 3) 2) 2) 1) 2) 3) 2) Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 4 4 4 5 5 5 5 5 5 5 Speed [rpm] 5 5 5 7 7 7 7 7 7 7 Dumping temperature [ C] 115 115 115 14 14 14 14 14 14 14 Buna SBR 152 1 1 1 1 1 1 1 1 1 1 Silica (BET 175 m 2 /g) 5 5 5 5 5 5 5 5 5 5 Naphthenic oil 1 1 1 1 1 1 1 1 1 1 ZnO 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 Stearic acid 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Antioxidant SPH 1 1 1 1 1 1 1 1 1 1 PEG 4 2 2 2 2 2 2 2 2 2 2 Deolink 4 2 4 8 Deolink 4 2 4 8 MBTS 1 1 1 1 1 1 1 1 1 1 DPG 1 1 1 1 1 1 1 1 1 1 Sulphur 2 2 2 2 2 2 2 2 2 2 Total phr 172 176 176 172 174 176 18 174 176 18 Rheometer MDR 2 (17 C/12 min) S I min [dnm] 1.81 1.98 1.66 1.62 1.32 1.26 1.22 1.37 1.26 1.14 S I max [dnm] 18.26 21.65 18.65 16.45 16.95 16.61 18.13 16.2 14.88 14.26 t 1 [min] 1.12 1.17 1.22 2.39 1.91 2.17 2.11 2.35 2.44 2.19 t 5 [min] 1.94 2.27 1.94 3.65 2.86 3.52 3.66 3.35 3.39 3.1 t 9 [min] 4.3 4.58 3.86 6.38 5.14 6.64 7.44 5.77 5.72 5.16 ML 1+4, 1 C 63 61 57 61 55 52 49 51 51 49 Physical Properties (Vulcanization 2 min/16 C) Hardness [Shore A] 57 61 6 57 59 6 64 58 59 6 Tensile strength [] 11.1 13.4 14.6 1.1 11.4 12.6 12.2 11.8 1.5 9.9 Elongation at break [%] 576 4 423 578 444 432 375 466 4 357 Modulus 3 % [] 4.9 1.1 9.7 4.2 7.1 8.2 9.7 6.9 7.6 8. Tear resistance [N/mm] 29.2 29.2 27.4 31.2 26.6 24.1 22.4 27.4 28.2 3.1 Rebound [%] 43 45 47 41 46 44 44 44 46 46 Hot Air Ageing (168 h/7 C) Ret. Tensile strength [%] 89 94 9 92 88 93 96 91 85 82 Ret. Elongation at break [%] 87 77 82 84 8 78 8 78 73 68 Change in hardness [Shore A] +6 +7 +6 +7 +4 +3 +3 +5 +4 +4 24 h/7 C [%] 24 2 2 26 21 19 18 21 2 2 24 h/1 C [%] 55 46 43 58 47 47 45 5 47 45 DIN Abrasion Abrasion [mm 3 ] 153 11 96 172 19 92 9 15 97 85 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec] 2.4 2.3 2.47 2.7 2.65 3.47 3.75 2.92 3.12 3.39 Volume Speed [mm 3 /s] 41 42 48 4 46 58 64 51 53 56 1) Recipe to 3.1.1 of page 9 2) Recipe to 3.3.1 of page 13 3) Recipe to 3.4 of page 15 17 27

-KONTAKT 39 5.1.2 NR / Silica Recipe 925N Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 6 6 Speed [rpm] 7 7 Dumping temperature [ C] 14 14 NR Pale Crepe 1 1 Silica (BET 175 m 2 /g) 5 5 Naphthenic oil 5 5 ZnO 3.5 3.5 Stearic acid 2 2 Antioxidant SPH 1 1 Deolink 4 MBTS 1.2 1.2 DPG.4.4 Sulphur 2 2 Total phr 165.1 169.1 Rheometer Göttfert (17 C/12 min) F min [Nm].33.24 F max [Nm] 1.24.87 t 1 [min].42 1. t 9 [min] 4.72 4.84 ML 1+4, 1 C 17 73 Physical Properties (Vulcanization 15 min/16 C) Hardness [Shore A] 5 51 Tensile strength [] 1.3 13.6 Elongation at break [%] 517 499 Modulus 3 % [] 3.4 5.4 Tear resistance [N/mm] 11.4 11.8 Rebound [%] 47 48 24 h/7 C [%] 51 38 DIN Abrasion Abrasion [mm 3 ] 232 158 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec].78 1.47 Volume Speed [mm 3 /s] 17 24 28

5.1.3 EPDM / Silica (Batch to 3.1.2) Recipe 93E1 Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 6 6 6 6 6 Speed [rpm] 7 7 7 7 7 Dumping temperature [ C] 14 14 14 14 14 EPDM Buna EPG 545 1 1 1 1 1 Silica (BET 125 m 2 /g) 5 5 5 5 5 Paraffin oil 2 2 2 2 2 ZnO 5 5 5 5 5 Stearic acid 1 1 1 1 1 PEG 4 2 2 2 2 2 Deolink 2 4 Deolink 2 4 Deovulc TP 4-75 2.8 2.8 2.8 2.8 2.8 MBTS 1 1 1 1 1 DPG.4.4.4.4.4 Deovulc ZBEC-8.6.6.6.6.6 Sulphur 1 1 1 1 1 Total phr 183.8 185.8 187.8 185.8 187.8 Rheometer MDR 2 (18 C/6 min) S I min [dnm] 3.48 2.57 2.39 2.44 1.95 S I max [dnm] 19.86 18.2 17.2 19.2 19.2 t 1 [min].47.48.49.49.53 t 5 [min].89.94 1..93 1.2 t 9 [min] 3.45 3.54 3.71 3.56 3.41 ML 1+4, 1 C 93 84 79 81 74 Physical Properties (Vulcanization 2 min/16 C) Hardness [Shore A] 63 64 64 64 64 Tensile strength [] 1.1 11.1 11.5 11.2 11.5 Elongation at break [%] 468 355 315 352 354 Modulus 3 % [] 4.5 9. 1.3 9.2 1. Tear resistance [N/mm] 12.1 12.3 11.7 11. 1.8 Rebound [%] 51 55 57 56 56 Hot Air Ageing (72 h/12 C) Ret. Tensile strength [%] 76 8 83 14 99 Ret. Elongation at break [%] 5 61 56 68 61 Change in hardness [Shore A] +8 +5 +5 +5 +5 24 h/7 C [%] 16 12 12 11 1 24 h/1 C [%] 42 41 4 39 35 DIN Abrasion Abrasion [mm 3 ] 175 113 13 114 19 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec].74.85 1.1 1.9 1.31 Volume Speed [mm 3 /s] 21 23 26 26 29 29

-KONTAKT 39 5.1.4 EPDM / Clay Recipe 93E2 Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 4 4 4 4 4 Speed [rpm] 7 7 7 7 7 Dumping temperature [ C] 115 115 115 115 115 EPDM Buna EPG 545 5 5 5 5 5 EPDM Buna EPG 647 5 5 5 5 5 Clay 1 1 1 1 1 Paraffin oil 2 2 2 2 2 ZnO 5 5 5 5 5 Stearic acid 1 1 1 1 1 PEG 4 2 2 2 2 2 Deolink 2 4 Deolink 2 4 Deovulc TP 4-75 2.5 2.5 2.5 2.5 2.5 MBTS 1 1 1 1 1 DPG.4.4.4.4.4 Deovulc ZBEC-8.6.6.6.6.6 Sulphur 1 1 1 1 1 Total phr 233.5 235.5 237.5 235.5 237.5 Rheometer MDR 2 (18 C/6 min) S I min [dnm] 1.91 1.68 1.58 1.28 1.12 S I max [dnm] 18. 19.22 19.24 19.18 18.51 t 1 [min].7.72.7.8.84 t 5 [min] 1.2 1.24 1.23 1.34 1.43 t 9 [min] 3.77 3.79 3.84 3.96 4.5 ML 1+4, 1 C 72 67 64 58 53 Physical Properties (Vulcanization 2 min/16 C) Hardness [Shore A] 59 63 65 65 66 Tensile strength [] 17.9 2.1 2.4 18.8 21. Elongation at break [%] 539 547 555 556 578 Modulus 3 % [] 2.7 4.5 5.7 5.9 6.2 Tear resistance [N/mm] 9.9 11.5 11.2 12.9 13.2 Rebound [%] 46 52 52 52 51 Hot Air Ageing (72 h/1 C) Ret. Tensile strength [%] 68 54 55 68 7 Ret. Elongation at break [%] 77 76 73 78 79 Change in hardness [Shore A] +4 +4 +4 +4 +4 24 h/7 C [%] 2 16 12 11 1 24 h/1 C [%] 53 45 4 36 34 DIN Abrasion Abrasion [mm 3 ] 269 233 189 235 22 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec] 1.37 1.5 1.61 2.1 2.35 Volume Speed [mm 3 /s] 29 31 32 36 41 3

5.1.5 NBR / Silica Recipe 448A Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 6 6 Speed [rpm] 7 7 Dumping temperature [ C] 14 14 Perbunan NT 3445 1 1 Silica (BET 175 m 2 /g) 5 5 Ester plasticizer 1 1 ZnO 3.5 3.5 Stearic acid.5.5 PEG 4 2 2 Antioxidant SPH 1 1 Deolink 4 MBTS 1.2 1.2 DPG.4.4 Sulphur 2 2 Total phr 17.6 174.6 Rheometer Göttfert (17 C/12 min) F min [Nm].5.37 F max [Nm] 2.55 2.37 t 1 [min].87 1.12 t 9 [min] 7.22 6.96 ML 1+4, 1 C 16 75 Physical Properties (Vulcanization 15 min/16 C) Hardness [Shore A] 64 67 Tensile strength [] 17.7 14.4 Elongation at break [%] 531 364 Modulus 3 % [] 4.6 11.5 Tear resistance [N/mm] 33.6 27.2 Rebound [%] 32 32 24 h/7 C [%] 33 28 24 h/1 C [%] 71 62 DIN Abrasion Abrasion [mm 3 ] 162 118 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec].59 1.1 Volume Speed [mm 3 /s] 19 27 31

-KONTAKT 39 5.1.6 CR / Silica (Batch to 3.1.3) Recipe 248C Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 3 3 3 Speed [rpm] 6 6 6 Dumping temperature [ C] 12 125 125 Baypren 11 1 1 1 Silica (BET 125 m 2 /g) 5 5 5 Ester plasticizer 1 1 1 MgO 4 4 4 Stearic acid.5.5.5 Controzon GP 2 2 2 Antioxidant ODPA 1 1 1 Deolink 2 Deolink 2 ZnO 5 5 5 MBTS.5.5.5 ETU 1 1 1 Total phr 174 176 176 Rheometer MDR 2 (17 C/12 min) S I min [dnm] 3.74 3.84 2.78 S I max [dnm] 28.82 29.89 22.62 t 1 [min] 1.13 1.12 1.36 t 5 [min] 3.4 3.27 3.75 t 9 [min] 9.4 8.86 9.12 ML 1+4, 1 C 77 84 77 Physical Properties (Vulcanization 2 min/16 C) Hardness [Shore A] 65 68 66 Tensile strength [] 15.3 16.8 17.9 Elongation at break [%] 562 428 451 Modulus 3 % [] 6.9 12.1 12. Tear resistance [N/mm] 31.6 32.8 3. Rebound [%] 39 37 41 Hot Air Ageing (72 h/1 C) Ret. Tensile strength [%] 13 13 99 Ret. Elongation at break [%] 89 83 8 Change in hardness [Shore A] +6 +6 +6 24 h/7 C [%] 37 21 22 24 h/1 C [%] 52 33 3 DIN Abrasion Abrasion [mm 3 ] 16 127 113 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec].81.65.95 Volume Speed [mm 3 /s] 15 13 19 32

5.1.7 SBR / Clay (Batch to 3.3.2) Recipe 456S Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 6 6 6 6 6 Speed [rpm] 7 7 7 7 7 Dumping temperature [ C] 14 14 14 14 14 Buna SBR 152 1 1 1 1 1 Clay 1 1 1 1 1 Naphthenic oil 1 1 1 1 1 ZnO 3.5 3.5 3.5 3.5 3.5 Stearic acid 1.5 1.5 1.5 1.5 1.5 PEG 4 2 2 2 2 2 Antioxidant SPH 1 1 1 1 1 Deolink 2 4 8 16 MBTS 1 1 1 1 1 DPG 1 1 1 1 1 Sulphur 2 2 2 2 2 Total phr 222 224 226 23 238 Rheometer MDR 2 (17 C/12 min) S I min [dnm] 1.6 1.5 1.4 1.7 1.6 S I max [dnm] 1.32 11.48 12.32 12.26 12.44 t 1 [min] 1.32 1.39 1.47 1.34 1.36 t 5 [min] 1.95 2.6 2.19 2.13 2.33 t 9 [min] 3.66 4.3 4.46 5.11 6.3 ML 1+4, 1 C 45 42 41 41 39 Physical Properties (Vulcanization 2 min/16 C min) Hardness [Shore A] 57 59 59 6 6 Tensile strength [] 13.7 14.1 13.9 13.6 11. Elongation at break [%] 798 723 729 768 718 Modulus 3 % [] 3.3 5.1 5.6 5.9 5.7 Tear resistance [N/mm] 21.3 22.1 2.6 2.5 18.4 Rebound [%] 42 44 44 46 46 24 h/7 C [%] 33 24 22 21 2 24 h/1 C [%] 61 5 48 49 5 DIN Abrasion Abrasion [mm 3 ] 339 272 213 214 198 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec] 1.88 1.92 2.12 2.11 2.22 Volume Speed [mm 3 /s] 34 34 37 38 4 33

-KONTAKT 39 5.1.8 SBR / Silica (Batch to 3.4) Recipe 451S Mixing conditions: Roller mixer 26 mm, friction 1 : 1.1 Starting temperature [ C] 6 6 6 Speed [rpm] 18 18 18 Dumping temperature [ C] 8 8 8 Buna SBR 152 1 1 1 Silica (BET 175 m 2 /g) 5 5 5 Naphthenic oil 1 1 1 ZnO 3.5 3.5 3.5 Stearic acid 1.5 1.5 1.5 Antioxidant SPH 1 1 1 PEG 4 2 2 2 Deolink 4 Deolink 4 MBTS 1 1 1 DPG 1 1 1 Sulphur 2 2 2 Total phr 172 176 176 Rheometer MDR 2 (17 C/12 min) S I min [dnm] 7.4 6.31 5.95 S I max [dnm] 27.48 27.14 25.51 t 1 [min].72 1.1 1.31 t 5 [min] 2.38 2.6 2.2 t 9 [min] 5.97 4.9 4.86 ML 1+4, 1 C 137 14 12 Physical Properties (Vulcanization 2 min/16 C) Hardness [Shore A] 64 65 65 Tensile strength [] 12.8 15.2 14.7 Elongation at break [%] 54 447 398 Modulus 3 % [] 6.4 9.4 1.2 Tear resistance [N/mm] 24.8 2.1 19. Rebound [%] 43 45 47 Hot Air Ageing (168 h/7 C) Ret. Tensile strength [%] 81 92 81 Ret. Elongation at break [%] 76 83 74 Change in hardness [Shore A] +6 +5 +6 24 h/7 C [%] 29 21 18 24 h/1 C [%] 56 47 46 DIN Abrasion Abrasion [mm 3 ] 125 98 9 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec].57 1.14 1.32 Volume Speed [mm 3 /s] 22 33 34 34

5.2 silanes Deolink / Deolink 5.2.1 EPDM / Silica (Batch to 4.1.1 and 4.2.1) Recipe 94E 1) 2) 2) 1) 2) 2) 2) 1) 2) 2) Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperarture [ C] 6 6 6 6 6 6 6 Speed [rpm] 5 5 5 5 5 5 5 Dumping temperature [ C] 11 11 11 11 11 11 11 EPDM Buna EPG 545 1 1 1 1 1 1 1 Silica (BET 125 m 2 /g) 5 5 5 5 5 5 5 Paraffin oil 2 2 2 2 2 2 2 PEG 4 2 2 2 2 2 2 2 ZnO 5 5 5 5 5 5 5 Deolink 1 2 4 Deolink 1 2 4 TAC DL 7 2 2 2 2 2 2 2 Perkadox 14 4 7 7 7 7 7 7 7 Total phr 186 187 188 19 187 188 19 Rheometer MDR 2 (18 C/6 min) S I min [dnm] 3.93 3.76 3.56 2.89 3.62 3.45 2.74 S I max [dnm] 36.62 36.5 36.31 36.52 35.93 35.21 33.19 t 1 [min].48.47.46.46.46.47.46 t 5 [min] 1.17 1.15 1.12 1.12 1.15 1.14 1.17 t 9 [min] 3.63 3.53 3.44 3.5 3.48 3.46 3.55 ML 1+4, 1 C 1 98 91 83 96 89 81 Physical Properties (Vulcanization 1 min/18 C) Hardness [Shore A] 68 7 7 69 69 69 69 Tensile strength [] 9.7 11.7 12.2 11. 12.3 11.5 11.7 Elongation at break [%] 451 342 34 325 47 372 358 Modulus 3 % [] 6.1 8.3 9.1 9.7 7.8 8.5 9.1 Tear resistance [N/mm] 12.5 11.2 9.9 9.8 11.7 11.7 11. Rebound [%] 55 57 57 57 57 57 57 Hot Air Ageing (72 h/1 C) Tensile strength [] 8,1 8,2 8,7 9,2 8,6 9,3 9,4 Elongation at break [%] 171 166 171 179 17 189 178 Change in hardness [Shore A] +4 +2 +1 +2 +1 24 h/1 C [%] 15 9 8 7 9 7 7 DIN Abrasion Abrasion [mm 3 ] 217 161 142 143 176 151 135 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec].87.91 1.9 1.14.96 1.25 1.35 Volume Speed [mm 3 /s] 24 25 31 33 27 35 39 1) Recipe to 4.1.1 of page 19 2) Recipe to 4.2.1 of page 22 35

-KONTAKT 39 5.2.2 H-NBR (fully saturated) / Silica (Batch to 4.1.2) Recipe 3T Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 4 4 4 4 4 Speed [rpm] 6 6 6 6 6 Dumping temperature [ C] 13 13 13 13 13 H-NBR Therban 347 1 1 1 1 1 Vulkasil A1 5 5 5 5 5 MgO 2 2 2 2 2 ZnO 3 3 3 3 3 Antioxidant SDPA 1 1 1 1 1 Vulkanox ZMB 2.5.5.5.5.5 Deoflow 821 1 1 1 1 1 Deolink 2 3 Deolink 2 3 TAIC 7 1.5 1.5 1.5 1.5 1.5 Perkadox 14 4 7 7 7 7 7 Total phr 166 168 169 168 169 Rheometer MDR 2 (18 C/6 min) S I min [dnm] 2.9 2.67 2.43 2.44 2.37 S I max [dnm] 27.44 27.4 26.42 26.21 25.34 t 1 [min].62.62.62.63.64 t 5 [min] 1.78 1.75 1.75 1.76 1.77 t 9 [min] 4.28 4.2 4.2 4.22 4.2 ML 1+4, 1 C 112 15 99 1 98 Physical Properties (not tempered) (Vulcanization 1 min/18 C) Hardness [Shore A] 65 68 68 67 67 Tensile strength [] 18. 18.6 18.3 19.5 19.4 Elongation at break [%] 369 227 225 331 317 Modulus 1 % [] 2.5 6.1 6.1 4.6 4.5 Modulus 2 % [] 4.8 15.8 15.7 11.2 11.2 Tear resistance [N/mm] 15.9 11.2 1. 16. 14.2 Rebound [%] 4 42 42 41 42 Hot Air Ageing (168 h/15 C) Ret. Tensile strength [%] 114 14 18 12 111 Ret. Elongation at break [%] 72 84 9 69 8 Change in hardness [Shore A] +1 +5 +5 +6 +6 7 h/15 C [%] 47 2 2 21 22 DIN Abrasion Abrasion [mm 3 ] 145 75 77 95 93 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec].92 1.14 1.27 1.36 1.66 Volume Speed [mm 3 /s] 24 28 3 31 37 36

5.2.3 H-NBR (partly saturated) / Silica Recipe 2T Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 4 4 4 4 4 Speed [rpm] 6 6 6 6 6 Dumping temperature [ C] 13 13 13 13 13 H-NBR Zetpol 22 L 1 1 1 1 1 Vulkasil A1 5 5 5 5 5 MgO 2 2 2 2 2 ZnO 3 3 3 3 3 Antioxidant SDPA 1 1 1 1 1 Vulkanox ZMB 2.5.5.5.5.5 Deoflow 821 1 1 1 1 1 Deolink 2 3 Deolink 2 3 TAIC 7 1.5 1.5 1.5 1.5 1.5 Perkadox 14 4 7 7 7 7 7 Total phr 166 168 169 168 169 Rheometer MDR 2 (18 C/6 min) S I min [dnm] 1.85 1.77 1.71 1.73 1.58 S I max [dnm] 31.65 32.84 32.34 31.41 3.21 t 1 [min].69.71.71.71.71 t 5 [min] 1.79 1.76 1.76 1.77 1.76 t 9 [min] 4.28 4.13 4.13 4.15 4.13 ML 1+4, 1 C 12 98 98 96 94 Physical Properties (not tempered) (Vulcanization 1 min/18 C) Hardness [Shore A] 69 72 72 71 71 Tensile strength [] 15.5 18.8 17. 16.6 17.6 Elongation at break [%] 421 235 225 333 36 Modulus 1 % [] 2.7 5.7 5.9 3.9 4.6 Modulus 2 % [] 5.2 15. 15.1 9.1 1.8 Tear resistance [N/mm] 16.8 13.1 13. 16. 15.3 Rebound [%] 37 38 39 4 38 Hot Air Ageing (168 h/15 C) Ret. Tensile strength [%] 133 111 118 133 126 Ret. Elongation at break [%] 5 76 77 68 77 Change in hardness [Shore A] +11 +6 +6 +7 +6 7 h/15 C [%] 52 28 27 32 29 DIN Abrasion Abrasion [mm 3 ] 159 11 98 124 114 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec] 1.38 1.62 1.69 1.75 2.3 Volume Speed [mm 3 /s] 3 33 35 35 4 37

-KONTAKT 39 5.2.4 EVA / Aluminiumhydroxide (Batch to 4.1.3) Recipe 12L Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 4 4 4 4 4 Speed [rpm] 6 6 6 6 6 Dumping temperature [ C] 11 11 11 11 11 Levapren 5HV 1 1 1 1 1 Aluminiumhydroxide 14 14 14 14 14 Zinc borate 1 1 1 1 1 Vulkanox DDA 1 1 1 1 1 Plasticizer DOS 4 4 4 4 4 Deolink 1.5 3 Deolink 1.5 3 TAC 5 1 1 1 1 1 Perkadox 14 4 6 6 6 6 6 Total phr 262 263.5 265 263.5 265 Rheometer MDR 2 (18 C/6 min) S I min [dnm].83.64.57.59.53 S I max [dnm] 23.67 21.24 19.84 19.94 18.9 t 1 [min].59.59.57.62.65 t 9 [min] 4.11 4.3 3.91 4.13 4.7 ML 1+4, 1 C 49 42 4 44 41 Physical Properties (Vulcanization 1 min/18 C) Hardness [Shore A] 73 74 76 73 74 Tensile strength [] 6.8 12.1 13.8 8. 9. Elongation at break [%] 423 199 173 288 262 Modulus 1 % [] 4.9 9.8 1.5 7.3 8.1 Hot Air Ageing (168 h/15 C) Ret. Tensile strength [%] 121 116 19 137 136 Ret. Elongation at break [%] 75 88 98 83 8 Change in hardness [Shore A] +4 +3 +2 +5 +5 24 h/1 C [%] 12 4 4 6 6 DIN Abrasion Abrasion [mm 3 ] 244 24 192 218 217 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec] 1.24 1.77 2.23 1.99 2.29 Volume Speed [mm 3 /s] 29 36 43 38 42 38

5.2.5 CPE / Clay / Silica Recipe 4CM Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.78 Starting temperature [ C] 4 4 4 Speed [rpm] 45 45 45 Dumping temperature [ C] 1 1 1 CPE DAKREN 135H 1 1 1 Silica (BET 125 m 2 /g) 2 2 2 Clay 8 8 8 MgO 1 1 1 Antioxidant TMQ.2.2.2 Plasticizer Bisoflex T 81 T 25 25 25 Deolink 2 Deolink 2 Deoflow S 1 1 1 EDMA DL 75 2 2 2 Perkadox 14 4 6 6 6 Total phr 244.2 246.2 246.2 Rheometer MDR 2 (18 C/6 min) S I min [dnm] 4.73 3.7 3.61 S I max [dnm] 23.78 18.24 19.42 t 1 [min].37.52.56 t 5 [min] 1.25 1.3 1.36 t 9 [min] 4.21 4.29 4.23 ML 1+4, 1 C 111 92 93 Physical Properties (Vulcanization 1 min/18 C) Hardness [Shore A] 7 69 69 Tensile strength [] 13.2 14.7 14.3 Elongation at break [%] 531 527 53 Modulus 2 % [] 3.8 4.6 4.5 Modulus 3 % [] 5.1 6.2 6. Tear resistance [N/mm] 31. 3.9 3.2 Hot Air Ageing (72 h/125 C) Ret. Tensile strength [%] 69 69 72 Ret. Elongation at break [%] 65 67 72 Change in hardness [Shore A] +9 +8 +8 24 h/125 C [%] 42 36 36 DIN Abrasion Abrasion [mm 3 ] 277 263 267 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec] 1.34 2.4 2.2 Volume Speed [mm 3 /s] 41 52 49 39

-KONTAKT 39 5.2.6 NBR / Silica Recipe 452A Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 4 4 4 Speed [rpm] 6 6 6 Dumping temperature [ C] 13 13 13 Perbunan NT 3345 1 1 1 Vulkasil A1 2 2 2 Silica (BET 125 m 2 /g) 3 3 3 Ester plasticizer 1 1 1 ZnO 5 5 5 PEG 4 2 2 2 Deolink 2 Deolink 2 Antioxidant ZMTI 1 1 1 Perkadox BC 4 4 4 4 Total phr 172 174 174 Rheometer MDR 2 (18 C/6 min) S I min [dnm] 1.75 1.98 1.48 S I max [dnm] 23.78 26.58 23.95 t 1 [min].48.49.5 t 5 [min] 1.11 1.12 1.15 t 9 [min] 2.93 2.94 3. ML 1+4, 1 C 61 62 56 Physical Properties (Vulcanization 12 min/17 C) Hardness [Shore A] 59 61 62 Tensile strength [] 9.6 11.5 1.9 Elongation at break [%] 361 339 295 Modulus 1 % [] 2.2 3. 3.8 Modulus 2 % [] 3.8 6.2 7.3 Tear resistance [N/mm] 12.7 12.2 11.7 Rebound [%] 32 31 33 Hot Air Ageing (72 h/1 C) Ret. Tensile strength [%] 19 118 111 Ret. Elongation at break [%] 92 92 93 Change in hardness [Shore A] +5 +5 +3 24 h/1 C [%] 11 8 9 DIN Abrasion Abrasion [mm 3 ] 241 198 192 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec] 1.39 1.48 1.88 Volume Speed [mm 3 /s] 33 37 39 4

5.2.7 EPDM / Kaolin (Batch to 4.2.2) Recipe 941E Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 6 6 6 6 6 6 6 Speed [rpm] 7 7 7 7 7 7 7 Dumping temperature [ C] 125 125 125 125 125 125 125 EPDM Buna EPG 545 1 1 1 1 1 1 1 Clay 1 1 1 1 1 1 1 Paraffin oil 2 2 2 2 2 2 2 PEG 4 2 2 2 2 2 2 2 ZnO 5 5 5 5 5 5 5 Deolink 1 2 4 Deolink 1 2 4 TAC DL 7 2 2 2 2 2 2 2 Perkadox 14 4 7 7 7 7 7 7 7 Total phr 236 237 238 24 237 238 24 Rheometer MDR 2 (18 C/6 min) S I min [dnm] 1.94 1.82 1.57 1.46 1.53 1.33 1.18 S I max [dnm] 14.64 15.82 15.46 18. 13.9 11.44 11.82 t 1 [min].46.45.47.47.47.45.43 t 5 [min] 1.3 1.25 1.24 1.25 1.27 1.19 1.15 t 9 [min] 3.72 3.62 3.58 3.57 3.74 3.66 3.63 ML 1+4, 1 C 66 62 59 56 59 55 48 Physical Properties (Vulcanization 1 min/18 C) Hardness [Shore A] 61 64 65 66 63 63 64 Tensile strength [] 1.3 1.6 11.5 12.4 9.8 1.8 11.6 Elongation at break [%] 895 589 48 357 659 7 686 Modulus 3 % [] 3.4 6.6 7.5 1.4 5.6 5.7 6.3 Tear resistance [N/mm] 15.2 16.7 15.6 14.2 16.9 18.8 2. Rebound [%] 51 52 51 51 52 52 52 Hot Air Ageing (72 h/1 C) Tensile strength [] 9,6 12, 1,7 1,1 11, 11,3 11,2 Elongation at break [%] 386 227 19 151 36 273 258 Change in hardness [Shore A] +3 +2 +1 +2 +1 +1 +1 24 h/1 C [%] 17 1 1 9 11 11 11 DIN Abrasion Abrasion [mm 3 ] 245 226 224 222 212 214 19 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec] 1.77 1.83 2.12 2.22 2.17 2.27 2.36 Volume Speed [mm 3 /s] 42 43 47 52 5 52 54 41

-KONTAKT 39 5.2.8 EPDM / Aluminiumhydroxide (Batch to 4.2.3) Recipe 95E Mixing conditions: Farrel BR Banbury Mixer/Vol. 1.6 litre/fill factor.73 Starting temperature [ C] 5 5 5 5 5 Speed [rpm] 7 7 7 7 7 Dumping temperature [ C] 12 12 12 12 12 EPDM Buna EPG 545 1 1 1 1 1 Aluminiumhydroxide 15 15 15 15 15 Paraffin oil 3 3 3 3 3 ZnO 5 5 5 5 5 Deolink 1.5 3 Deolink 1.5 3 TAC DL 7 1.5 1.5 1.5 1.5 1.5 Perkadox 14 4 7 7 7 7 7 Total phr 293.5 295 296.5 295 296.5 Rheometer MDR 2 (18 C/6 min) S I min [dnm] 1.79 1.56 1.42 1.32 1.2 S I max [dnm] 27.2 24.75 23.85 23.4 22.49 t 1 [min].5.51.51.5.51 t 5 [min] 1.39 1.35 1.34 1.34 1.36 t 9 [min] 4.13 3.97 3.94 3.92 3.95 ML 1+4, 1 C 73 68 65 62 56 Physical Properties (Vulcanization 1 min/18 C) Hardness [Shore A] 64 66 66 65 66 Tensile strength [] 3.8 1.4 11.8 8.4 9.6 Elongation at break [%] 313 26 192 247 234 Modulus 1 % [] 2.7 5.5 6.3 4.8 5.2 Tear resistance [N/mm] 8.8 1.9 9.5 9.5 1.2 Rebound [%] 53 54 55 54 52 Hot Air Ageing (72 h/1 C) Ret. Tensile strength [%] 172 13 119 144 141 Ret. Elongation at break [%] 65 89 91 81 87 Change in hardness [Shore A] +2 +2 +1 +2 +1 24 h/1 C [%] 1 4 5 4 4 DIN Abrasion Abrasion [mm 3 ] 285 27 196 217 191 Rheovulkameter injection moulding test, capillary/piston 1 C, mould 18 C Volume [cm 3 /7 sec] 1.55 1.77 1.81 1.88 2.24 Volume Speed [mm 3 /s] 36 44 43 46 58 42